The Java™
L anguage Specification
Third Edition



The Java™ Series

The Java™ Programming L anguage
Ken Arnold, James Godling and David Holmes
ISBN 0-201-70433-1

The Java™ Language Specification Third Edition
James Godling, Bill Joy, Guy Steele and Gilad Bracha
ISBN 0-321-24678-0

The Java™ Virtual Machine Specification Second Edition
Tim Lindholm and Frank Yellin
ISBN 0-201-43294-3

The Java™ Application Programming I nterface,
Volume 1: Core Packages

James Godling, Frank Yellin, and the Java Team
ISBN 0-201-63452-X

The Java™ Application Programming I nterface,
Volume 2: Window Toolkit and Applets

James Godling, Frank Y ellin, and the Java Team
ISBN 0-201-63459-7

TheJava™ Tutorial: Object-Oriented Programming for the | nternet
Mary Campione and Kathy Walrath
ISBN 0-201-63454-6

TheJava™ ClassLibrariess An Annotated Reference
Patrick Chan and Rosanna Lee
ISBN 0-201-63458-9

TheJava™ FAQ: Frequently Asked Questions
Jonni Kanerva
ISBN 0-201-63456-2



The Java™
L anguage Specification
Third Edition

James Gosling
Bill Joy
Guy Steele
Gilad Bracha

A
A\A 4
ADDISON-WESLEY
Boston - San Francisco - New York - Toronto - Montreal

London - Munich - Paris- Madrid
Capetown - Sydney - Tokyo - Singapore - Mexico City



The Java Language Specification



Copyright 0 1996-2005 Sun Microsystems, Inc.

4150 Network Circle, Santa Clara, California 95054 U.S.A.
All rights reserved.

Duke logo™ designed by Joe Palrang.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States
Government is subject to the restrictions set forth in DFARS 252.227-7013 (c)(1)(ii) and
FAR 52.227-19.

The release described in this manual may be protected by one or more U.S. patents,
foreign patents, or pending applications.

Sun Microsystems, Inc. (SUN) hereby grants to you a fully paid, nonexclusive, nontrans-
ferable, perpetual, worldwide limited license (without the right to sublicense) under
SUN's intellectual property rights that are essential to practice this specification. This
license allows and is limited to the creation and distribution of clean room implementa
tions of this specification that: (i) include a complete implementation of the current ver-
sion of this specification without subsetting or supersetting; (ii) implement al the
interfaces and functionality of the required packages of the Java™ 2 Platform, Standard
Edition, as defined by SUN, without subsetting or supersetting; (iii) do not add any addi-
tional packages, classes, or interfaces to the java.* or javax.* packages or their subpack-
ages; (iv) pass al test suites relating to the most recent published version of the
specification of the Java™ 2 Platform, Standard Edition, that are available from SUN six
(6) months prior to any beta release of the clean room implementation or upgrade thereto;
(v) do not derive from SUN source code or binary materials; and (vi) do not include any
SUN source code or binary materials without an appropriate and separate license from
SUN.

Sun, Sun Microsystems, the Sun logo, Solaris, Java, JavaScript, JDK, and all Java-based
trademarks or logos are trademarks or registered trademarks of Sun Microsystems, Inc.
UNIX® isaregistered trademark of The Open Group in the United States and other coun-
tries. Apple and Dylan are trademarks of Apple Computer, Inc. All other product names
mentioned herein are the trademarks of their respective owners.

THIS PUBLICATION IS PROVIDED “AS IS’ WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPO-
GRAPHICAL ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFOR-
MATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PRO-
GRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

Credits and permissions for quoted material appear in a separate section on page 649.



Vi

Text printed on recycled and acid-free paper

ISBN 0-321-24678-0
123456789-MA-99989796
First printing, May 2005



“When | use aword,” Humpty Dumpty said,
in rather a scornful tone, “it means just what |
choose it to mean—neither more nor less”

“The questionis,” said Alice, “whether you
can make words mean so many different things.”

“The question is,” said Humpty Dumpty,
“which isto be master—that's all.”

—L ewis Carroll, Through the Looking Glass
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Preface

T HE Java™ programming language was originally called Oak, and was designed
for use in embedded consumer-electronic applications by James Gosling. After
several years of experience with the language, and significant contributions by Ed
Frank, Patrick Naughton, Jonathan Payne, and Chris Warth it was retargeted to the
Internet, renamed, and substantially revised to be the language specified here. The
final form of the language was defined by James Gosling, Bill Joy, Guy Steele,
Richard Tuck, Frank Yellin, and Arthur van Hoff, with help from Graham Hamil-
ton, Tim Lindholm, and many other friends and colleagues.

The Java programming language is a general-purpose concurrent class-based
object-oriented programming language, specifically designed to have as few
implementation dependencies as possible. It allows application developers to
write a program once and then be able to run it everywhere on the Internet.

This book attempts a complete specification of the syntax and semantics of
the language. We intend that the behavior of every language construct is specified
here, so that all implementations will accept the same programs. Except for timing
dependencies or other non-determinisms and given sufficient time and sufficient
memory space, a program written in the Java programming language should com-
pute the same result on all machines and in all implementations.

We believe that the Java programming language is a mature language, ready
for widespread use. Neverthel ess, we expect some evolution of the language in the
years to come. We intend to manage this evolution in a way that is completely
compatible with existing applications. To do this, weintend to make relatively few
new versions of the language. Compilers and systems will be able to support the
several versions simultaneously, with complete compatibility.

Much research and experimentation with the Java platform is aready under-
way. We encourage this work, and will continue to cooperate with external groups
to explore improvements to the language and platform. For example, we have
already received several interesting proposals for parameterized types. In techni-
caly difficult areas, near the state of the art, this kind of research collaboration is
essential.
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Preface to the Second Edition

OVER the past few years, the Java™ programming language has enjoyed
unprecedented success. This success has brought a challenge: along with explo-
sive growth in popularity, there has been explosive growth in the demands made
on the language and its libraries. To meet this challenge, the language has grown
aswell (fortunately, not explosively) and so have the libraries.

This second edition of The Java™ Language Specification reflects these devel-
opments. It integrates all the changes made to the Java programming language
since the publication of the first edition in 1996. The bulk of these changes were
made in the 1.1 release of the Java platform in 1997, and revolve around the addi-
tion of nested type declarations. Later modifications pertained to floating-point
operations. In addition, this edition incorporates important clarifications and
amendments involving method lookup and binary compatibility.

This specification defines the language as it exists today. The Java program-
ming language is likely to continue to evolve. At this writing, there are ongoing
initiatives through the Java Community Process to extend the language with
generic types and assertions, refine the memory model, etc. However, it would be
inappropriate to delay the publication of the second edition until these efforts are
concluded.
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The specifications of the libraries are now far too large to fit into this volume,
and they continue to evolve. Consequently, API specifications have been removed
from this book. The library specifications can be found on the java.sun.com
Web site (see below); this specification now concentrates solely on the Java pro-
gramming language proper.

Readers may send comments on this specification to: j1s@java. sun.com. TO
learn the latest about the Java 2 platform, or to download the latest Java 2 SDK
release, visit http://java.sun.com. Updated information about the Java Series,
including errata for The Java™ Language Specification, Second Edition, and pre-
views of forthcoming books, may be found at http://java.sun.com/Series.

Many people contributed to this book, directly and indirectly. Tim Lindholm
brought extraordinary dedication to his role as technical editor. He also made
invaluable technical contributions, especially on floating-point issues. The book
would likely not see the light of day without him. Lisa Friendly, the Series editor,
provided encouragement and advice for which | am very thankful.

David Bowen first suggested that | get involved in the specifications of the
Java platform. | am grateful to him for introducing me to this uncommonly rich
area.

John Rose, the father of nested types in the Java programming language, has
been unfailingly gracious and supportive of my attempts to specify them accu-
rately.

Many people have provided valuable comments on this edition. Specia
thanks go to Roly Perera at Ergnosis and to Leonid Arbouzov and his colleagues
on Sun’s Java platform conformance team in Novosibirsk: Konstantin Bobrovsky,
Natalia Golovleva, Vladimir lvanov, Alexel Kaigorodov, Serguel Katkov, Dmitri
Khukhro, Eugene Latkin, Ilya Neverov, Pavel Ozhdikhin, Igor Pyankov,
Viatcheslav Rybalov, Serguei Samoilidi, Maxim Sokolnikov, and Vitaly Tchaiko.
Their thorough reading of earlier drafts has greatly improved the accuracy of this
specification.

| am indebted to Martin Odersky and to Andrew Bennett and the members of
Sun's javac compiler team, past and present: Iris Garcia, Bill Maddox, David
Stoutamire, and Todd Turnidge. They all worked hard to make sure the reference
implementation conformed to the specification. For many enjoyable technical
exchanges, | thank them and my other colleagues at Sun: Lars Bak, Joshua Bloch,
Cliff Click, Robert Field, Mohammad Gharahgouzloo, Ben Gomes, Steffen
Grarup, Robert Griesemer, Graham Hamilton, Gordon Hirsch, Peter Kesder,
Sheng Liang, James Mcllree, Philip Milne, Srdjan Mitrovic, Anand Palaniswamy,
Mike Paleczny, Mark Reinhold, Kenneth Russell, Rene Schmidt, David Ungar,
Chris Vick, and Hong Zhang.
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Tricia Jordan, my manager, has been a model of patience, consideration and
understanding. Thanks are also due to Larry Abrahams, director of Java 2 Stan-
dard Edition, for supporting this work.

The following individuals all provided useful comments that have contributed
to this specification: Godmar Bak, Hans Boehm, Philippe Charles, David Chase,
Joe Darcy, Jim des Rivieres, Sophia Drossopoulou, Susan Eisenbach, Paul Haahr,
Urs Hoelzle, Bart Jacobs, Kent Johnson, Mark Lillibridge, Norbert Lindenberg,
Phillipe Mulet, Kelly O'Hair, Bill Pugh, Cameron Purdy, Anthony Scian, Janice
Shepherd, David Shields, John Spicer, Lee Worall, and David Wragg.

Suzette Pelouch provided invaluable assistance with the index and, together
with Doug Kramer and Atul Dambalkar, assisted with FrameMaker expertise;
Mike Hendrickson and Julie Dinicola at Addison-Wesley were gracious, helpful
and ultimately made this book areality.

On apersonal note, | thank my wife Weihong for her love and support.

Finally, I'd like to thank my coauthors, James Godling, Bill Joy, and Guy
Steele for inviting me to participate in thiswork. It has been a pleasure and a priv-

ilege.

Gilad Bracha
Los Altos, California

April, 2000
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Preface to the Third Edition

T his edition of the Java™ Programming Language Specification represents the
largest set of changes in the language's history. Generics, annotations, asserts,
autoboxing and unboxing, enum types, foreach loops, variable arity methods and
static imports have all been added to the language recently. All but asserts are new
to the 5.0 release of autumn 2004.

Thisthird edition of The Java™ Language Specification reflects these devel op-
ments. It integrates all the changes made to the Java programming language since
the publication of the second edition in 2000.

The language has grown a great deal in these past four years. Unfortunately, it
isunrealistic to shrink acommercially successful programming language - only to
grow it more and more. The challenge of managing this growth under the con-
straints of compatibility and the conflicting demands of awide variety of uses and
users is non-trivial. | can only hope that we have met this challenge successfully
with this specification; time will tell.

Readers may send comments on this specification to: j1s@java.sun.com. TO
learn the latest about the Java platform, or to download the latest J2SE release,
visit http://java.sun.com. Updated information about the Java Series, includ-
ing errata for The Java™ Language Specification, Third Edition, and previews of
forthcoming books, may be found at http://java.sun.com/Series.

This specification builds on the efforts of many people, both at Sun Microsys-
tems and outside it.

The most crucial contribution isthat of the people who actually turn the spec-
ification into real software. Chief among these are the maintainers of javac, the
reference compiler for the Java programming language.

Neal Gafter was “Mr. javac” during the crucial period in which the large
changes described here were integrated and productized. Neal’s dedication and
productivity can honestly be described as heroic. We literally could not have com-
pleted the task without him. In addition, his insight and skill made a huge contri-
bution to the design of the new language features across the board. No one
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deserves more credit for this version of the language than he - but any blame for
its deficiencies should be directed at myself and the members of the many JSR
expert groups!

Neal has gone on in search of new challenges, and has been succeeded by
Peter von der Ahé, who continues to improve and stengthen the implementation.
Before Neal’sinvolvement, Bill Maddox was in charge of javac when the previous
edition was completed, and he nursed features such as generics and asserts
through their early days.

Another individual who deserves to be singled out is Joshua Bloch. Josh par-
ticipated in endless language design discussions, chaired several expert groups
and was a key contributor to the Java platform. It is fair to say that Josh and Neal
care more about this book than | do myself!

Many parts of the specification were developed by various expert groups in
the framework of the Java community process.

The most pervasive set of language changes is the result of JSR-014: Adding
Generics to the Java Programming Language. The members of the JSR-014
expert group were: Norman Cohen, Christian Kemper, Martin Odersky, Kresten
Krab Thorup, Philip Wadler and myself. In the early stages, Sven-Eric Panitz and
Steve Marx were members as well. All deserve thanks for their participation.

JSR-014 represents an unprecedented effort to fundamentally extend the type
system of awidely used programming language under very stringent compatibil-
ity requirements. A prolonged and arduous process of design and implementation
led usto the current language extension. Long before the JSR for generics was ini-
tiated, Martin Odersky and Philip Wadler had created an experimental language
called Pizzato explore theideasinvolved. In the spring of 1998, David Stoutamire
and myself began a collaboration with Martin and Phil based on those ideas, that
resulted in GJ. When the JSR-014 expert group was convened, GJ was chosen as
the basis for extending the Java programming language. Martin Odersky imple-
mented the GJ compiler, and his implementation became the basis for javac (start-
ing with JDK 1.3, even though generics were disabled until 1.5).

The theoretical basis for the core of the generic type system owes a great debt
to the expertise of Martin Odersky and Phil Wadler. Later, the system was
extended with wildcards. These were based on the work of Atsushi Igarashi and
Mirko Viroli, which itself built on earlier work by Kresten Thorup and Mads
Torgersen. Wildcards wereinitially designed and implemented as part of a collab-
oration between Sun and Aarhus University. Neal Gafter and myself participated
on Sun’s behalf, and Erik Ernst and Mads Torgersen, together with Peter von der
Ahé and Christian Plesner-Hansen, represented Aarhus. Thanksto Ole Lehrmann-
Madsen for enabling and supporting that work.
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Joe Darcy and Ken Russall implemented much of the specific support for
reflection of generics. Neal Gafter, Josh Bloch and Mark Reinhold did a huge
amount of work generifying the JDK libraries.

Honorable mention must go to individuals whose comments on the generics
design made a significant difference. Alan Jeffrey made crucia contributions to
JSR-14 by pointing out subtle flaws in the original type system. Bob Deen sug-
gested the “? super T” syntax for lower bounded wildcards

JSR-201 included a series of changes: autoboxing, enums, foreach loops, vari-
able arity methods and static import. The members of the JSR-201 expert group
were: Cédric Beust, David Biesack, Joshua Bloch (co-chair), Corky Cartwright,
Jim des Rivieres, David Flanagan, Christian Kemper, Doug Lea, Changshin Lee,
Tim Peierls, Michel Trudeau and myself (co-chair). Enums and the foreach loop
were primarily designed by Josh Bloch and Neal Gafter. Variable arity methods
would never have made it into the language without Neal’s special efforts design-
ing them (not to mention the small matter of implementing them).

Josh Bloch bravely took upon himself the responsibility for JSR-175, which
added annotations to the language. The members of JSR-175 expert group were
Cédric Beust, Joshua Bloch (chair), Ted Farrell, Mike French, Gregor Kiczales,
Doug Lea, Deeptendu Majunder, Simon Nash, Ted Neward, Roly Perera, Manfred
Schneider, Blake Stone and Josh Street. Neal Gafter, as usual, was a major con-
tributer on this front as well.

Another change in this edition is a complete revision of the Java memory
model, undertaken by JSR-133. The members of the JSR-133 expert group were
Hans Boehm, Doug Lea, Tim Lindholm (co-chair), Bill Pugh (co-chair), Martin
Trotter and Jerry Schwarz. The primary technical authors of the memory model
are Sarita Adve, Jeremy Manson and Bill Pugh. The Java memory model chapter
in this book is in fact aimost entirely their work, with only editoria revisions.
Joseph Bowbeer, David Holmes, Victor Luchangco and Jan-Willem Maessen
made significant contributions as well. Key sections dealing with finalization in
chapter 12 owe much to this work as well, and especially to Doug Lea.

Many people have provided valuable comments on this edition.

I'd like to express my gratitude to Archibald Putt, who provided insight and
encouragement. His writings are always an inspiration. Thanks once again to Joe
Darcy for introducing us, as well as for many useful comments, and his specific
contributions on numerical issues and the design of hexadecimal literals.

Many colleagues at Sun (past or present) have provided useful feedback and
discussion, and helped produce this work in myriad ways: Andrew Bennett, Mar-
tin Buchholz, Jerry Driscoll, Robert Field, Jonathan Gibbons, Graham Hamilton,
Mimi Hills, Jim Holmlund, Janet Koenig, Jeff Norton, Scott Seligman, Wei Tao
and David Ungar.
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Special thanks to Laurie Tolson, my manager, for her support throughout the
long process of deriving these specifications.

The following individuals all provided many valuable comments that have
contributed to this specification: Scott Annanian, Martin Bravenboer, Bruce Chap-
man, Lawrence Gonsalves, Tim Hanson, David Holmes, Angelika Langer, Pat
Lavarre, Phillipe Mulet and Cal Varnson.

Ann Sellers, Greg Doench and John Fuller at Addison-Wesley were exceed-
ingly patient and ensured that the book materialized, despite the many missed
deadlines for this text.

As aways, | thank my wife Weihong and my son Teva for their support and
cooperation.

Gilad Bracha
Los Altos, California

January, 2005



CHAPTER 1

| ntroduction

T he Java™ programming language is a general-purpose, concurrent, class-based,
object-oriented language. It is designed to be simple enough that many program-
mers can achieve fluency in the language. The Java programming language is
related to C and C++ but is organized rather differently, with a number of aspects
of C and C++ omitted and a few ideas from other languages included. It is
intended to be a production language, not a research language, and so, asC. A. R.
Hoare suggested in his classic paper on language design, the design has avoided
including new and untested features.

The Java programming language is strongly typed. This specification clearly
distinguishes between the compile-time errors that can and must be detected at
compile time, and those that occur at run time. Compile time normally consists of
tranglating programs into a machine-independent byte code representation. Run-
time activities include loading and linking of the classes needed to execute a pro-
gram, optional machine code generation and dynamic optimization of the pro-
gram, and actual program execution.

The Java programming language is a relatively high-level language, in that
details of the machine representation are not available through the language. It
includes automatic storage management, typically using a garbage collector, to
avoid the safety problems of explicit deallocation (as in C's free or C++'s
delete). High-performance garbage-collected implementations can have
bounded pauses to support systems programming and real-time applications. The
language does not include any unsafe constructs, such as array accesses without
index checking, since such unsafe constructs would cause a program to behave in
an unspecified way.

The Java programming language is normally compiled to the bytecoded
instruction set and binary format defined in The Java™ Virtual Machine Specifica-
tion, Second Edition (Addison-Wesley, 1999).
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This specification is organized as follows:

Chapter 2 describes grammars and the notation used to present the lexical and
syntactic grammars for the language.

Chapter 3 describes the lexical structure of the Java programming language,
which is based on C and C++. The language is written in the Unicode character
set. It supports the writing of Unicode characters on systems that support only
ASCII.

Chapter 4 describes types, values, and variables. Types are subdivided into
primitive types and reference types.

The primitive types are defined to be the same on all machines and in all
implementations, and are various sizes of two’'s-complement integers, single- and
double-precision |EEE 754 standard floating-point numbers, aboolean type, and
aUnicode character char type. Values of the primitive types do not share state.

Reference types are the class types, the interface types, and the array types.
The reference types are implemented by dynamically created objects that are
either instances of classes or arrays. Many references to each object can exist. All
objects (including arrays) support the methods of the class Object, which is the
(single) root of the class hierarchy. A predefined String class supports Unicode
character strings. Classes exist for wrapping primitive values inside of objects. In
many cases, wrapping and unwrapping is performed automatically by the com-
piler (in which case, wrapping is called boxing, and unwrapping is called unbox-
ing). Class and interface declarations may be generic, that is, they may be
parameterized by other reference types. Such declarations may then be invoked
with specific type arguments.

Variables are typed storage locations. A variable of a primitive type holds a
value of that exact primitive type. A variable of aclass type can hold a null refer-
ence or a reference to an object whose type is that class type or any subclass of
that classtype. A variable of an interface type can hold anull reference or arefer-
ence to an instance of any class that implements the interface. A variable of an
array type can hold a null reference or areference to an array. A variable of class
type Object can hold a null reference or areference to any object, whether class
instance or array.

Chapter 5 describes conversions and numeric promotions. Conversions
change the compile-time type and, sometimes, the value of an expression. These
conversionsinclude the boxing and unboxing conversions between primitive types
and reference types. Numeric promotions are used to convert the operands of a
numeric operator to a common type where an operation can be performed. There
are no loopholes in the language; casts on reference types are checked at run time
to ensure type safety.

Chapter 6 describes declarations and names, and how to determine what
names mean (denote). The language does not require types or their membersto be
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declared before they are used. Declaration order is significant only for local vari-
ables, local classes, and the order of initializers of fieldsin aclass or interface.

The Java programming language provides control over the scope of names
and supports limitations on external access to members of packages, classes, and
interfaces. This helpsin writing large programs by distinguishing the implementa-
tion of atype from its users and those who extend it. Recommended naming con-
ventions that make for more readable programs are described here.

Chapter 7 describes the structure of a program, which is organized into pack-
ages similar to the modules of Modula. The members of a package are classes,
interfaces, and subpackages. Packages are divided into compilation units. Compi-
lation units contain type declarations and can import types from other packagesto
give them short names. Packages have names in a hierarchical name space, and
the Internet domain name system can usually be used to form unique package
names.

Chapter 8 describes classes. The members of classes are classes, interfaces,
fields (variables) and methods. Class variables exist once per class. Class methods
operate without reference to a specific object. Instance variables are dynamically
created in objects that are instances of classes. Instance methods are invoked on
instances of classes; such instances become the current object this during their
execution, supporting the object-oriented programming style.

Classes support single implementation inheritance, in which the implementa-
tion of each classis derived from that of a single superclass, and ultimately from
the class Object. Variables of a class type can reference an instance of that class
or of any subclass of that class, allowing new types to be used with existing meth-
ods, polymorphically.

Classes support concurrent programming with synchronized methods.
M ethods declare the checked exceptions that can arise from their execution, which
allows compile-time checking to ensure that exceptional conditions are handled.
Objects can declare a finalize method that will be invoked before the objects
are discarded by the garbage collector, allowing the objects to clean up their state.

For simplicity, the language has neither declaration “headers’ separate from
the implementation of aclass nor separate type and class hierarchies.

A specia form of classes, enums, support the definition of small sets of values
and their manipulation in a type safe manner. Unlike enumerations in other lan-
guages, enums are objects and may have their own methods.

Chapter 9 describes interface types, which declare a set of abstract methods,
member types, and constants. Classes that are otherwise unrelated can implement
the same interface type. A variable of an interface type can contain a reference to
any object that implements the interface. Multiple interface inheritance is sup-
ported.
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Annotation types are specialized interfaces used to annotate declarations.
Such annotations are not permitted to affect the semantics of programsin the Java
programming language in any way. However, they provide useful input to various
tools.

Chapter 10 describes arrays. Array accesses include bounds checking. Arrays
are dynamically created objects and may be assigned to variables of type Object.
The language supports arrays of arrays, rather than multidimensional arrays.

Chapter 11 describes exceptions, which are nonresuming and fully integrated
with the language semantics and concurrency mechanisms. There are three kinds
of exceptions: checked exceptions, run-time exceptions, and errors. The compiler
ensures that checked exceptions are properly handled by requiring that a method
or constructor can result in a checked exception only if the method or constructor
declares it. This provides compile-time checking that exception handlers exist,
and aids programmingin the large. Most user-defined exceptions should be
checked exceptions. Invalid operations in the program detected by the Java virtual
machine result in run-time exceptions, such as Nul1PointerException. Errors
result from failures detected by the virtual machine, such as OutOfMemoryError.
Most simple programs do not try to handle errors.

Chapter 12 describes activities that occur during execution of a program. A
program is normally stored as binary files representing compiled classes and inter-
faces. These binary files can be loaded into a Java virtual machine, linked to other
classes and interfaces, and initialized.

After initialization, class methods and class variables may be used. Some
classes may be instantiated to create new objects of the classtype. Objectsthat are
class instances also contain an instance of each superclass of the class, and object
creation involves recursive creation of these superclass instances.

When an object is no longer referenced, it may be reclaimed by the garbage
collector. If an object declares a finalizer, the finalizer is executed before the
object is reclaimed to give the object a last chance to clean up resources that
would not otherwise be released. When a class is no longer needed, it may be
unloaded.

Chapter 13 describes binary compatibility, specifying the impact of changes
to types on other types that use the changed types but have not been recompiled.
These considerations are of interest to developers of types that are to be widely
distributed, in a continuing series of versions, often through the Internet. Good
program development environments automatically recompile dependent code
whenever atype is changed, so most programmers need not be concerned about
these details.

Chapter 14 describes blocks and statements, which are based on C and C++.
The language has no goto statement, but includes labeled break and continue
statements. Unlike C, the Java programming language requires boolean (or
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Boolean) expressions in control-flow statements, and does not convert types to
booTlean implicitly (except through unboxing), in the hope of catching more
errors at compile time. A synchronized statement provides basic object-level
monitor locking. A try statement can include catch and finally clausesto pro-
tect against non-local control transfers.

Chapter 15 describes expressions. This document fully specifies the (appar-
ent) order of evaluation of expressions, for increased determinism and portability.
Overloaded methods and constructors are resolved at compile time by picking the
most specific method or constructor from those which are applicable.

Chapter 16 describes the precise way in which the language ensures that local
variables are definitely set before use. While al other variables are automatically
initialized to a default value, the Java programming language does not automati-
cally initialize local variablesin order to avoid masking programming errors.

Chapter 17 describes the semantics of threads and locks, which are based on
the monitor-based concurrency originally introduced with the Mesa programming
language. The Java programming language specifies a memory model for shared-
memory multiprocessors that supports high-performance implementations.

Chapter 18 presents a syntactic grammar for the language.

The book concludes with an index, credits for quotations used in the book,
and a colophon describing how the book was created.

1.1 Example Programs

Most of the example programs given in the text are ready to be executed and are
similar in form to:

class Test {
public static void main(String[] args) {
for (int i = 0; i < args.length; i++)
System.out.print(i == 0 ? args[i] :
System.out.printin();

+ args[i]);

}
}

On a Sun workstation using Sun’s Java 2 Platform Standard Edition Develp-
ment Kit software, this class, stored in the file Test. java, can be compiled and
executed by giving the commands:

javac Test.java
java Test Hello, world.

producing the output:
Hello, world.

11
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1.2 Notation

Throughout this book we refer to classes and interfaces drawn from the Java and
Java 2 platforms. Whenever we refer to aclass or interface which is not defined in
an example in this book using asingle identifier N, the intended reference isto the
class or interface named N in the package java. Tang. We use the canonical name
(86.7) for classes or interfaces from packages other than java. Tang.

Whenever we refer to the The Java™ Mirtual Machine Specification in this
book, we mean the second edition, as amended by JSR 924.

1.3 Relationship to Predefined Classes and I nterfaces

As noted above, this specification often refers to classes of the Java and Java 2
platforms. In particular, some classes have a special relationship with the Java
programming language. Examples include classes such as Object, Class,
ClasslLoader, String, Thread, and the classes and interfaces in package
java.lang.reflect, among others. The language definition constrains the
behavior of these classes and interfaces, but this document does not provide a
complete specification for them. The reader is referred to other parts of the Java
platform specification for such detailed API specifications.

Thus this document does not describe reflection in any detail. Many linguistic
constructs have analogues in the reflection API, but these are generaly not dis-
cussed here. So, for example, when we list the waysin which an object can be cre-
ated, we generaly do not include the ways in which the reflective APl can
accomplish this. Readers should be aware of these additional mechanisms even
though they are not mentioned in this text.
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CHAPTER 2

Grammars

T HIS chapter describes the context-free grammars used in this specification to
define the lexical and syntactic structure of a program.

2.1 Context-Free Grammars

A context-free grammar consists of a number of productions. Each production has
an abstract symbol called a nonterminal as its left-hand side, and a sequence of
one or more nonterminal and terminal symbols as its right-hand side. For each
grammar, the terminal symbols are drawn from a specified al phabet.

Starting from a sentence consisting of a single distinguished nonterminal,
called the goal symbol, a given context-free grammar specifies a language,
namely, the set of possible sequences of terminal symbols that can result from
repeatedly replacing any nonterminal in the sequence with a right-hand side of a
production for which the nonterminal is the left-hand side.

2.2 ThelLexical Grammar

A lexical grammar for the Java programming language is given in (83). This
grammar has asitstermina symbolsthe characters of the Unicode character set. It
defines a set of productions, starting from the goal symbol Input (83.5), that
describe how sequences of Unicode characters (83.1) are trandated into a
sequence of input elements (83.5).

These input elements, with white space (83.6) and comments (83.7) dis-
carded, form the terminal symbols for the syntactic grammar for the Java pro-
gramming language and are called tokens (83.5). These tokens are the identifiers
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(83.8), keywords (83.9), literals (83.10), separators (83.11), and operators (83.12)
of the Java programming language.

2.3 The Syntactic Grammar

The syntactic grammar for the Java programming language is given in Chapters 4,
6-10, 14, and 15. This grammar has tokens defined by the lexical grammar as its
terminal symbols. It defines a set of productions, starting from the goal symbol
CompilationUnit (87.3), that describe how sequences of tokens can form syntacti-
caly correct programs.

2.4 Grammar Notation

Termina symbols are shown in fixed width font in the productions of the lexical
and syntactic grammars, and throughout this specification whenever the text is
directly referring to such a terminal symbol. These are to appear in a program
exactly aswritten.

Nonterminal symbols are shown initalic type. The definition of a nonterminal
is introduced by the name of the nonterminal being defined followed by a colon.
One or more alternative right-hand sides for the nonterminal then follow on suc-
ceeding lines. For example, the syntactic definition:

IfThenSatement:
if ( Expression ) Satement

states that the nonterminal IfThenSatement represents the token 1 f, followed by a
left parenthesis token, followed by an Expression, followed by aright parenthesis
token, followed by a Statement.

As another exampl e, the syntactic definition:

ArgumentList:
Argument
ArgumentList , Argument

states that an ArgumentList may represent either a single Argument or an
ArgumentList, followed by a comma, followed by an Argument. This definition of
ArgumentList is recursive, that isto say, it is defined in terms of itself. The result
is that an ArgumentList may contain any positive number of arguments. Such

recursive definitions of nonterminals are common.
The subscripted suffix “opt”, which may appear after atermina or nontermi-
nal, indicates an optional symbol. The aternative containing the optional symbol
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actually specifies two right-hand sides, one that omits the optional element and
onethat includesit.
This means that:

BreakStatement:
break Identifieropt ;

is a convenient abbreviation for:

BreakSatement:
break ;
break ldentifier ;

and that:

Basi cFor Satement:
for ( Forlnitgy ; EXpressiongy ; ForUpdateyy: ) Statement

is a convenient abbreviation for:
Basi cFor Statement:

for ( ; Expressiongy ; ForUpdateyy ) Satement
for ( Forlnit ; Expressiongy ; ForUpdategy ) Statement

which in turn is an abbreviation for:

BasicFor Statement:
for ( ; ; ForUpdateyy ) Satement
for ( ; Expression ; ForUpdategy ) Statement
for ( Forlnit ; ; ForUpdateyy ) Statement
for ( Forlnit ; Expression ; ForUpdatey, ) Satement

which in turn is an abbreviation for:

Basi cFor Satement:
for ( ; ; ) Satement
for ( ; ; ForUpdate ) Satement
for ( ; Expression ; ) Satement
for ( ; Expression ; ForUpdate ) Satement
for ( Forlnit ; ; ) Satement
for ( Forlnit ; ; ForUpdate ) Satement
for ( Forlnit ; Expresson ; ) Statement
(

for ( Forlnit ; Expression ; ForUpdate ) Satement

so the nonterminal BasicForSatement actually has eight alternative right-hand
sides.

A very long right-hand side may be continued on a second line by substan-
tialy indenting this second line, asin:

24
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ConstructorDeclaration:
ConstructorModifiersyy Constructor Declarator
Throwsgp: ConstructorBody

which defines one right-hand side for the nonterminal Constructor Declaration.

When the words “one of ” follow the colon in a grammar definition, they sig-
nify that each of the terminal symbols on the following line or linesis an alterna-
tive definition. For example, the lexical grammar contains the production:

ZeroToThree: one of
0123

which is merely a convenient abbreviation for:

ZeroToThree:
0
1
2
3

When an alternative in alexical production appears to be atoken, it represents
the sequence of characters that would make up such atoken. Thus, the definition:

BooleanLiteral: one of
true false

in alexical grammar production is shorthand for:

BooleanLiteral:
true
false

The right-hand side of a lexical production may specify that certain expan-
sions are not permitted by using the phrase “but not” and then indicating the
expansions to be excluded, as in the productions for InputCharacter (83.4) and
| dentifier (83.8):

InputCharacter:
Unicodel nputCharacter but not CrR or LF

| dentifier:
| dentifier Name but not a Keyword or BooleanLiteral or NullLiteral

Finally, a few nonterminal symbols are described by a descriptive phrase in
roman type in cases where it would be impractical to list all the alternatives:

Rawl nputCharacter:
any Unicode character



CHAPTER 3

Lexical Structure

T HIS chapter specifies the lexical structure of the Java programming language.

Programs are written in Unicode (83.1), but lexical tranglations are provided
(83.2) so that Unicode escapes (83.3) can be used to include any Unicode charac-
ter using only ASCII characters. Line terminators are defined (83.4) to support the
different conventions of existing host systems while maintaining consistent line
numbers.

The Unicode characters resulting from the lexical tranglations are reduced to a
sequence of input elements (83.5), which are white space (83.6), comments
(83.7), and tokens. The tokens are the identifiers (83.8), keywords (8§3.9), literals
(83.10), separators (83.11), and operators (83.12) of the syntactic grammar.

3.1 Unicode

Programs are written using the Unicode character set. Information about this
character set and its associated character encodings may be found at:

http://www.unicode.org

The Java platform tracks the Unicode specification as it evolves. The precise ver-
sion of Unicode used by a given release is specified in the documentation of the
classCharacter.

Versions of the Java programming language prior to 1.1 used Unicode version
1.1.5. Upgrades to newer versions of the Unicode Standard occurred in JDK 1.1
(to Unicode 2.0), JDK 1.1.7 (to Unicode 2.1), J2SE 1.4 (to Unicode 3.0), and
J2SE 5.0 (to Unicode 4.0).

The Unicode standard was originally designed as a fixed-width 16-bit charac-
ter encoding. It has since been changed to alow for characters whose representa-

13
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tion requires more than 16 bits. The range of legal code points is how U+0000 to
U+10FFFF, using the hexadecimal U+ n notation. Characters whose code points are
greater than U+FFFF are called supplementary characters. To represent the com-
plete range of characters using only 16-bit units, the Unicode standard defines an
encoding caled UTF-16. In this encoding, supplementary characters are repre-
sented as pairs of 16-bit code units, the first from the high-surrogates range,
(u+D800 to U+DBFF), the second from the low-surrogates range (U+DC00 to
U+DFFF). For characters in the range U+0000 to U+FFFF, the values of code points
and UTF-16 code units are the same.

The Java programming language represents text in sequences of 16-bit code
units, using the UTF-16 encoding. A few APIs, primarily in the Character class,
use 32-bit integers to represent code points as individual entities. The Java plat-
form provides methods to convert between the two representations.

This book uses the terms code point and UTF-16 code unit where the repre-
sentation is relevant, and the generic term character where the representation is
irrelevant to the discussion.

Except for comments (83.7), identifiers, and the contents of character and
string literals (§3.10.4, §3.10.5), all input elements (83.5) in a program are formed
only from ASCII characters (or Unicode escapes (8§3.3) which result in ASCII
characters). ASCIl (ANSI X3.4) is the American Standard Code for Information
Interchange. The first 128 characters of the Unicode character encoding are the
ASCII characters.

3.2 Lexical Trandations

A raw Unicode character stream is trandated into a sequence of tokens, using the
following three lexical trandation steps, which are applied in turn:

1. A trandation of Unicode escapes (83.3) in the raw stream of Unicode charac-
ters to the corresponding Unicode character. A Unicode escape of the form
\uxxxx, where xxxx is a hexadecimal value, represents the UTF-16 code unit
whose encoding is xxxx. This trandation step allows any program to be
expressed using only ASCII characters.

2. A trandation of the Unicode stream resulting from step 1 into a stream of
input characters and line terminators (83.4).

3. A trandation of the stream of input characters and line terminators resulting
from step 2 into a sequence of input elements (83.5) which, after white space
(83.6) and comments (83.7) are discarded, comprise the tokens (8§3.5) that are
the terminal symbols of the syntactic grammar (82.3).
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Thelongest possible tranglation is used at each step, even if the result does not
ultimately make a correct program while another lexical translation would. Thus
the input characters a--b are tokenized (83.5) as a, --, b, which is not part of any
grammatically correct program, even though the tokenization a, -, -, b could be
part of agrammatically correct program.

3.3 Unicode Escapes

Implementations first recognize Unicode escapes in their input, trandating the
ASCII characters \u followed by four hexadecimal digitsto the UTF-16 code unit
(83.1) with the indicated hexadecimal value, and passing all other characters
unchanged. Representing supplementary characters requires two consecutive Uni-
code escapes. This trandation step results in a sequence of Unicode input charac-
ters.

Unicodel nputCharacter:
UnicodeEscape
Rawl nputCharacter

UnicodeEscape:
\ UnicodeMarker HexDigit HexDigit HexDigit HexDigit

UnicodeMarker:
u
UnicodeMarker u

Rawl nputCharacter:
any Unicode character

HexDigit: one of
@ 1 2 3 4567 8 9 abocdefABTC CDEF

The\, u, and hexadecimal digits here are all ASCII characters.

In addition to the processing implied by the grammar, for each raw input char-
acter that isabackslash \, input processing must consider how many other \ char-
acters contiguously precede it, separating it from a non-\ character or the start of
the input stream. If this number is even, then the \ is eligible to begin a Unicode
escape; if the number is odd, then the \ is not digible to begin a Unicode escape.
For example, the raw input "\\u2297=\u2297" results in the eleven characters
"\\u2297=0"(\u2297 isthe Unicode encoding of the character “[1").

If an eligible \ is not followed by u, then it is treated as a Rawl nputCharacter
and remains part of the escaped Unicode stream. If an eligible \ isfollowed by u,

3.3
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or more than one u, and the last u is not followed by four hexadecimal digits, then
acompile-time error occurs.

The character produced by a Unicode escape does not participate in further
Unicode escapes. For example, the raw input \u@05cu@05a resultsin the six char-
acters\ u 0 0 5 a, because 005c is the Unicode value for \. It does not result in
the character Z, which is Unicode character 005a, because the \ that resulted from
the \u0o5c isnot interpreted as the start of afurther Unicode escape.

The Java programming language specifies a standard way of transforming a
program written in Unicode into ASCI| that changes a program into a form that
can be processed by ASCII-based tools. The transformation involves converting
any Unicode escapes in the source text of the program to ASCII by adding an
extrau—for example, \uxxxx becomes \uuxxxx—while simultaneously convert-
ing non-ASCII characters in the source text to Unicode escapes containing a sin-
gle u each.

This transformed version is equally acceptable to a compiler for the Java pro-
gramming language ("Java compiler") and represents the exact same program.
The exact Unicode source can later be restored from this ASCII form by convert-
ing each escape sequence where multiple u’s are present to a sequence of Unicode
characters with one fewer u, while simultaneously converting each escape
sequence with asingle u to the corresponding single Unicode character.

Implementations should use the \uxxxx notation as an output format to dis-
play Unicode characters when a suitable font is not available.

3.4 LineTerminators

Implementations next divide the sequence of Unicode input characters into lines
by recognizing line terminators. This definition of lines determines the line num-
bers produced by a Java compiler or other system component. It also specifies the
termination of the // form of acomment (83.7).

LineTerminator :
the ASCII LF character, also known as “newling’
the ASCII CR character, also known as “return”
the ASCII cR character followed by the ASCII LF character

InputCharacter:
Unicodel nputCharacter but not CrR or LF

Lines are terminated by the ASCII characters CR, or LF, or CR LF. The two
characters cR immediately followed by LF are counted as one line terminator, not
two.
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Theresult is asequence of line terminators and input characters, which are the
terminal symbols for the third step in the tokenization process.

3.5 Input Elementsand Tokens

Theinput characters and line terminators that result from escape processing (83.3)
and then input line recognition (83.4) are reduced to a sequence of input elements.
Those input elements that are not white space (83.6) or comments (83.7) are
tokens. The tokens are the terminal symbols of the syntactic grammar (82.3).

This process is specified by the following productions:

Input:
InputElementsyy Subgpe

InputElements:
InputElement
InputElements InputElement

InputElement:
WhiteSpace
Comment
Token

Token:
| dentifier
Keyword
Literal
Separator
Operator

Sub:
the ASCII suB character, also known as “control-Z"

White space (83.6) and comments (83.7) can serve to separate tokens that, if
adjacent, might be tokenized in another manner. For example, the ASCII charac-
ters - and = in the input can form the operator token -= (§3.12) only if thereisno
intervening white space or comment.

As a special concession for compatibility with certain operating systems, the
ASCII suB character (\u@@1a, or control-Z) isignored if it isthe last character in
the escaped input stream.

Consider two tokens x and y in the resulting input stream. If x precedes y,
then we say that x isto theleft of y and that y isto theright of x.

35
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For example, in this simple piece of code:
class Empty {
}

we say that the } token isto the right of the { token, even though it appears, in this
two-dimensional representation on paper, downward and to the left of the { token.
This convention about the use of the words left and right allows us to speak, for
example, of the right-hand operand of abinary operator or of the left-hand side of
an assignment.

3.6 White Space

White space is defined as the ASCII space, horizontal tab, and form feed charac-
ters, aswell asline terminators (83.4).

WhiteSpace:
the ASCII sp character, also known as “ space’
the ASCII HT character, also known as “horizontal tab”
the ASCI| FF character, also known as “form feed”
LineTerminator

3.7 Comments

There are two kinds of comments;

/* text */ A traditional comment: all the text from the ASCI|
characters /* to the ASCII characters */ isignored
(asin C and C++).

// text A end-of-line comment: al thetext from the ASCI|
characters // to theend of thelineisignored (asin
C++).

These comments are formally specified by the following productions:

Comment:
Traditional Comment
EndOfLineComment

Traditional Comment:
/ * CommentTail
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EndOfLineComment:
/ / CharactersinLinggy

CommentTail;
* CommentTailSar
NotSar CommentTail

CommentTailSar:
/
* CommentTail Sar
NotSarNotSash CommentTail

NotSar:
InputCharacter but not *
LineTerminator

NotSarNotSash:
InputCharacter but not * or /
LineTerminator

CharactersinLine:
InputCharacter
CharactersinLine InputCharacter

These productionsimply all of the following properties:
» Comments do not nest.
« /* and */ have no special meaning in comments that begin with //.
* // has no special meaning in comments that begin with /* or /**.
Asaresult, the text:
/* this comment /* // /** ends here: */
is a single complete comment.

The lexical grammar implies that comments do not occur within character lit-
erals (83.10.4) or string literals (83.10.5).

3.8 ldentifiers

An identifier is an unlimited-length sequence of Java letters and Java digits, the
first of which must be a Java letter. An identifier cannot have the same spelling
(Unicode character sequence) as a keyword (83.9), boolean literal (83.10.3), or
the null literal (83.10.7).

3.8
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I dentifier:
Identifier Chars but not a Keyword or BooleanLiteral or NullLiteral

| dentifierChars:
Javal etter
IdentifierChars Javal etter OrDigit

Javal etter:
any Unicode character that is a Java letter (see below)

JavaL etter OrDigit:
any Unicode character that is a Java letter-or-digit (see below)

L etters and digits may be drawn from the entire Unicode character set, which
supports most writing scriptsin usein the world today, including the large sets for
Chinese, Japanese, and Korean. This allows programmers to use identifiers in
their programs that are written in their native languages.

A “Javaletter” isacharacter for which the method Character.isJavalden-
tifierStart(int) returns true. A “Javaletter-or-digit” isacharacter for which
the method Character.isJavaldentifierPart(int) returnstrue.

The Java letters include uppercase and lowercase ASCII Latin letters A—Z
(\u@041-\u005a), and a—z (\u@061-\u007a), and, for historical reasons, the
ASCII underscore (_, or \u@o5f) and dollar sign ($, or \u0024). The $ character
should be used only in mechanically generated source code or, rarely, to access
preexisting names on legacy systems.

The“Java digits’ include the ASCII digits -9 (\u0030—\u0039).

Two identifiers are the same only if they are identical, that is, have the same
Unicode character for each letter or digit.

Identifiers that have the same external appearance may yet be different. For
example, the identifiers consisting of the single letters LATIN CAPITAL LETTER A
(A, \u0041), LATIN SMALL LETTERA (a, \u0061), GREEK CAPITAL LETTER ALPHA
(A, \u@391), CYRILLIC SMALL LETTER A (a, \u0430) and MATHEMATICAL BOLD
ITALIC SMALL A (a, \ud835\udc82) are al different.

Unicode composite characters are different from the decomposed characters.
For example, aLATIN CAPITAL LETTERA ACUTE (A, \u@0c1) could be considered
to be the same as a LATIN CAPITAL LETTER A (A, \u0041) immediately followed
by a NON-SPACING ACUTE (*, \u0301) when sorting, but these are different in
identifiers. See The Unicode Standard, Volume 1, pages 412ff for details about
decomposition, and see pages 626627 of that work for details about sorting.
Examples of identifiers are:

String i3 OpETN MAX_VALUE isLetterOrDigit
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3.9 Keywords

The following character sequences, formed from ASCII letters, are reserved for
use as keywords and cannot be used as identifiers (83.8):

Keyword: one of

abstract continue for new switch
assert default if package synchronized
boolean do goto private this
break doubTe implements protected throw
byte else import public throws
case enum instanceof return transient
catch extends int short try

char final interface static void
class finally Tong strictfp volatile
const float native super while

The keywords const and goto are reserved, even though they are not cur-
rently used. This may allow a Java compiler to produce better error messages if
these C++ keywords incorrectly appear in programs.

While true and false might appear to be keywords, they are technically
Boolean literals (83.10.3). Similarly, while nu11 might appear to be a keyword, it
istechnically the null literal (83.10.7).

3.10 Literals

A literal isthe source code representation of avalue of aprimitive type (84.2), the
String type (84.3.3), or the null type (84.1):

Literal:
IntegerLiteral
FloatingPointLiteral
BooleanLiteral
CharacterLiteral
SringLiteral
NullLiteral

3.10

21



3.10.1 Integer Literals LEXICAL STRUCTURE

3.10.1 Integer Literals

See 84.2.1 for ageneral discussion of the integer types and values.
An integer literal may be expressed in decimal (base 10), hexadecimal
(base 16), or octal (base 8):

IntegerLiteral:
DecimalIntegerLiteral
HexIntegerLiteral
OctallntegerLiteral

DecimallntegerLiteral:
DecimalNumeral | nteger TypeSuffixXqp

HexIntegerLiteral:
HexNumeral Integer TypeSuffixXqp

OctallntegerLiteral:
OctalNumeral Integer TypeSuffiXqp

Integer TypeSuffix: one of
1L

An integer literal is of type Tong if it is suffixed with an ASCII letter L or 1
(ell); otherwiseit isof type int (84.2.1). The suffix L is preferred, because the let-
ter 1 (ell) is often hard to distinguish from the digit 1 (one).

A decima numeral is either the single ASCII character 0, representing the
integer zero, or consists of an ASCII digit from 1 to 9, optionally followed by one
or more ASCII digitsfrom @ to 9, representing a positive integer:

DecimalNumeral:

0

NonZeroDigit Digitsyp
Digits:

Digit

Digits Digit
Digit:

0

NonZeroDigit

NonZeroDigit: one of
123 456 7 89

A hexadecimal numeral consists of the leading ASCII characters 0x or 0X fol-
lowed by one or more ASCII hexadecimal digits and can represent a positive,

22
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zero, or negative integer. Hexadecimal digits with values 10 through 15 are repre-
sented by the ASCII letters a through f or A through F, respectively; each letter
used as a hexadecimal digit may be uppercase or lowercase.

HexNumeral:
0 x HexDigits
0 X HexDigits

HexDigits:
HexDigit
HexDigit HexDigits
The following production from 83.3 is repeated here for clarity:

HexDigit: one of
@ 1 2 3 4567 8 9 abocdefABTU CDTEF

An octal numeral consists of an ASCI| digit @ followed by one or more of the
ASCII digits @ through 7 and can represent a positive, zero, or negative integer.

OctalNumeral:
0 OctalDigits

OctalDigits:
OctalDigit
OctalDigit OctalDigits

OctalDigit: one of
012 3 45 6 7

Note that octal numerals always consist of two or more digits; 0 is aways
considered to be a decimal numeral—not that it matters much in practice, for the
numerals 0, 00, and 0x0 all represent exactly the same integer value.

Thelargest decimal literal of type int is2147483648 (231). All decimal liter-
als from 0 to 2147483647 may appear anywhere an int literal may appear, but
the literal 2147483648 may appear only as the operand of the unary negation
operator -.

The largest positive hexadecimal and octal literals of type int are
ox7fffffff and 017777777777, respectively, which equal 2147483647
(2%1-1). The most negative hexadecimal and octal literals of type int are
0x80000000 and 020000000000, respectively, each of which represents the deci-
mal value -2147483648 (-23!). The hexadecimal and octal literals oxffffffff
and 037777777777, respectively, represent the decimal value -1.

A compile-time error occurs if a decimal literal of type int is larger than
2147483648 (2%1), or if the literal 2147483648 appears anywhere other than as
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the operand of the unary - operator, or if a hexadecimal or octal int literal does
not fit in 32 bits.
Examplesof int literals:
@ 2 0372 OxDadaCafe 1996 0xQQFFQOFF

The largest decimal literal of type Tong is 9223372036854775808L (252).
All decimal literals from oL to 9223372036854775807L may appear anywhere a
Tong literal may appear, but the literal 9223372036854775808L may appear only
as the operand of the unary negation operator -.

The largest positive hexadecimal and octal literals of type long are
ox7FFEFFFFEfffffffL and 0777777777777777777777L, respectively, which
equal 9223372036854775807L (263—1). The literals 0x8000000000000000L
and 01000000000000000000000L are the most negative 1ong hexadecimal and
octal literals, respectively. Each has the decimal value -9223372036854775808L
(—2%). The hexadecimal and octal literals OxfffffFFFFFFFFFFFL and
01777777777777777777777L, respectively, represent the decimal value -1L.

A compile-time error occurs if a decimal literal of type long is larger than
9223372036854775808L (263), or if the literal 9223372036854775808L appears
anywhere other than as the operand of the unary - operator, or if ahexadecimal or
octal Tong literal does not fit in 64 bits.

Examples of Tong literas:

01 0777L 0x100000000L 2147483648L 0xCOBOL

3.10.2 Floating-Point Literals

See 84.2.3 for ageneral discussion of the floating-point types and values.

A floating-point literal has the following parts. a whole-number part, a deci-
mal or hexadecimal point (represented by an ASCI| period character), afractional
part, an exponent, and atype suffix. A floating point number may be written either
asadecimal value or as a hexadecimal value. For decimal literals, the exponent, if
present, is indicated by the ASCII letter e or E followed by an optionally signed
integer. For hexadecimal literals, the exponent is always required and is indicated
by the ASCI|I letter p or P followed by an optionally signed integer.

For decimal floating-point literals, at least one digit, in either the whole num-
ber or the fraction part, and either adecimal point, an exponent, or afloat type suf-
fix are required. All other parts are optional. For hexadecimal floating-point
literals, at least one digit is required in either the whole number or fraction part,
the exponent is mandatory, and the float type suffix is optional.

A floating-point literal is of type float if it is suffixed with an ASCI| letter F
or f; otherwiseitstypeis double and it can optionally be suffixed with an ASCI|
letter D or d.
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FloatingPointLiteral:
Decimal FloatingPointLiteral
Hexadecimal FloatingPointLiteral

DecimalFloatingPointLiteral:
Digits . Digitsyy ExponentPartqy FloatTypeSuffixqpy
. Digits ExponentPartyy FloatTypeSuffixyy
Digits ExponentPart FloatTypeSuffixqy
Digits ExponentPart,y FloatTypeSuffix

ExponentPart:
Exponentindicator Sgnedinteger

Exponentindicator: one of
e E

Sgnedinteger:
Sgngp Digits

Sgn: one of
+ -

FloatTypeSuffix: one of
fFdD

Hexadecimal FloatingPointLiteral:
HexSgnificand BinaryExponent FloatTypeSuffixop:

HexSgnificand:
HexNumeral
HexNumeral .
Ox HexDigitsyyt - HexDigits
OX HexDigitsgpt . HexDigits

BinaryExponent:
BinaryExponentIndicator Sgnedinteger

BinaryExponentl ndicator : one of
p P

The elements of the types f1oat and double are those values that can be rep-
resented using the |IEEE 754 32-bit single-precision and 64-bit double-precision
binary floating-point formats, respectively.

The details of proper input conversion from a Unicode string representation of
a floating-point number to the internal IEEE 754 binary floating-point representa-
tion are described for the methods valueOf of class Float and class Double of
the package java.lang.

3.10.2
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The largest positive finite float literal is 3.4028235e38f. The smallest posi-
tive finite nonzero literal of type float is1.40e-45f. The largest positive finite
double literal iS1.7976931348623157e308. The smallest positive finite nonzero
literal of type double is4.9e-324.

A compile-time error occurs if a nonzero floating-point literal is too large, so
that on rounded conversion to its internal representation it becomes an |EEE 754
infinity. A program can represent infinities without producing a compile-time
error by using constant expressions such as 1f/0f or -1d/@d or by using the pre-
defined constants POSITIVE_INFINITY and NEGATIVE_INFINITY of the classes
Float and DoubTe.

A compile-time error occurs if anonzero floating-point literal istoo small, so
that, on rounded conversion to its internal representation, it becomes a zero. A
compile-time error does not occur if a nonzero floating-point literal has a small
value that, on rounded conversion to its internal representation, becomes a non-
zero denormalized number.

Predefined constants representing Not-a-Number values are defined in the
classes Float and Double as Float.NaN and DoubTe.NaN.

Examples of float literals:

lelf2.f.3f0f3.14f6.022137e+23f

Examples of double literals:

lel2..30.03.141e-9d1lel37

Besides expressing floating-point values in decimal and hexadecimal, the
method intBitsToFloat of class Float and method TongBitsToDouble of
class DoubTle provide away to express floating-point values in terms of hexadeci-
mal or octal integer literals.For example, the value of:

Double.TongBitsToDouble(0x400921FB54442D18L)
isequal to the value of Math.PI.

3.10.3 Boolean Literals

The boolean type has two values, represented by the literals true and false,
formed from ASCII letters.
A boolean literal is always of type boolean.

BooleanLiteral: one of
true false

3.10.4 Character Literals

A character literal is expressed as a character or an escape sequence, enclosed in
ASCII single quotes. (The single-quote, or apostrophe, character is \u0027.)
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Character literals can only represent UTF-16 code units (83.1), i.e., they are lim-
ited to values from \u0000 to \uffff. Supplementary characters must be repre-
sented either as a surrogate pair within a char sequence, or as an integer,
depending on the API they are used with.

A character literal isaways of type char.

CharacterLiteral:
' SngleCharacter

' EscapeSequence '

SngleCharacter:
InputCharacter but not ' or \

The escape sequences are described in §3.10.6.

As specified in 83.4, the characters CR and LF are never an InputCharacter ;
they are recognized as constituting a LineTerminator.

It is a compile-time error for the character following the SngleCharacter or
EscapeSequence to be other thana '.

It is a compile-time error for aline terminator to appear after the opening '
and before the closing '.

The following are examples of char literals:

-

"\t

N}

"\u@3a9'

"\UFFFF'

"\177"'

] Q ]

] D ]

Because Unicode escapes are processed very early, it is not correct to write
'\u0ooa' for a character literal whose value is linefeed (LF); the Unicode escape
\u000a is transformed into an actual linefeed in trandation step 1 (83.3) and the
linefeed becomes a LineTerminator in step 2 (83.4), and so the character literal is
not valid in step 3. Instead, one should use the escape sequence '\n' (83.10.6).
Similarly, it is not correct to write '\u@oed' for a character literal whose valueis
carriage return (CR). Instead, use '\r"'.

In C and C++, a character literal may contain representations of more than
one character, but the value of such a character literal is implementation-defined.
In the Java programming language, a character literal always represents exactly
one character.

3.104
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3.10.5 StringLiterals

A string literal consists of zero or more characters enclosed in double quotes.
Characters may be represented by escape sequences - one escape sequence for
characters in the range U+0000 to U+FFFF, two escape sequences for the UTF-16
surrogate code units of charactersin the range U+010000 to U+10FFFF.

A string literal isalways of type String (84.3.3). A string literal alwaysrefers
to the same instance (84.3.1) of class String.

StringLiteral:
" SringCharactersyy "

SringCharacters:
SringCharacter
SringCharacters SringCharacter

SringCharacter:
InputCharacter but not " or \

EscapeSequence

The escape sequences are described in §3.10.6.

As specified in 83.4, neither of the characters CR and LF is ever considered to
be an InputCharacter ; each is recognized as constituting a LineTer minator.

It is a compile-time error for aline terminator to appear after the opening "
and before the closing matching ". A long string literal can always be broken up
into shorter pieces and written as a (possibly parenthesized) expression using the
string concatenation operator + (815.18.1).

The following are examples of string literals:

// theempty string

AN // astring containing " aone

"This is a string" // astring containing 16 characters

"This is a " + // actualy astring-valued constant expression,
"two-Tline string" // formed from two string literals

Because Unicode escapes are processed very early, it is not correct to write
"\u00oa" for astring literal containing asingle linefeed (LF); the Unicode escape
\u000a is transformed into an actual linefeed in trandation step 1 (83.3) and the
linefeed becomes a LineTerminator in step 2 (83.4), and so the string literal is not
valid in step 3. Instead, one should write "\n" (83.10.6). Similarly, it is not correct
to write "\u0ood" for a string literal containing a single carriage return (CR).
Instead use "\r".

Each string literal is a reference (84.3) to an instance (84.3.1, 812.5) of class
String (84.3.3). String objects have a constant value. String literals—or, more
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generally, strings that are the values of constant expressions (815.28)—are
“interned” so asto share unique instances, using the method String.intern.
Thus, the test program consisting of the compilation unit (87.3):

package testPackage;

class Test {
public static void main(String[] args) {

String hello = "Hello", To = "10";
System.out.print(Chello == "Hello") + " ");
System.out.print((Other.hello == hello) + " ");
System.out.print((other.Other.hello == hello) + " ");
System.out.print(Chello == ("Hel"+"10")) + " ");
System.out.print((hello == ("Hel"+10)) + " ");
System.out.printinChello == ("Hel"+1o).intern());

3
class Other { static String hello = "Hello"; }
and the compilation unit:
package other;
public class Other { static String hello = "Hello"; }

produces the output:
true true true true false true
This exampleillustrates six points.

« Literal strings within the same class (88) in the same package (87) represent
references to the same String object (84.3.1).

e Literal strings within different classes in the same package represent refer-
encesto the same String object.

« Literal strings within different classes in different packages likewise represent
references to the same String object.

» Strings computed by constant expressions (815.28) are computed at compile
time and then treated asif they were literals.

« Strings computed by concatenation at run time are newly created and there-
fore distinct.

The result of explicitly interning a computed string is the same string as any
pre-existing literal string with the same contents.

3.10.5
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3.10.6 Escape Sequencesfor Character and String Literals

The character and string escape sequences alow for the representation of some
nongraphic characters as well as the single quote, double quote, and backslash
charactersin character literals (§83.10.4) and string literals (§3.10.5).

EscapeSequence:

\ b /* \u0008: backspace BS */

\ t /* \u0009: horizontal tab HT */

\ n /* \u@00a: linefeed LF */

\ f /* \u00oc: formfeed FF */

\r /* \u000od: carriage return CR */

\ " /* \u0022: double quote " */

\ ' /* \u@027: singlequote ' */

\ \ /* \u@05c: backslash\ */

Octal Escape /* \u0000 to \uooff: from octal value */
Octal Escape:

\ OctalDigit

\ OctalDigit OctalDigit
\ ZeroToThree OctalDigit OctalDigit

OctalDigit: one of
01234567

ZeroToThree: one of
0123

It isacompile-time error if the character following a backslash in an escapeis
notan ASCll b, t,n, f, r,", ',\,0,1,2,3,4,5,6, 0r 7. The Unicode escape \u is
processed earlier (83.3). (Octal escapes are provided for compatibility with C, but
can express only Unicode values \u@00e through \u@oFF, so Unicode escapes are
usually preferred.)

3.10.7 TheNull Literal

The null type has one value, the null reference, represented by the literal nul1,
which isformed from ASCII characters. A null literal is aways of the null type.

NullLiteral:
null
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3.11 Separators

The following nine ASCII characters are the separators (punctuators):

Separator: one of
( ) { } [ ] ; ,

3.12 Operators

The following 37 tokens are the operators, formed from ASCI| characters:

Operator: one of

= > < ! ~ ? :

= <= >= 1= & || ++ --

+ - / & | A % << >> >>>
+= -= = /= &= [= A= %= <<= >>= >>>=

3.12
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CHAPTER |

H Types, Values, and Varli ableé

THE Java programming language is a strongly typed language, which means
that every variable and every expression has a type that is known at compile time.
Types limit the values that a variable (84.12) can hold or that an expression can
produce, limit the operations supported on those values, and determine the mean-
ing of the operations. Strong typing helps detect errors at compile time.

The types of the Java programming language are divided into two categories:
primitive types and reference types. The primitive types (84.2) are the boolean
type and the numeric types. The numeric types are the integral typesbyte, short,
int, Tong, and char, and the floating-point types f1oat and double. The refer-
ence types (84.3) are class types, interface types, and array types. Thereisaso a
specia null type. An object (84.3.1) is a dynamically created instance of a class
type or adynamically created array. The values of areference type are references
to objects. All objects, including arrays, support the methods of class Object
(84.3.2). String literals are represented by String objects (84.3.3).

Types exist at compile-time. Some types correspond to classes and interfaces,
which exist a run-time. The correspondence between types and classes or inter-
facesisincomplete for two reasons:
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1. Atrun-time, classes and interfaces are loaded by the Java virtual machine
using class loaders. Each class loader defines its own set of classes and inter-
faces. Asaresult, it is possible for two loadersto load an identical class or
interface definition but produce distinct classes or interfaces at run-time.

2. Typearguments and type variables (84.4) are not reified at run-time. Asa
result, different parameterized types (84.5) areimplemented by the same class
or interface at run time. Indeed, all invocations of a given generic type decla-
ration (88.1.2, 89.1.2 )share a single run-time implementation.

A consequence of (1) isthat code that compiled correctly may fail at link time
if the class loaders that load it are inconsistent. See the paper Dynamic Class
Loading in the Java~ Virtual Machine, by Sheng Liang and Gilad Bracha, in Pro-
ceedings of OOPSLA '98, published as ACM S GPLAN Notices, Volume 33,
Number 10, October 1998, pages 36-44, and The Java~ Virtual Machine Specifi-
cation, Second Edition for more details.

A consequence of (2) is the possibility of heap pollution (84.12.2.1). Under
certain conditions, it is possible that a variable of a parameterized type refersto an
object that is not of that parameterized type. The variable will aways refer to an
object that is an instance of a class that implements the parameterized type. See
(84.12.2) for further discussion.

4.1 TheKindsof Typesand Values

There are two kinds of types in the Java programming language: primitive types
(84.2) and reference types (84.3). There are, correspondingly, two kinds of data
values that can be stored in variables, passed as arguments, returned by methods,
and operated on: primitive values (84.2) and reference values (84.3).

Type:
PrimitiveType
ReferenceType

Thereisalso aspecial null type, the type of the expression nu11, which hasno
name. Because the null type has no name, it isimpossible to declare a variable of
the null type or to cast to the null type. The null reference is the only possible
value of an expression of null type. The null reference can always be cast to any
reference type. In practice, the programmer can ignore the null type and just pre-
tend that nu11 is merely a special literal that can be of any reference type.
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4.2 Primitive Typesand Values

A primitive type is predefined by the Java programming language and named by
its reserved keyword (83.9):

PrimitiveType:
NumericType
boolean

NumericType:
Integral Type
FloatingPointType

Integral Type: one of
byte short int Tong char

FloatingPointType: one of
float double

Primitive values do not share state with other primitive values. A variable
whose type is a primitive type always holds a primitive value of that same type.
The value of avariable of primitive type can be changed only by assignment oper-
ations on that variable (including increment (815.14.2, §15.15.1) and decrement
(815.14.3, 815.15.2) operators).

The numeric types are the integral types and the floating-point types.

The integral types are byte, short, int, and Tong, whose values are 8-bit,
16-bit, 32-bit and 64-bit signed two’s-complement integers, respectively, and
char, whose values are 16-bit unsigned integers representing UTF-16 code units
(83.2).

The floating-point types are f1oat, whose values include the 32-bit IEEE 754
floating-point numbers, and double, whose values include the 64-bit IEEE 754
floating-point numbers.

The boolean type has exactly two values: true and false.

4.2.1 Integral Typesand Values

The values of the integral types are integers in the following ranges:
» For byte, from—128 to 127, inclusive
» For short, from —=32768 to 32767, inclusive
e For int, from —2147483648 to 2147483647, inclusive
* For Tong, from —9223372036854775808 to 9223372036854775807, inclusive

421
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* For char, from '"\u0000"' to '\uffff' inclusive, that is, from 0 to 65535

4.2.2 Integer Operations

The Java programming language provides a number of operators that act on inte-
gral values:

» The comparison operators, which result in avalue of type boolean:
o The numerical comparison operators <, <=, >, and >= (8§15.20.1)
o The numerical equality operators == and != (§15.21.1)
» The numerical operators, which result in avalue of type int or Tong:
o The unary plus and minus operators + and - (815.15.3, §15.15.4)
o The multiplicative operators *, /, and % (815.17)
o The additive operators + and - (815.18)
o The increment operator ++, both prefix (815.15.1) and postfix (815.14.2)
o The decrement operator --, both prefix (§15.15.2) and postfix (815.14.3)
o The signed and unsigned shift operators <<, >>, and >>> (§15.19)
o The bitwise complement operator ~ (815.15.5)
o Theinteger bitwise operators &, |, and A (815.22.1)
» The conditional operator ? : (815.25)

» The cast operator, which can convert from an integral value to a value of any
specified numeric type (85.5, §15.16)

* The string concatenation operator + (815.18.1), which, when given a String
operand and an integral operand, will convert the integral operand to a
String representing its value in decimal form, and then produce a newly cre-
ated String that is the concatenation of the two strings

Other useful constructors, methods, and constants are predefined in the classes
Byte, Short, Integer, Long, and Character.

If an integer operator other than a shift operator has at least one operand of
type Tong, then the operation is carried out using 64-hit precision, and the result
of the numerical operator is of type 1ong. If the other operand is not Tong, it is
first widened (85.1.5) to type Tong by numeric promotion (85.6). Otherwise, the
operation is carried out using 32-bit precision, and the result of the numerical
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operator is of type int. If either operand is not an int, it isfirst widened to type
int by numeric promotion.

The built-in integer operators do not indicate overflow or underflow in any
way. Integer operators can throw aNu11PointerException if unboxing conver-
sion (85.1.8) of anull referenceisrequired. Other than that, the only integer oper-
ators that can throw an exception (811) are the integer divide operator /
(815.17.2) and the integer remainder operator % (815.17.3), which throw an
ArithmeticException if the right-hand operand is zero, and the increment and
decrement operators ++(815.15.1, §15.15.2) and --(815.14.3, 815.14.2), which
can throw an OutOfMemoryError if boxing conversion (85.1.7) is required and
there is not sufficient memory available to perform the conversion.

The example:

class Test {

public static void main(String[] args) {
int i = 1000000;
System.out.printin(i * 1i);
Tong 1 = 1;
System.out.printin(l * 1);
System.out.printin(20296 / (1 - 1i));

}

}

produces the output:
-727379968
1000000000000

and then encounters an ArithmeticException inthedivision by 1 - 1, because
1 -1 iszero. Thefirst multiplication is performed in 32-bit precision, whereas the
second multiplication isalong multiplication. The value -727379968 isthe deci-
mal value of the low 32 bits of the mathematical result, 1000000000000, which is
avaluetoo largefor type int.

Any value of any integral type may be cast to or from any numeric type. There
are no casts between integral types and the type boolean.

4.2.3 Floating-Point Types, Formats, and Values

The floating-point types are float and double, which are conceptually associ-
ated with the single-precision 32-bit and double-precision 64-bit format IEEE 754
values and operations as specified in IEEE Standard for Binary Floating-Point
Arithmetic, ANSI/IEEE Standard 754-1985 (IEEE, New York).

The IEEE 754 standard includes not only positive and negative numbers that
consist of asign and magnitude, but also positive and negative zeros, positive and
negative infinities, and special Not-a-Number values (hereafter abbreviated NaN).

4.2.3
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A NaN value is used to represent the result of certain invalid operations such as
dividing zero by zero. NaN constants of both float and double type are pre-
defined as Float.NaN and DoubTe.NaN.

Every implementation of the Java programming language is required to sup-
port two standard sets of floating-point values, caled the float value set and the
double value set. In addition, an implementation of the Java programming lan-
guage may support either or both of two extended-exponent floating-point value
sets, called the float-extended-exponent value set and the double-extended-expo-
nent value set. These extended-exponent value sets may, under certain circum-
stances, be used instead of the standard value sets to represent the values of
expressions of type float or double (85.1.13, §15.4).

The finite nonzero values of any floating-point value set can all be expressed
in the form sCm2(e-N+1) ‘wheresis+1 or =1, mis a positive integer less than
2N, and eisaninteger between E ;= —(2K-1-2) and E,, = 2K~1-1, inclu-
sive, and where N and K are parameters that depend on the value set. Some values
can be represented in this form in more than one way; for example, supposing that
avaluevin avaue set might be represented in thisform using certain valuesfor s,
m, and e, then if it happened that m were even and e were less than 2X-1, one
could halve mand increase e by 1 to produce a second representation for the same
value v. A representation in this form is called normalized if m=>2(N-1); other-
wise the representation is said to be denormalized. If avalue in a value set cannot
be represented in such away that m> 2(N-1) | then the value is said to be a denor-
malized value, because it has no normalized representation.

The constraints on the parameters N and K (and on the derived parameters
Ermin and Egy) for the two required and two optional floating-point value sets are
summarized in Table 4.1.

Parameter | float | " oaet)zgétnegncied- double doutixeéiﬁ':nentded-
N 24 24 53 53
K 8 >11 11 >15
Ernax +127 > +1023 +1023  |>+16383
Emin -126 <-1022 -1022 |<-16382

Table4.1 Floating-point value set parameters

Where one or both extended-exponent value sets are supported by an imple-
mentation, then for each supported extended-exponent value set there is a specific
implementation-dependent constant K, whose value is constrained by Table 4.1,
thisvalue K in turn dictates the values for Epji, and Epax.
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Each of the four value sets includes not only the finite nonzero values that are
ascribed to it above, but also NaN values and the four values positive zero, nega
tive zero, positive infinity, and negative infinity.

Note that the constraintsin Table 4.1 are designed so that every element of the
float value set is necessarily also an element of the float-extended-exponent value
set, the double value set, and the double-extended-exponent value set. Likewise,
each element of the double value set is necessarily also an element of the double-
extended-exponent value set. Each extended-exponent value set has alarger range
of exponent values than the corresponding standard value set, but does not have
more precision.

The elements of the float value set are exactly the values that can be repre-
sented using the single floating-point format defined in the IEEE 754 standard.
The elements of the double value set are exactly the values that can be represented
using the double floating-point format defined in the IEEE 754 standard. Note,
however, that the elements of the float-extended-exponent and double-extended-
exponent val ue sets defined here do not correspond to the values that can be repre-
sented using |EEE 754 single extended and double extended formats, respectively.

The float, float-extended-exponent, double, and double-extended-exponent
value sets are not types. It isalways correct for an implementation of the Java pro-
gramming language to use an element of the float value set to represent a value of
type float; however, it may be permissible in certain regions of code for an
implementation to use an element of the float-extended-exponent value set
instead. Similarly, it is always correct for an implementation to use an element of
the double value set to represent a value of type double; however, it may be per-
missible in certain regions of code for an implementation to use an element of the
double-extended-exponent val ue set instead.

Except for NaN, floating-point values are ordered; arranged from smallest to
largest, they are negative infinity, negative finite nonzero values, positive and neg-
ative zero, positive finite nonzero values, and positive infinity.

IEEE 754 alows multiple distinct NaN values for each of its single and dou-
ble floating-point formats. While each hardware architecture returns a particular
bit pattern for NaN when a new NaN is generated, a programmer can also create
NaNs with different bit patterns to encode, for example, retrospective diagnostic
information.

For the most part, the Java platform treats NaN values of a given type as
though collapsed into a single canonical value (and hence this specification nor-
mally refersto an arbitrary NaN as though to acanonical value). However, version
1.3 the Java platform introduced methods enabling the programmer to distinguish
between NaN values: the Float.floatToRawIntBits and Double.double-
ToRawLongBits methods. The interested reader is referred to the specifications
for the Float and Doub1e classes for more information.

4.2.3
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Positive zero and negative zero compare equal; thus the result of the expres-
Sion 0.0==-0.0 is true and the result of 0.0>-0.0 is false. But other opera-
tions can distinguish positive and negative zero; for example, 1.0/0.0 has the
value positive infinity, while the value of 1.0/-0.0 is negative infinity.

NaN is unordered, so the numerical comparison operators <, <=, >, and >=
return false if either or both operands are NaN (815.20.1). The equality operator
== returns false if either operand is NaN, and the inequality operator != returns
true if either operand isNaN (815.21.1). In particular, x!=x is true if and only if
x isNaN, and (x<y) == ! (x>=y) will be false if x or y is NaN.

Any value of afloating-point type may be cast to or from any numeric type.
There are no casts between floating-point types and the type boolean.

4.2.4 Floating-Point Operations

The Java programming language provides a number of operators that act on float-
ing-point values:

» The comparison operators, which result in avalue of type boolean:
o The numerical comparison operators <, <=, >, and >= (815.20.1)
o The numerical equality operators== and !=(815.21.1)
* The numerical operators, which result in avalue of type float or double:
o The unary plus and minus operators + and - (815.15.3, §15.15.4)
o The multiplicative operators *, /, and % (815.17)
o The additive operators + and - (815.18.2)
o Theincrement operator ++, both prefix (815.15.1) and postfix (815.14.2)
o The decrement operator --, both prefix (815.15.2) and postfix (815.14.3)
» The conditional operator ? : (8§15.25)

» The cast operator, which can convert from a floating-point value to a value of
any specified numeric type (85.5, §15.16)

* The string concatenation operator + (815.18.1), which, when given a String
operand and a floating-point operand, will convert the floating-point operand
toaString representing its value in decimal form (without information |oss),
and then produce a newly created String by concatenating the two strings

Other useful constructors, methods, and constants are predefined in the classes
Float, Double, and Math.
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If at least one of the operands to a binary operator is of floating-point type,
then the operation is a floating-point operation, even if the other isintegral.

If a least one of the operands to a numerical operator is of type doubTe, then
the operation is carried out using 64-bit floating-point arithmetic, and the result of
the numerical operator is a value of type double. (If the other operand is not a
double, it isfirst widened to type double by numeric promotion (85.6).) Other-
wise, the operation is carried out using 32-bit floating-point arithmetic, and the
result of the numerical operator is avalue of type float. If the other operand is
not a float, it isfirst widened to type f1oat by numeric promotion.

Operators on floating-point numbers behave as specified by IEEE 754 (with
the exception of the remainder operator (§15.17.3)). In particular, the Java pro-
gramming language requires support of |IEEE 754 denormalized floating-point
numbers and gradual underflow, which make it easier to prove desirable proper-
ties of particular numerical algorithms. Floating-point operations do not “flush to
zero” if the calculated result is a denormalized number.

The Java programming language requires that floating-point arithmetic
behave as if every floating-point operator rounded its floating-point result to the
result precision. Inexact results must be rounded to the representabl e value nearest
to the infinitely precise result; if the two nearest representable values are equally
near, the one with itsleast significant bit zero is chosen. Thisisthe |EEE 754 stan-
dard's default rounding mode known as round to nearest.

The language uses round toward zero when converting a floating value to an
integer (85.1.3), which acts, in this case, as though the number were truncated,
discarding the mantissa bits. Rounding toward zero chooses at its result the for-
mat’s value closest to and no greater in magnitude than the infinitely precise
result.

Floating-point operators can throw a Nul1PointerException if unboxing
conversion (85.1.8) of anull reference is required. Other than that, the only float-
ing-point operators that can throw an exception (811) are the increment and decre-
ment operators ++(815.15.1, §15.15.2) and --(815.14.3, §15.14.2), which can
throw an QutOfMemoryError if boxing conversion (85.1.7) is required and there
is not sufficient memory available to perform the conversion.

An operation that overflows produces a signed infinity, an operation that
underflows produces a denormalized value or a signed zero, and an operation that
has no mathematically definite result produces NaN. All numeric operations with
NaN as an operand produce NaN as aresult. As has aready been described, NaN
is unordered, so a numeric comparison operation involving one or two NaNs
returns false and any != comparison involving NaN returns true, including
x!=x when x is NaN.

The example program:

class Test {
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public static void main(String[] args) {
// Anexample of overflow:

double d = 1e308;
System.out.print("overflow produces infinity: ");
System.out.println(d + "*10==" + d*10);
// Anexample of gradual underflow:
d = 1e-305 * Math.PI;
System.out.print("gradual underflow: " + d + "\n ")
for (int i =0; i < 4; i++)

System.out.print(" " + (d /= 100000));
System.out.printin();
// Anexample of NaN:

System.out.print("0.0/0.0 is Not-a-Number: ");
d=0.0/0.0;

System.out.println(d);

// An example of inexact results and rounding:

System.out.print("inexact results with float:");
for (int i = 0; i < 100; i++) {

float z = 1.0f / 1;

if (z * i 1= 1.0f)

System.out.print(

n n + _i ) ;

}

System.out.println();

// Another example of inexact results and rounding:

System.out.print("inexact results with double:");
for (int i = 0; i < 100; i++) {
double z = 1.0 / 1i;
if (z * 7 1= 1.0)
System.out.print(

n n + _i) ;

}

System.out.println();

// Anexample of cast to integer rounding:

System.out.print("cast to int rounds toward 0: ");

d = 12345.6;
System.out.printin(Gint)d + " " + Gint)(-d));
}
}
produces the output:

overflow produces infinity: 1.0e+308*10==Infinity

gradual underflow: 3.141592653589793E-305
3.1415926535898E-310 3.141592653E-315 3.142E-320 0.0

0.0/0.0 is Not-a-Number: NaN

inexact results with float: @ 41 47 55 61 82 83 94 97

inexact results with double: @ 49 98

cast to int rounds toward 0: 12345 -12345
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This example demonstrates, among other things, that gradual underflow can
result in agradual loss of precision.

The results when 1 is @ involve division by zero, so that z becomes positive
infinity, and z * @ isNaN, which isnot equal to 1. 0.

4.25 Theboolean Type and boolean Values

The boolean type represents a logical quantity with two possible values, indi-
cated by theliterals true and false (83.10.3). The boolean operators are:

» Therelational operators==and != (815.21.2)

 The logical-complement operator ! (§15.15.6)

e Thelogical operators &, A, and | (815.22.2)

 The conditional-and and conditional-or operators && (815.23) and | | (815.24)
» The conditional operator ? : (8§15.25)

» The string concatenation operator + (815.18.1), which, when given a String
operand and a boolean operand, will convert the boolean operand to aString
(either "true" or "false"), and then produce a newly created String that is
the concatenation of the two strings

Boolean expressions determine the control flow in several kinds of statements:
e Theif statement (814.9)
* Thewhile statement (§14.12)
* The do statement (§14.13)
e The for statement (§14.14)

A boolean expression also determines which subexpression is evaluated in the
conditional ? : operator (8§15.25).

Only booTean or Boolean expressions can be used in control flow statements
and as the first operand of the conditional operator ? :. An integer x can be con-
verted to aboolean, following the C language convention that any nonzero value
is true, by the expression x!=0. An object reference obj can be converted to a
boolean, following the C language convention that any reference other than nu11
istrue, by the expression obj !=nul1l.

A cast of aboolean value to type boolean or Boolean is alowed (85.1.1);
no other casts on type boolean are alowed. A boolean can be converted to a
string by string conversion (85.4).

4.2.5
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4.3 Reference Typesand Values

There are three kinds of reference types: class types (88), interface types (89), and
array types (810). Reference types may be parameterized (84.5) with type argu-
ments (84.4).

ReferenceType:
ClassOrInterfaceType
TypeVariable
ArrayType

ClassOrlnterfaceType:
ClassType
InterfaceType

ClassType:
TypeDecl Soecifier TypeArgumentsyp

InterfaceType:
TypeDecl Specifier TypeArgumentsy

TypeDecl Soecifier:
TypeName
ClassOrInterfaceType . |dentifier

TypeName:
| dentifier
TypeName . Identifier

TypeVariable:
| dentifier

ArrayType:
Type [ ]

A class or interface type consists of a type declaration specifier, optionaly fol-
lowed by type arguments (in which case it is a parameterized type). Type argu-
ments are described in (84.5.1).

A type declaration specifier may be either a type name (86.5.5), or aclass or
interface type followed by "." and an identifier. In the latter case, the specifier has
theform T.id, where id must be the simple name of an accessible (86.6) mem-
ber type ( 88.5, 89.5) of T, or a compile-time error occurs. The specifier denotes
that member type.
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The sample code:

class Point { int[] metrics; }
interface Move { void move(int deltax, int deltay); }

declares a class type Point, an interface type Move, and uses an array type int[]
(an array of int) to declare thefield metrics of the class Point.

4.3.1 Objects

An object is a class instance or an array.

Thereference values (often just references) are pointersto these objects, and a
specia null reference, which refers to no object.

A class instance is explicitly created by a class instance creation expression
(815.9). An array isexplicitly created by an array creation expression (815.10).

A new classinstance isimplicitly created when the string concatenation oper-
ator + (815.18.1) is used in a non-constant (815.28) expression, resulting in a new
object of type String (84.3.3). A new array object is implicitly created when an
array initializer expression (810.6) is evaluated; this can occur when a class or
interface is initialized (812.4), when a new instance of a class is created (815.9),
or when alocal variable declaration statement is executed (814.4). New objects of
the types Boolean, Byte, Short, Character, Integer, Long, Float and Double may
be implicitly created by boxing conversion (85.1.7).

Many of these cases are illustrated in the following example:

class Point {

int x, y;

Point() { System.out.printin("default"); }

Point(int x, int y) { this.x = x; this.y = y; }

// A Point instanceis explicitly created at classinitialization time:
static Point origin = new Point(0,0);

// A String can beimplicitly created by a + operator:

public String toString() {

}

return "(" + x + "," +y + ;

}

class Test {

public static void main(String[] args) {
// A Point isexplicitly created using newInstance:
Point p = null;
try {
p = (Point)Class.forName("Point").newInstance();
} catch (Exception e) {
System.out.printin(e);
}
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// Anarray isimplicitly created by an array constructor:
Point a[] = { new Point(0,0), new Point(1,1) };

// Stringsareimplicitly created by + operators:

System.out.printin("p: " + p);
System.out.printin("a: { " + a[0Q] + ",
+afl]l + " ")

// Anarray isexplicitly created by an array creation expression:
String sa[] = new String[2];

sa[@] = "he"; sa[l] = "110";
System.out.printin(sa[@] + sa[l]);

}
}
which produces the output:
default
p: (0,0

a: { (0,0, (1,1) }
hello

The operators on references to objects are:

* Field access, using either a qualified name (86.6) or afield access expression
(815.11)

* Method invocation (815.12)
* The cast operator (85.5, §15.16)

* The string concatenation operator + (815.18.1), which, when given a String
operand and a reference, will convert the reference to a String by invoking
the toString method of the referenced object (using "nu11" if either the ref-
erence or the result of toString isanull reference), and then will produce a
newly created String that is the concatenation of the two strings

* The instanceof operator (815.20.2)
» Thereference equality operators == and != (8§15.21.3)
 The conditional operator ? : (815.25).

There may be many references to the same object. Most objects have state,
stored in the fields of objects that are instances of classes or in the variables that
are the components of an array object. If two variables contain references to the
same object, the state of the object can be modified using one variable's reference
to the object, and then the altered state can be observed through the reference in
the other variable.
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The example program:
class Value { int val; }
class Test {
public static void main(String[] args) {

int il = 3;
int i2 = il;
i2 = 4;

System.out.print("il==" + il);
System.out.printin(" but i2==" + 1i2);
Value vl = new Value(Q);

vl.val = 5;

Value v2 =

v2.val = 6;
System.out.print("vl.val==
System.out.printin(" and v2.val==

vl;

+ vl.val);
"+ v2.val);

}

produces the output:
i1==3 but i2==4
vl.val==6 and v2.val==6

because v1.val and v2.val reference the same instance variable (84.12.3) in the
one Value object created by the only new expression, while i1 and i2 are differ-
ent variables.

See 810 and §15.10 for examples of the creation and use of arrays.

Each object has an associated lock (817.1), which is used by synchronized
methods (88.4.3) and the synchronized statement (814.19) to provide control
over concurrent access to state by multiple threads (817).

4.3.2 TheClass Object

The class Object is a superclass (88.1) of all other classes. A variable of type
Object can hold areference to the null reference or to any object, whether it isan
instance of aclassor an array (810). All class and array types inherit the methods
of classObject, which are summarized here:

package java.lang;

pubTlic class Object {
public final Class<?> getClass() { ... }
public String toString() { ... }
public boolean equals(Object obj) { ... }
public int hashCode() { ... }
protected Object clone()
throws CloneNotSupportedException { ... }
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public final void wait(Q)
throws ITlegalMonitorStateException,
InterruptedException { ... }
public final void wait(long millis)
throws ITlegalMonitorStateException,

InterruptedException { ... }
public final void wait(long millis, int nanos) { ... }
throws ITlegalMonitorStateException,
InterruptedException { ... }

public final void notify() { ...}
throws ITlegalMonitorStateException
public final void notifyAT1(Q) { ... }
throws ITlegalMonitorStateException
protected void finalize()
throws Throwable { ... }
}

The members of Object are asfollows:

» The method getClass returns the Class object that represents the class of
the object. A Class object exists for each reference type. It can be used, for
example, to discover the fully qualified name of a class, its members, its
immediate superclass, and any interfaces that it implements. A class method
that is declared synchronized (88.4.3.6) synchronizes on the lock associated
with the Class object of the class. The method Object.getClass() must be
treated specially by a Java compiler. The type of a method invocation e. get-
Class (), where the expression e has the static type T, is Class<? extends
| T|>.

» The method toString returnsaString representation of the object.

* The methods equals and hashCode are very useful in hashtables such as
java.util.Hashtable. The method equals defines a notion of object
equality, which is based on value, not reference, comparison.

» The method clone is used to make a duplicate of an object.

» The methodswait, notify, and notifyAll are used in concurrent program-
ming using threads, as described in 8§17.

* The method finalize is run just before an object is destroyed and is
described in §12.6.

4.3.3 TheClassString

Instances of class String represent sequences of Unicode characters. A String
object has a constant (unchanging) value. String literals (83.10.5) are referencesto
instances of class String.
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The string concatenation operator + (815.18.1) implicitly creates a new
String object when the result is not a compile-time constant (815.28).

4.3.4 When Reference Types Are the Same

Two reference types are the same compile-time type if they have the same binary
name (813.1) and their type parameters, if any, are the same, applying this defini-
tion recursively. When two reference types are the same, they are sometimes said
to be the same class or the same interface.

At runtime, severa reference types with the same binary name may be loaded
simultaneoudly by different class loaders. These types may or may not represent
the same type declaration. Even if two such types do represent the same type dec-
laration, they are considered distinct.

Two reference types are the same run-time type if:

» They are both class or both interface types, are defined by the same class
loader, and have the same binary name (813.1), in which case they are some-
times said to be the same run-time class or the same run-time interface.

e They are both array types, and their component types are the same run-time
type(810).

4.4 TypeVariables

A type variable (84.4) is an unqualified identifier. Type variables are introduced
by generic class declarations (88.1.2) generic interface declarations (89.1.2)
generic method declarations (88.4.4) and by generic constructor declarations
(88.8.4).

TypeParameter:
TypeVariable TypeBoundqy

TypeBound:
extends ClassOrInterfaceType Additional BoundListyp

Additional BoundList:
Additional Bound Additional BoundList
Additional Bound

Additional Bound:
& InterfaceType
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Type variables have an optional bound, T & Ij ... I,. The bound consists of
either a type variable, or a class or interface type T possibly followed by further
interface types 17, ..., In. If no bound is given for a type variable, Object is
assumed. It is a compile-time error if any of the types I; ... I, isaclasstype or
type variable. The erasures (84.6) of all constituent types of a bound must be pair-
wise different, or a compile-time error occurs. The order of types in a bound is
only significant in that the erasure of atype variable is determined by the first type
in its bound, and that a class type or type variable may only appear in the first
position

A type variable may not at the same time be a subtype of two interface types
which are different parameterizations of the same generic interface.

See section 86.3 for the rules defining the scope of type variables.

The members of atype variable X with bound T & Iy ... I, arethe members
of the intersection type (84.9) T& I7 ... I, appearing at the point where the type
variableis declared.

DiscussIoN

The following example illustrates what members a type variable has.
package TypeVarMembers;

class C {
void mCDefault() {}
public void mCPubTlic() {}
private void mCPrivate() {}
protected void mCProtected() {3}
}

class CT extends C implements I {}

interface I {

void mI(Q); }

<T extends C & I> void test(T t) {
.mIQ; // OK
.mCDefault(); // OK
.mCPub1ic(; // OK
.mCPrivate(); // compile-time error
.mCProtected(); // OK

Attt ot

}

The type variable T has the same members as the intersection type C & I, which in
turn has the same members as the empty class CT, defined in the same scope with equiv-
alent supertypes. The members of an interface are always public, and therefore always
inherited (unless overridden). Hence ml is a member of CT and of T. Among the members
of C, all but mCPrivate are inherited by CT, and are therefore members of both CT and T.
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If C had been declared in a different package than T, then the call to mCDefault
would give rise to a compile-time error, as that member would not be accessible at the point
where T is declared.

45 Parameterized Types

A parameterized type consists of a class or interface name C and an actual
type argument list <77 , ... , Tp>. Itisacompiletime error if Cis not the
name of a generic class or interface, or if the number of type arguments in the
actual type argument list differs from the number of declared type parameters of
C. Inthefollowing, whenever we speak of aclass or interface type, we include the
generic version aswell, unless explicitly excluded. Throughout this section, let A7
, ... , Ap betheformal type parameters of C, and let be B; be the declared
bound of A;. The notation [A; := T4] denotes substitution of the type variable A;
with thetype T4, for 1<i<n, and is used throughout this specification.

LetP = G<T7, ..., Tp>beaparameterized type. It must be the case that,
after P is subjected to capture conversion (85.1.10) resulting in the type G<X1,

., Xn>,for each actual typeargument X;, 1<i<n, Xj< Bi[A1:=X1,...,Ap:=
Xp] (84.10), or acompile time error occurs.

DiscussioN

Example: Parameterized types.
Vector<String>
Seqg<Seq<A>>
Seq<String>.Zipper<Integer>
Collection<Integer>
Pair<String,String>

// Vector<int> -- illegal, primitive types cannot be arguments
// Pair<String> -- illegal, not enough arguments
// Pair<String,String,String> -- illegal, too many arguments
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Two parameterized types are provably distinct if either of the following conditions
hold:

» They are invocations of distinct generic type declarations.
» Any of their type arguments are provably distinct.

45.1 Type Argumentsand Wildcards

Type arguments may be either reference types or wildcards.

TypeArguments:
< Actual TypeArgumentList >

Actual TypeArgumentList:
Actual TypeArgument
Actual TypeArgumentList , Actual TypeArgument

Actual TypeArgument:
ReferenceType
Wildcard

Wildcard:
? WildcardBoundsop

Wi ldcardBounds:
extends ReferenceType
super ReferenceType

DiscussIoN

Examples
void printCollection(Collection<?> c) { // a wildcard collection
for (Object o : ) {
System.out.println(o);
}
}
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Note that using CoTTection<Object> as the type of the incoming parameter, c, would not
be nearly as useful; the method could only be used with an actual parameter that had type
Collection<Object>, which would be quite rare. In contrast, the use of an unbounded
wildcard allows any kind of collection to be used as a parameter.

Wildcards are useful in situations where only partial knowledge about the
type parameter is required.

DiscussioN

Example - Wildcard parameterized types as component types of array types.

public Method getMethod(Class<?>[] parameterTypes) { ... }

Wildcards may be given explicit bounds, just like regular type variable decla-
rations. An upper bound is signified by the syntax:

? extends B

, Where B is the bound.

DiscussioN

Example: Bounded wildcards.

boolean addA11(Collection<? extends E> c)
Here, the method is declared within the interface CoTTlection<E>, and is designed to add
all the elements of its incoming argument to the collection upon which it is invoked. A natu-
ral tendency would be to use Collection<E> as the type of c, but this is unnecessarily
restrictive. An alternative would be to declare the method itself to be generic:

<T> boolean addAl11(ColTlection<T> c)
This version is sufficiently flexible, but note that the type parameter is used only once in the
signature. This reflects the fact that the type parameter is not being used to express any
kind of interdependency between the type(s) of the argument(s), the return type and/or
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53



451

Type Arguments and Wildcards TYPES, VALUES AND VARIABLES

throws type. In the absence of such interdependency, generic methods are considered bad
style, and wildcards are preferred.

Unlike ordinary type variables declared in a method signature, no type infer-
ence is required when using awildcard. Consequently, it is permissible to declare
lower bounds on awildcard, using the syntax:

? super B

, where B is alower bound.

DiscussioN

Example: Lower bounds on wildcards.

Reference(T referent, ReferenceQueue<? super T> queue);
Here, the referent can be inserted into any queue whose element type is a super type of
the type T of the referent.

Two type arguments are provably distinct if neither of the argumentsis atype
variable or wildcard, and the two arguments are not the same type.

DiscussioN

The relationship of wildcards to established type theory is an interesting one, which we
briefly allude to here.

Wildcards are a restricted form of existential types. Given a generic type declaration
G<T extends B>, G<?>isroughly analogousto Some X <: B. G<X>.

Readers interested in a more comprehensive discussion should refer to On Variance-
Based Subtyping for Parametric Types by Atsushi Igarashi and Mirko Viroli, in the proceed-
ings of the 16th European Conference on Object Oriented Programming (ECOOP 2002).

Wildcards differ in certain details from the constructs described in the aforementioned
paper, in particular in the use of capture conversion (85.1.10) ratther than the close oper-
ation described by Igarashi and Viroli. For a formal account of wildcards, see Wild FJ by
Mads Torgersen, Erik Ernst and Christian Plesner Hansen, in the 12th workshop on Foun-
dations of Object Oriented Programming (FOOL 2005).
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DiscussIioN

Historically, wildcards are a direct descendant of the work by Atsushi Igarashi and Mirko
Viroli. This work itself builds upon earlier work by Kresten Thorup and Mads Torgersen
("Unifying Genericity", ECOOP 99), as well as a long tradition of work on declaration based
variance that goes back to Pierre America’s work on POOL (OOPSLA 89)

45.1.1 Type Argument Containment and Equivalence

A type argument TA7 is said to contain another type argument TA), written
TA, <= TAj3, if the set of types denoted by TA; is provably a subset of the set of
types denoted by TA; under the following rules (where <: denotes subtyping
(84.10)):

e ? extends T<=7? extends SiIfT<: S
e ? super T<=7? super SifS<: T

e T<=T

e T<=7?7 extends T

e T<=7? super T

4.5.2 Membersand Constructorsof Parameterized Types

Let C be aclass or interface declaration with formal type parameters Ay,...,Ap,
and let C<T1,...,Ty> be an invocation of C, where, for 1<i<n, T; are types
(rather than wildcards). Then:

* Let mbeamember or constructor declaration in C, whose type as declared is T.
Then the type of m (88.2, §88.8.6) inthetype C<T7, ..., Tp> iIST[A7 = T1, ...,
Ap=Tql.

» Let mbeamember or constructor declaration in D, where D is a class extended
by C or aninterfaceimplemented by C. Let D<Uq, . . ., U> be the supertype of
C<T1, ..., Tp>that corresponds to D. Then the type of min C<Ty1,...,Tp>iS
thetypeof min D<U1, ..., Ug>.

If any of the type arguments to a parameterized type are wildcards, the type of
its members and constructors is undefined.
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DiscussIioN

This is of no consequence, as it is impossible to access a member of a parameterized type
without performing capture conversion (85.1.10), and it is impossible to use a wildcard type
after the keyword new in a class instance creation expression

4.6 TypeErasure

Type erasure is a mapping from types (possibly including parameterized types and
type variables) to types (that are never parameterized types or type variables). We
write | T| for the erasure of type T. The erasure mapping is defined as follows.

» The erasure of a parameterized type (84.5) G<T7, ... ,Tp>is|d.

e Theerasureof anestedtype T.Cis|T].C.

» Theerasureof anarray type T[]is|T|[].

» Theerasure of atype variable (84.4) isthe erasure of its leftmost bound.

» The erasure of every other typeisthetypeitself.

The erasure of a method signature s is a signature consisting of the same
name as s, and the erasures of all the formal parameter typesgivenin s.

4.7 Reifiable Types

Because some type information is erased during compilation, not all types are
available at run time. Types that are completely available at run time are known as
reifiable types. A typeisreifiableif and only if one of the following holds:

« It refersto anon-generic type declaration.

* It is a parameterized type in which all type arguments are unbounded wild-
cards (84.5.1).

e Itisaraw type (84.8).
* Itisaprimitive type (84.2).
* Itisan array type (810.1) whose component typeis reifiable.
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DiscussIioN

The decision not to make all generic types reifiable is one of the most crucial, and contro-
versial design decisions involving the language’s type system.

Ultimately, the most important motivation for this decision is compatibility with existing
code.

Naively, the addition of new constructs such as genericity has no implications for pre-
existing code. The programming language per se, is compatible with earlier versions as
long as every program written in the previous versions retains its meaning in the new ver-
sion. However, this notion, which may be termed language compatibility, is of purely theo-
retical interest. Real programs (even trivial ones, such as "Hello World") are composed of
several compilation units, some of which are provided by the Java platform (such as ele-
ments of java.langor java.util).

In practice then, the minimum requirement is platform compatibillity - that any program
written for the prior version of the platform continues to function unchanged in the new plat-
form.

One way to provide platform compatibillity is to leave existing platform functionality
unchanged, only adding new functionality. For example, rather than modify the existing Col-
lections hierarchy in java.util, one might introduce a new library utilizing genericity.

The disadvantages of such a scheme is that it is extremely difficult for pre-existing cli-
ents of the Collection library to migrate to the new library. Collections are used to exchange
data between independently developed modules; if a vendor decides to switch to the new,
generic, library, that vendor must also distribute two versions of their code, to be compatible
with their clients. Libraries that are dependent on other vendors code cannot be modified to
use genericity until the supplier’s library is updated. If two modules are mutually dependent,
the changes must be made simultaneously.

Clearly, platform compatibility, as outlined above, does not provide a realistic path for
adoption of a pervasive new feature such as genericity. Therefore, the design of the generic
type system seeks to support migration compatibility. Migration compatibiliy allows the evo-
lution of existing code to take advantage of generics without imposing dependencies
between independently developed software modules.

The price of migration compatibility is that a full and sound reification of the generic
type system is not possible, at least while the migration is taking place.

4.8 Raw Types

To facilitate interfacing with non-generic legacy code, it is also possible to use as
atype the erasure (84.6) of a parameterized type (84.5). Such atypeiscalled a
raw type.

4.8
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More precisely, araw typeis define to be either:

* The name of a generic type declaration used without any accompanying
actual type parameters.

» Any non-static type member of araw type R that is not inherited from a super-
class or superinterface of R.

DiscussioN

The latter point may not be immediately self evident. Presenting for your consideration,
then, the following example:
class Outer<T>{
T t;
class Inner {
T setOuterT(T tl1) {t = tl;return t;}
}

}

The type of the member(s) of Inner depends on the type parameter of Outer. If Quter is
raw, Inner must be treated as raw as well, as their is no valid binding for T.

This rule applies only to type members that are not inherited. Inherited type members
that depend on type variables will be inherited as raw types as a consequence of the rule
that the supertypes of a raw type are erased, described later in this section.

DiscussIoN

Another implication of the rules above is that a generic inner class of a raw type can itself
only be used as a raw type:
class Outer<T>{

class Inner<S> {
S s;
}

}

it is not possible to access Inner as partially raw type (a "rare" type)
Outer.Inner<Double> x = null; // illegal
Double d = x.s;

because Outer itself is raw, so are all its inner classes, including Inner, and so it is
not possible to pass any type parameters to it.
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The use of raw typesis allowed only as a concession to compatibility of leg-
acy code. The use of raw types in code written after the introduction of genericity
into the Java programming language is strongly discouraged. It is possible that
future versions of the Java programming language will disallow the use of raw
types.

It is a compile-time error to attempt to use atype member of a parameterized
type asaraw type.

DiscussioN

This means that the ban on "rare" types extends to the case where the qualifying type is
parameterized, but we attempt to use the inner class as a raw type:
Outer<Integer>.Inner x = null; // illegal
This is the opposite of the case we discussed above. There is no practical justification
for this half baked type. In legacy code, no type parameters are used. In non-legacy code,
we should use the generic types correctly and pass all the required actual type parameters.

DiscussioN

Variables of a raw type can be assigned from values of any of the type’s parametric
instances.

For instance, it is possible to assign a Vector<String> to a Vector, based on the
subtyping rules (§4.10.2).
The reverse assignment from Vector to Vector<String> is unsafe (since the raw vector
might have had a different element type), but is still permitted using unchecked conversion
(85.1.9) in order to enable interfacing with legacy code. In this case, a compiler will issue an
unchecked warning.

The superclasses (respectively, superinterfaces) of a raw type are the erasures of
the superclasses (superinterfaces) of any of its parameterized invocations.

The type of a constructor (88.8), instance method (88.8, §9.4), or non-static
field (88.3) M of araw type C that is not inherited from its superclasses or super-
interfaces is the erasure of its type in the generic declaration corresponding to C.
The type of a static member of araw type Cisthe same as its type in the generic
declaration corresponding to C.

It is a compile-time error to pass actual type parameters to a non-static type
member of araw type that is not inherited from its superclasses or superinterfaces.

4.8
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To make sure that potential violations of the typing rules are always flagged,
some accesses to members of a raw type will result in warning messages. The
rules for generating warnings when accessing members or constructors of raw
types are as follows:

* An invocation of a method or constructor of a raw type generates an
unchecked warning if erasure changes any of the types of any of the argu-
ments to the method or constructor.

* An assignment to a field of a raw type generates an unchecked warning
(85.1.9) if erasure changesthe field’s type.

No unchecked warning is required for a method call when the argument types do
not change (even if the result type and/or throws clause changes), for reading
from afield, or for a class instance creation of araw type.

The supertype of aclass may be araw type. Member accessesfor the class are
treated as normal, and member accesses for the supertype are treated as for raw
types. In the constructor of the class, calls to super are treated as method calls on
araw type.

DiscussioN

Example: Raw types.
class Cell<E>

E value;

Cell (E v) { value=v; }

A get() { return value; }
void set(E v) { value=v; }

}

Cell x = new Cell<String>("abc");
x.value; // OK, has type Object
x.get(Q); // OK, has type Object
x.set("def"); // unchecked warning
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DiscussIioN

For example,
import java.util.*;

class NonGeneric {

ColTlection<Number> myNumbers(){return null;}

}

abstract class RawMembers<T> extends NonGeneric implements Collec-
tion<String> {
static Collection<NonGeneric> cng =
new ArraylList<NonGeneric>(Q);

public static void main(String[] args) {
RawMembers rw = null;
ColTection<Number> cn = rw.myNumbers(); // ok
Iterator<String> is = rw.iterator(); // unchecked warning
Collection<NonGeneric> cnn = rw.cng; // ok - static member
}
}

RawMembers<T> inherits the method

Iterator<String> iterator()

from the CoTllection<String> superinterface. However, the type RawMembers inher-
its iterator() from the erasure of its superinterface, which means that the return type of
the member iterator() is the erasure of Iterator<<String>, Iterator. As a result,
the attempt to assign to rw.1iterator () requires an unchecked conversion (85.1.9) from
Iteratorto Iterator<String>, causing an unchecked warning to be issued.

In contrast, the static member cng retains its full parameterized type even when
accessed through a object of raw type (note that access to a static member through an
instance is considered bad style and is to be discouraged). The member myNumbers is
inherited from the NonGeneric (whose erasure is also NonGeneric) and so retains its full
parameterized type.

DiscussioN

Raw types are closly related to wildcards. Both are based on existential types. Raw types
can be thought of as wildcards whose type rules are deliberately unsound, to accommo-
date interaction with legacy code.

Historically, raw types preceded wildcards; they were first introduced in GJ, and
described in the paper Making the future safe for the past: Adding Genericity to the Java
Programming Language by Gilad Bracha, Martin Odersky, David Stoutamire, and Philip
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Wadler, in Proc. of the ACM Conf. on Object-Oriented Programming, Systems, Languages
and Applications, (OOPSLA 98) October 1998.

4.9 Intersection Types

An intersection type takestheform 7; & ... & Tp, n>0,where T;, 1<i<n,
are type expressions. Intersection types arise in the processes of capture conver-
sion (85.1.10) and type inference (815.12.2.7). It is not possible to write an inter-
section type directly as part of a program; no syntax supports this. The values of
an intersection type are those objects that are values of al of the types 75, for
l<i<n.

The members of an intersectiontype 7; & ... & T, are determined asfol-
lows:

e For each T, 1<i<n, let C; be the most specific class or array type such
thatT; <: C; Thentheremust be some Ty <: Cysuchthat Cx <: C;forany
i, 1<i<n, or acompile-time error occurs.

» For 1<j<n,if Tjisatype variable, then et IT; be an interface whose mem-
bers are the same as the public members of 75; otherwisg, if T; isan interface,
then let IT; be Tj.

» Then the intersection type has the same members as a class type (88) with an
empty body, direct superclass Cy and direct superinterfaces 1Ty , ..., ITp,
declared in the same package in which the intersection type appears.

DiscussIoN

It is worth dwelling upon the distinction between intersection types and the bounds of type
variables. Every type variable bound induces an intersection type. This intersection type is
often trivial (i.e., consists of a single type).

The form of a bound is restricted (only the first element may be a class or type vari-
able, and only one type variable may appear in the bound) to preclude certain awkward sit-
uations coming into existence. However, capture conversion can lead to the creation of type
variables whose bounds are more general (e.g., array types).
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4.10 Subtyping

The subtype and supertype relations are binary relations on types. The supertypes
of atype are obtained by reflexive and transitive closure over the direct supertype
relation, written S >7 T, which isdefined by rules given later in this section. We
write S :> Ttoindicate that the supertype relation holds between Sand 7. Sisa
proper supertype of T, written S>T,if S :> Tand SzT.

The subtypes of atype T are al types U such that Tisasupertype of U, and the
null type. Wewrite T <: Stoindicate that that the subtype relation holds between
typesTand S. Tisaproper subtypeof S, written T<sS,if T <:Sand s#T. Tisa
direct subtypeof S, written T <7 S, if S >7 T .

Subtyping does not extend through generic types: T <: U does not imply that C<T>
<: C<U>.

4.10.1 Subtyping among Primitive Types

The following rules define the direct supertype relation among the primitive types:

double > float
float >4 long
long >4 int

int > char

int >; short
short >1 byte

4.10.2 Subtyping among Class and I nterface Types

Let Cbeatype declaration (84.12.6, 88.1, §9.1) with zero or more type parameters
(84.4) F1, ..., Fnpwhich have corresponding bounds By, ..., B,. That type declara-
tion defines a set of parameterized types (84.5) C;<T7q, . - ., Tp>, Where each argu-
ment type T; ranges over all types that are subtypes of all types listed in the
corresponding bound. That is, for each bound type S; in B4, T; isasubtype of S|
F1:=T1, .., Fp:=Tq].

Given atype declaration for C<Fy, . . ., Fn>, the direct supertypes of the parame-
terized type (84.5) C<Fy, . . ., Fp> aredl of the following:

« the direct superclasses of C.

« the direct superinterfaces of C.
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e ThetypeObject, if Cisan interface type with no direct superinterfaces.

* Theraw type C.

The direct supertypes of the type C<Ty7,...,Tp>, Where T4, 1<i<n, isa
type, are D<U;g theta, ..., Uk theta>, where
e D<U1,...,Ur>isadirect supertype of C<F, ..., Fp>, and theta isthe substi-
tution [F7:=T1, ..., Fp = Tp].
* C<S7,...,Sp>where S; contains (84.5.1.1) T for 1<i<n.
The direct supertypes of the type C<Ry, . ..,Rn> , Where at least one of the R;,
1<i<n, isawildcard type argument, are the direct supertypes of C<Xy, ..., Xp>,
where
C<X1,...,Xp> is the result of applying capture conversion (85.1.10) to
C<R71,...,Rp>.
The direct supertypes of an intersection type (84.9) 77 & ... & Tp, are T4,
1<i<n.

The direct supertypes of atype variable (84.4) are the types listed in its bound.
The direct supertypes of the null type are all reference types other than the
null typeitself.
In addition to the above rules, atype variable is a direct supertype of its lower
bound.

4.10.3 Subtyping among Array Types
The following rules define the direct subtype relation among array types:
 If Sand T are both referencetypes, then S[] >7 T[]iff S >7 T.
* Object >1 Object[]
* Cloneable >1 Object[]
* java.io.Serializable >1 Object[]
* If pisaprimitive type, then:
o Object >1 p[]
o Cloneable >1 p[]

o java.io.Serializable >1 p[]
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4.11 Where TypesAre Used

Types are used when they appear in declarations or in certain expressions.
The following code fragment contains one or more instances of most kinds of

usage of atype:
import java.util.Random;
class MiscMath<T extends Number>{
int divisor;
MiscMath(int divisor) {
this.divisor = divisor;

}
float ratio(long 1) {
try {
1 /= divisor;
} catch (Exception e) {
if (e instanceof ArithmeticException)
1 = Long.MAX_VALUE;
else
1 = 0;
}
return (float)1;
}

double gausser() {

Random r = new Random();
doubTle[] val = new double[2];
val[@] = r.nextGaussian();
val[1l] = r.nextGaussian();
return (val[@] + val[l]) / 2;

ColTection<Number> fromArray(Number[] na) {
ColTlection<Number> cn = new ArrayList<Number>(Q);
for (Number n : na) {

cn.add(n)
}

return cn;

}
void <S> loop(S s){ this.<S>Toop(s);}

}
In this example, types are used in declarations of the following:

411
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» Imported types (87.5); here the type Random, imported from the type
java.util.Random of the package java.util, isdeclared

« Fields, which are the class variables and instance variables of classes (88.3),
and constants of interfaces (89.3); here the field divisor in the class
MiscMath isdeclared to be of type int

* Method parameters (88.4.1); here the parameter 1 of the method ratio is
declared to be of type Tong

» Method results (88.4); here the result of the method ratio isdeclared to be of
type float, and the result of the method gausser is declared to be of type
double

* Constructor parameters (88.8.1); here the parameter of the constructor for
MiscMath isdeclared to be of type int

* Local variables (814.4, 814.14); the local variables r and val of the method
gausser are declared to be of types Random and double[] (array of double)

* Exception handler parameters (814.20); here the exception handler parameter
e of the catch clauseis declared to be of type Exception

* Type variables (84.4); here the type variable T has Number as its declared
bound.

and in expressions of the following kinds:

* Class instance creations (815.9); here alocal variable r of method gausser is
initialized by a class instance creation expression that uses the type Random

» Generic class (88.1.2) instance creations (815.9); here Number is used as a
type argument in the expression new ArrayList<Number>()

 Array creations (815.10); here the local variable val of method gausser is
initialized by an array creation expression that creates an array of double
with size 2

* Generic method (88.4.4) or constructor (88.8.4) invocations (§815.12); here the
method Toop callsitself with an explicit type argument S

* Casts (815.16); here the return statement of the method ratio uses the
float typein acast

* The instanceof operator (815.20.2); here the instanceof operator tests
whether e is assignment compatible with the type ArithmeticException

. Types are aso used as arguments to parameterized types, here the type Number
is used as an argument in the parameterized type Collection<Numbers.
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4.12 Variables

A variable is a storage location and has an associated type, sometimes called its
compile-time type, that is either a primitive type (84.2) or areference type (84.3).
A variable’'s value is changed by an assignment (815.26) or by a prefix or postfix
++ (increment) or -- (decrement) operator (815.14.2, 815.14.3, §15.15.1,
§15.15.2).

Compatibility of the value of a variable with its type is guaranteed by the
design of the Java programming language, as long as a program does not give rise
to unchecked warnings (84.12.2.1). Default values are compatible (84.12.5) and
all assignmentsto avariable are checked for assignment compatibility (85.2), usu-
aly at compile time, but, in a single case involving arrays, a run-time check is
made (810.10).

4.12.1 Variablesof Primitive Type
A variable of a primitive type always holds a value of that exact primitive type.

4.12.2 Variables of Reference Type

A variable of aclasstype T can hold anull reference or areference to an instance
of class T or of any classthat isasubclass of T. A variable of an interface type can
hold a null reference or a reference to any instance of any class that implements
the interface.

DiscussioN

Note that a variable is not guaranteed to always refer to a subtype of its declared type, but
only to subclasses or subinterfaces of the declared type. This is due to the possibility of
heap pollution discussed below.

If Tisaprimitivetype, then avariable of type“array of 7" can hold anull ref-
erence or a reference to any array of type “array of 7”; if T is a reference type,
then avariable of type “array of 7" can hold anull reference or areference to any
array of type “array of S” such that type S is a subclass or subinterface of type T.
In addition, a variable of type Object[] can hold an array of any reference type.
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A variable of type Object can hold a null reference or a reference to any object,
whether class instance or array.

4.12.2.1 Heap Pollution

It is possible that a variable of a parameterized type refers to an object that is not
of that parameterized type. This situation is known as heap pollution. This situa-
tion can only occur if the program performed some operation that would give rise
to an unchecked warning at compile-time.

DiscussionN

For example, the code:
List 1 = new ArrayList<Number>(Q);
List<String> 1s = 1; // unchecked warning

gives rise to an unchecked warning, because it is not possible to ascertain, either at com-
pile-time (within the limits of the compile-time type checking rules) or at run-time, whether
the variable | does indeed refer to a List<String>.

If the code above is executed, heap pollution arises, as the variable Is, declared to be a
List<String>, refersto avalue thatis notinfacta List<String>.

The problem cannot be identified at run-time because type variables are not reified,
and thus instances do not carry any information at run-time regarding the actual type
parameters used to create them.

In a simple example as given above, it may appear that it should be straightforward to
identify the situation at compile-time and give a compilation error. However, in the general
(and typical) case, the value of the variable | may be the result of an invocation of a sepa-
rately compiled method, or its value may depend upon arbitrary control flow.

The code above is therefore very atypical, and indeed very bad style.

Assignment from a value of a raw type to a variable of a parameterized type should
only be used when combining legacy code which does not make use of parameterized
types with more modern code that does.

If no operation that requires an unchecked warning to be issued takes place, heap pol-
lution cannot occur. Note that this does not imply that heap pollution only occurs if an
unchecked warning actually occurred. It is possible to run a program where some of the
binaries were compiled by a compiler for an older version of the Java programming lan-
guage, or by a compiler that allows the unchecked warnings to suppressed. This practice is
unhealthy at best.

Conversely, it is possible that despite executing code that could (and perhaps did) give
rise to an unchecked warning, no heap pollution takes place. Indeed, good programming
practice requires that the programmer satisfy herself that despite any unchecked warning,
the code is correct and heap pollution will not occur.
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The variable will always refer to an object that is an instance of a class that
implements the parameterized type.

DiscussIioN

For instance, the value of 1 in the example above is always a List.

4.12.3 Kindsof Variables

There are seven kinds of variables:

1. A class variable is afield declared using the keyword static within aclass
declaration (88.3.1.1), or with or without the keyword static within an inter-
face declaration (89.3). A classvariableis created when itsclass or interfaceis
prepared (812.3.2) and isinitialized to adefault value (84.12.5). The class vari-
able effectively ceases to exist when its class or interface is unloaded (812.7).

2. An instance variable is a field declared within a class declaration without
using the keyword static (88.3.1.1). If aclass T has a field a that is an
instance variable, then a new instance variable a is created and initialized to a
default value (84.12.5) as part of each newly created object of class T or of
any class that is a subclass of T (88.1.4). The instance variable effectively
ceases to exist when the object of which it isafield is no longer referenced,
after any necessary finalization of the object (812.6) has been compl eted.

3. Array components are unnamed variables that are created and initialized to
default values (84.12.5) whenever a new object that is an array is created
(815.10). The array components effectively cease to exist when the array is no
longer referenced. See 810 for a description of arrays.

4. Method parameters (88.4.1) name argument values passed to a method. For
every parameter declared in a method declaration, anew parameter variable is
created each time that method isinvoked (815.12). The new variableisinitial-
ized with the corresponding argument value from the method invocation. The
method parameter effectively ceases to exist when the execution of the body
of the method is complete.

5. Constructor parameters (88.8.1) name argument values passed to a construc-
tor. For every parameter declared in a constructor declaration, a new parame-
ter variable is created each time a class instance creation expression (815.9) or
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explicit constructor invocation (88.8.7) invokes that constructor. The new
variable is initialized with the corresponding argument value from the cre-
ation expression or constructor invocation. The constructor parameter effec-
tively ceases to exist when the execution of the body of the constructor is
complete.

. An exception-handler parameter is created each time an exception is caught

by acatch clause of atry statement (814.20). The new variableisinitialized
with the actual object associated with the exception (811.3, §14.18). The
exception-handler parameter effectively ceases to exist when execution of the
block associated with the catch clause is complete.

. Local variables are declared by local variable declaration statements (814.4).

Whenever the flow of control enters a block (814.2) or for statement
(814.14), anew variable is created for each local variable declared in a local
variable declaration statement immediately contained within that block or for
statement. A local variable declaration statement may contain an expression
which initializes the variable. The local variable with an initializing expres-
sion is not initialized, however, until the local variable declaration statement
that declaresit is executed. (The rules of definite assignment (816) prevent the
value of alocal variable from being used before it has been initialized or oth-
erwise assigned a value.) The local variable effectively ceases to exist when
the execution of the block or for statement is complete.

Were it not for one exceptional situation, a local variable could always be
regarded as being created when its local variable declaration statement is exe-
cuted. The exceptiona situation involves the switch statement (814.11),
whereit is possible for control to enter ablock but bypass execution of alocal
variable declaration statement. Because of the restrictions imposed by the
rules of definite assignment (816), however, the local variable declared by
such a bypassed local variable declaration statement cannot be used before it
has been definitely assigned a value by an assignment expression (815.26).

The following example contains several different kinds of variables:
class Point {
static int numPoints; // numPoints isaclassvariable

int x, y; // x andy areinstance variables
int[] w = new int[10]; // w[@] isan array component
int setX(int x) { // xisamethod parameter

int oldx = this.x; // oldxisalocd variable
this.x = x;
return oldx;



TYPES, VALUES AND VARIABLES Initial Values of Variables 4.12.5

4124 final Variables

A variable can be declared final. A fina variable may only be assigned to once.
It is a compile time error if afinal variable is assigned to unless it is definitely
unassigned (816) immediately prior to the assignment.

A blank final isafinal variable whose declaration lacks an initializer.

Once a final variable has been assigned, it always contains the same value.
If afinal variable holds areference to an object, then the state of the object may
be changed by operations on the object, but the variable will aways refer to the
same object. This applies also to arrays, because arrays are objects; if a final
variable holds a reference to an array, then the components of the array may be
changed by operations on the array, but the variable will always refer to the same
array.

Declaring a variable final can serve as useful documentation that its value
will not change and can help avoid programming errors.

In the example:

class Point {

int x, y;

int useCount;

Point(int x, int y) { this.x = x; this.y = y; }
final static Point origin = new Point(0, 0);

}
the class Point declares afina class variable origin. The origin variable holds
areference to an object that is an instance of class Point whose coordinates are
(O, 0). The value of the variable Point.origin can never change, so it aways
refers to the same Point object, the one created by its initializer. However, an
operation on this Point object might change its state—for example, modifying its
useCount or even, misleadingly, its x or y coordinate.

We call avariable, of primitive type or type String, that is final and initial-
ized with a compile-time constant expression (815.28) a constant variable.
Whether a variable is a constant variable or not may have implications with
respect to class initialization (812.4.1), binary compatibility (813.1, §13.4.9) and
definite assignment (816).

4125 Initial Values of Variables

Every variable in a program must have a value before its value is used:

» Each class variable, instance variable, or array component isinitialized with a
default value when it is created (815.9, §15.10):

o For type byte, the default value is zero, that is, the value of (byte)o.
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o For type short, the default value is zero, that is, the value of (short)o.
o For type int, the default valueis zero, that is, 0.

o For type Tong, the default value is zero, that is, oL.

o For type float, the default value is positive zero, that is, 0. 0f.

o For type double, the default value is positive zero, that is, 0. 0d.

o For type char, the default value isthe null character, that is, ' \u000o'.
o For type boolean, the default valueis false.

o For all reference types (84.3), the default valueis nu11.

» Each method parameter (88.4.1) isinitialized to the corresponding argument
vaue provided by the invoker of the method (8§15.12).

» Each constructor parameter (88.8.1) is initialized to the corresponding argu-
ment value provided by a classinstance creation expression (§15.9) or explicit
constructor invocation (88.8.7).

* An exception-handler parameter (814.20) is initialized to the thrown object
representing the exception (811.3, §14.18).

» A local variable (814.4, 814.14) must be explicitly given a value before it is
used, by either initialization (814.4) or assignment (815.26), in away that can
be verified by the compiler using the rules for definite assignment (816).

The example program:
class Point {
static int npoints;
int x, y;
Point root;

}

class Test {

public static void main(String[] args) {
System.out.println("npoints=" + Point.npoints);
Point p = new Point();
System.out.printin("p.x=" + p.x + ", p.y='
System.out.printin("p.root=" + p.root);

+p.y);

}
}
prints:
npoints=0
p.x=0, p.y=0
p.root=null
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illustrating the default initialization of npoints, which occurs when the class
Point isprepared (812.3.2), and the default initialization of x, y, and root, which
occurs when a new Point is instantiated. See 8§12 for a full description of all
aspects of loading, linking, and initialization of classes and interfaces, plus a
description of the instantiation of classes to make new class instances.

4.12.6 Types, Classes, and Interfaces

In the Java programming language, every variable and every expression has atype
that can be determined at compile time. The type may be a primitive type or aref-
erence type. Reference types include class types and interface types. Reference
types are introduced by type declarations, which include class declarations (§8.1)
and interface declarations (89.1). We often use the term type to refer to either a
class or an interface.

Every object belongs to some particular class. the class that was mentioned in
the creation expression that produced the object, the class whose Class object
was used to invoke a reflective method to produce the object, or the String class
for objects implicitly created by the string concatenation operator + (815.18.1).
This classis caled the class of the object. (Arrays also have a class, as described
at the end of this section.) An object is said to be an instance of its class and of all
superclasses of its class.

Sometimes a variable or expression is said to have a “run-time type”. This
refers to the class of the object referred to by the value of the variable or expres-
sion at run time, assuming that the valueis not nul1.

The compile time type of avariable is always declared, and the compile time
type of an expression can be deduced at compile time. The compile time type lim-
its the possible values that the variable can hold or the expression can produce at
runtime. If arun-time valueis areferencethat isnot nul1, it refersto an object or
array that has a class, and that class will necessarily be compatible with the com-
pile-time type.

Even though a variable or expression may have a compile-time type that isan
interface type, there are no instances of interfaces. A variable or expression whose
typeisan interface type can reference any object whose classimplements (88.1.5)
that interface.

Here is an example of creating new objects and of the distinction between the
type of avariable and the class of an object:

public interface Colorable {

void setColor(byte r, byte g, byte b);

}

class Point { int x, y; }

class ColoredPoint extends Point implements Colorable {
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byte r, g, b;
public void setColor(byte rv, byte gv, byte bv) {
r=rv; g=gv; b=by;
}
}

class Test {
public static void main(String[] args) {
Point p = new Point();
ColoredPoint cp = new ColoredPoint();

p = Cp;
Colorable c = cp;
}
}
In this example:

* The local variable p of the method main of class Test hastype Point and is
initially assigned areference to anew instance of class Point.

* The local variable cp similarly has asits type ColoredPoint, and isinitialy
assigned areference to a new instance of class ColoredPoint.

* The assignment of the value of cp to the variable p causes p to hold a refer-
encetoaColoredPoint object. Thisispermitted because ColoredPoint isa
subclass of Point, so the class ColoredPoint is assignment compatible
(85.2) with the type Point. A ColoredPoint object includes support for all
the methods of a Point. In addition to its particular fields r, g, and b, it has
thefields of class Point, namely x and y.

* The local variable c has as its type the interface type Colorable, so it can
hold a reference to any object whose class implements Colorable; specifi-
cally, it can hold areference to aColoredPoint.

DiscussIioN

Note that an expression such as new Colorable() is not valid because it is not possible to
create an instance of an interface, only of a class.

Every array also has a class; the method getClass, when invoked for an array
object, will return a class object (of class Class) that represents the class of the

array.
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The classes for arrays have strange names that are not valid identifiers; for
example, the class for an array of int components has the name “[I” and so the
value of the expression:

new int[10].getClass().getName()
isthestring " [I"; see the specification of Class.getName for details.
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CHAPTER 5

Conversions and Promotions

EVERY expression written in the Java programming language has a type that
can be deduced from the structure of the expression and the types of the literals,
variables, and methods mentioned in the expression. It is possible, however, to
write an expression in a context where the type of the expression is not appropri-
ate. In some cases, this leads to an error at compile time. In other cases, the con-
text may be able to accept atype that is related to the type of the expression; as a
convenience, rather than requiring the programmer to indicate a type conversion
explicitly, the language performs an implicit conversion from the type of the
expression to atype acceptable for its surrounding context.

A specific conversion from type S to type T allows an expression of type S to
be treated at compile time as if it had type T instead. In some cases this will
require a corresponding action at run time to check the validity of the conversion
or to trangdlate the run-time value of the expression into a form appropriate for the
new type T. For example:

* A conversion from type Object to type Thread requires a run-time check to
make sure that the run-time value is actually an instance of class Thread or
one of its subclasses; if it isnot, an exception is thrown.

* A conversion from type Thread to type Object requires no run-time action;
Thread is asubclass of Object, so any reference produced by an expression
of type Thread isavalid reference value of type Object.

« A conversion from type int to type Tong requires run-time sign-extension of
a 32-hit integer value to the 64-bit Tong representation. No information is
lost.

77



78

Conversions and Promotions CONVERSONS AND PROMOTIONS

A conversion from type double to type Tong requires a nontrivial translation
from a 64-bit floating-point value to the 64-bit integer representation. Depending
on the actual run-time value, information may be lost.

In every conversion context, only certain specific conversions are permitted.
For convenience of description, the specific conversions that are possible in the
Java programming language are grouped into several broad categories:

e ldentity conversions

» Widening primitive conversions
» Narrowing primitive conversions
* Widening reference conversions
» Narrowing reference conversions
» Boxing conversions

» Unboxing conversions

* Unchecked conversions

» Capture conversions

* String conversions

» Vaue set conversions

There are five conversion contexts in which conversion of expressions may
occur. Each context allows conversions in some of the categories named above but
not others. The term “conversion” is also used to describe the process of choosing
a specific conversion for such a context. For example, we say that an expression
that is an actual argument in a method invocation is subject to “method invocation
conversion,” meaning that a specific conversion will be implicitly chosen for that
expression according to the rules for the method invocation argument context.

One conversion context is the operand of a numeric operator such as + or *.
The conversion process for such operandsis called numeric promotion. Promotion
is specia in that, in the case of binary operators, the conversion chosen for one
operand may depend in part on the type of the other operand expression.

This chapter first describes the eleven categories of conversions (85.1),
including the specia conversionsto String allowed for the string concatenation
operator +. Then the five conversion contexts are described:

» Assignment conversion (85.2, §15.26) converts the type of an expression to
the type of a specified variable. Assignment conversion may cause a Out-
OfMemoryError (asaresult of boxing conversion (85.1.7)), aNul1Pointer-
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Exception (as a result of unboxing conversion (85.1.8)), or a
ClassCastException (asaresult of an unchecked conversion (85.1.9)) to be
thrown at run time.

Method invocation conversion (85.3, 815.9, §15.12) is applied to each argu-
ment in amethod or constructor invocation and, except in one case, performs
the same conversions that assignment conversion does. Method invocation
conversion may cause aOutOfMemoryError (asaresult of boxing conversion
(85.1.7)), a Nul1PointerException (as a result of unboxing conversion
(85.1.8)), or aClassCastException (asaresult of an unchecked conversion
(85.1.9)) to be thrown at run time.

Casting conversion (85.5) converts the type of an expression to a type explic-
itly specified by a cast operator (815.16). It is more inclusive than assignment
or method invocation conversion, allowing any specific conversion other than
astring conversion, but certain casts to a reference type may cause an excep-
tion at run time.

String conversion (85.4, §15.18.1) alows any type to be converted to type
String.

Numeric promotion (85.6) brings the operands of a numeric operator to a
common type so that an operation can be performed.

Here are some examples of the various contexts for conversion:
class Test {
public static void main(String[] args) {
// Casting conversion (85.4) of afloat literal to
// typeint. Without the cast operator, this would
// beacompile-time error, because thisisa
// narrowing conversion (85.1.3):
int i = (int)12.5f;
// String conversion (85.4) of i’sint value:
System.out.printIn("(int)12.5f==" + 1i);
// Assignment conversion (85.2) of i’svalueto type
// float. Thisisawidening conversion (85.1.2):
float f = i;
// String conversion of f's float value:
System.out.printin("after float widening: " + f);

// Numeric promation (85.6) of i’svaueto type

// float. Thisisabinary numeric promotion.
// After promotion, the operationis float*float:
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System.out.print(f);

f=1Ff%*1;

// Two string conversions of i and f:
System.out.printin("*" + i + "==" + f);

// Method invocation conversion (85.3) of f'svalue

// totypedouble, needed because the method Math.sin
// acceptsonly adouble argument:

double d = Math.sin(f);

// Two string conversions of f and d:
System.out.printin("Math.sin(" + f + ")==" + d);

}

which produces the output:
(int)12.5f==12
after float widening: 12.0
12.0%12==144.0
Math.sin(144.0)==-0.49102159389846934

5.1 Kindsof Conversion

Specific type conversions in the Java programming language are divided into the
following categories.

5.1.1 Identity Conversions

A conversion from atype to that same type is permitted for any type.

Thismay seem trivial, but it hastwo practical consequences. First, it isaways
permitted for an expression to have the desired type to begin with, thus allowing
the simply stated rule that every expression is subject to conversion, if only atriv-
ial identity conversion. Second, it implies that it is permitted for a program to
include redundant cast operators for the sake of clarity.

5.1.2 Widening Primitive Conversion

The following 19 specific conversions on primitive types are called the widening
primitive conversions:
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* byte to short, int, long, float, or double
e short to int, long, float, or double

e char to int, Tong, float, or doubTe

* int to Tong, float, or double

* long to float or doubTle

e float to double

Widening primitive conversions do not lose information about the overall
magnitude of a numeric value. Indeed, conversions widening from an integral type
to another integral type do not lose any information at all; the numeric value is
preserved exactly. Conversions widening from float to double in strictfp
expressions also preserve the numeric value exactly; however, such conversions
that are not strictfp may lose information about the overall magnitude of the
converted value.

Conversion of anint or along valueto float, or of along valueto double,
may result in loss of precision—that is, the result may lose some of the least sig-
nificant bits of the value. In this case, the resulting floating-point value will be a
correctly rounded version of the integer value, using |IEEE 754 round-to-nearest
mode (84.2.4).

A widening conversion of a signed integer value to an integral type T simply
sign-extends the two's-complement representation of the integer value to fill the
wider format. A widening conversion of a char to an integral type T zero-extends
the representation of the char valueto fill the wider format.

Despite the fact that loss of precision may occur, widening conversions
among primitive types never result in arun-time exception (811).

Here is an example of awidening conversion that |oses precision:

class Test {

public static void main(String[] args) {
int big = 1234567890;
float approx = big;
System.out.printin(big - (int)approx);
}
}

which prints:

-46
thus indicating that information was lost during the conversion from type int to
type float because values of type float are not precise to nine significant digits.

5.1.2
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5.1.3 Narrowing Primitive Conversions

The following 22 specific conversions on primitive types are called the narrowing
primitive conversions:
e short to byte or char

e char to byte or short

* int to byte, short, or char

* long to byte, short, char, or int

* float to byte, short, char, int, or Tong

e double to byte, short, char, int, long, or float

Narrowing conversions may lose information about the overall magnitude of a
numeric value and may also lose precision.

A narrowing conversion of a signed integer to an integral type T ssimply dis-
cards all but the n lowest order bits, where n is the number of bits used to repre-
sent type T. In addition to a possible loss of information about the magnitude of
the numeric value, this may cause the sign of the resulting value to differ from the
sign of the input value.

A narrowing conversion of a char to an integral type T likewise simply dis-
cards al but the n lowest order bits, where n is the number of bits used to repre-
sent type T. In addition to a possible loss of information about the magnitude of
the numeric value, this may cause the resulting value to be a negative number,
even though charsrepresent 16-bit unsigned integer values.

A narrowing conversion of afloating-point number to an integral type T takes
two steps:

1. In thefirst step, the floating-point number is converted either toalong, if Tis
Tong, ortoanint, if T isbyte, short, char, or int, asfollows:

o If the floating-point number is NaN (84.2.3), the result of thefirst step of the
conversionisanint or Tong 0.

o Otherwise, if the floating-point number is not an infinity, the floating-point
value is rounded to an integer value V, rounding toward zero using |EEE
754 round-toward-zero mode (84.2.3). Then there are two cases:

o If TisTong, and thisinteger value can be represented as a Tong, then the
result of thefirst step isthe Tong value V.

o Otherwise, if this integer value can be represented as an int, then the
result of thefirst step isthe int value V.

o Otherwise, one of the following two cases must be true:
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o The value must be too small (a negative value of large magnitude or nega-
tive infinity), and the result of the first step is the smallest representable
value of type int or Tong.

o The value must be too large (a positive value of large magnitude or posi-
tive infinity), and the result of the first step is the largest representable
value of type int or Tong.

2. In the second step:
o If Tisint or Tong,the result of the conversion isthe result of the first step.

o If Tisbyte, char, or short, the result of the conversion is the result of a
narrowing conversion to type T (85.1.3) of the result of the first step.

The example:
class Test {
public static void main(String[] args) {
float fmin = Float.NEGATIVE_INFINITY;
float fmax = Float.POSITIVE_INFINITY;
System.out.printin("Tong: " + (Tong)fmin +
".." + (long)fmax);
System.out.printin("int: " + (int)fmin +
"M+ (int)fmax);
" + (short)fmin +
.." + (short)fmax);
System.out.printin("char: " + (int)(char)fmin +
".." + (int) (char)fmax);
System.out.printin("byte: " + (byte)fmin +
"""+ (byte)fmax);

System.out.printin("short:

}

produces the output:

Tong: -9223372036854775808..9223372036854775807

int: -2147483648..2147483647

short: 0..-1

char: 0..65535

byte: 0..-1

Theresultsfor char, int, and Tong are unsurprising, producing the minimum
and maximum representabl e values of the type.

The results for byte and short lose information about the sign and magni-
tude of the numeric values and also lose precision. The results can be understood
by examining the low order bits of the minimum and maximum int. The mini-
mum int is, in hexadecimal, 9x80000000, and the maximum int isOx7 fffffff.
This explainsthe short results, which are the low 16 bits of these values, namely,
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0x0000 and oxffff; it explainsthe char results, which also are the low 16 bits of
these values, namely, '\u0000' and '\uffff'; and it explains the byte results,
which are the low 8 bits of these values, namely, 0x00 and oxff.

Despite the fact that overflow, underflow, or other loss of information may
occur, harrowing cornversions among primitive types never result in a run-time
exception (811).

Hereis a small test program that demonstrates a number of narrowing conver-
sions that lose information:

class Test {

public static void main(String[] args) {
// A narrowing of int to short loses high bits:
System.out.printin(" (short)0x12345678==0x" +
Integer.toHexString((short)0x12345678));
// A int vaue not fitting in byte changes sign and magnitude:
System.out.println(" (byte)255==" + (byte)255);

// A float valuetoo big to fit gives largest int value:
System.out.printin("(int)1le20f==" + (int)1le20f);
// A NaN converted to int yields zero:
System.out.printIn("(int)NaN==" + (int)Float.NaN);

// A double valuetoo large for float yieldsinfinity:
System.out.printin(" (float)-1el100==" + (float)-1el00);

// A double valuetoo small for f1oat underflows to zero:
System.out.printin("(float)le-50==" + (float)le-50);

}

Thistest program produces the following output:
(short)0x12345678==0x5678
(byte)255==-1
(int)1e20f==2147483647
(int)NaN==0
(float)-1e100==-Infinity
(float)le-50==0.0

5.1.4 Widening and Narrowing Primitive Conversions

The following conversion combines both widening and narrowing primitive con-
vesions:
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* byte to char

First, the byte is converted to an int viawidening primitive conversion, and then
theresulting int is converted to a char by narrowing primitive conversion.

5.1.5 Widening Reference Conversions

A widening reference conversion exists from any type S to any type T, provided S
isasubtype (84.10) of T.

Widening reference conversions never require a special action at run time and
therefore never throw an exception at run time. They consist smply in regarding a
reference as having some other type in a manner that can be proved correct at
compiletime.

See 88 for the detail ed specifications for classes, 89 for interfaces, and 810 for
arrays.

5.1.6 Narrowing Reference Conversions

The following conversions are called the narrowing reference conversions :

* From any reference type S to any reference type T, provided that S is a
proper supertype (84.10) of T. (Animportant specia caseisthat thereisanar-
rowing conversion from the class type Object to any other reference type.)

» From any class type C to any non-parameterized interface type K, provided
that C is not final and does not implement K.

* From any interface type J to any non-parameterized class type C that is not
final.

* From the interface types Cloneable and java.io.Serializable to any
array type T(].

» From any interface type J to any non-parameterized interface type K, pro-
vided that J is not a subinterface of K.

» From any array type SC[] to any array type TC[], provided that SC and TC
are reference types and there is a narrowing conversion from SC to TC.

Such conversions require atest at run time to find out whether the actual reference
valueis alegitimate value of the new type. If not, then aClassCastException is
thrown.

5.1.6
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5.1.7 Boxing Conversion

Boxing conversion converts values of primitive type to corresponding values of
reference type. Specificaly, the following 8 conversion are called the boxing con-
Versions:

From type boolean to type Boolean
From type byte to type Byte

From type char to type Character
From type short to type Short
Fromtypeint totype Integer
From type Tong to type Long

From type f1oat to type Float
From type doubTe to type Double

At run time, boxing conversion proceeds as follows:

If pisavalue of type boolean, then boxing conversion converts p into arefer-
ence r of class and type Boolean, such that r.booleanvalue() == p

If pisavalue of type byte, then boxing conversion converts p into areference
r of class and type Byte, such that r.bytevalue() == p

If pisavalue of type char, then boxing conversion converts p into areference
r of class and type Character, such that r.charvalue() == p

If pisavalue of type short, then boxing conversion converts p into a refer-
ence r of class and type Short, such that r.shortvalue() == p

If pisavalue of type int, then boxing conversion converts p into areference
r of class and type Integer, such that r.intvalue() == p

If pisavalue of type Tong, then boxing conversion converts p into areference
r of class and type Long, such that r.Tongvalue() == p

If pisavaue of type float then:

o If p is not NaN, then boxing conversion converts p into a reference r of
classand type Float, such that r.floatValue() evauatesto p

o Otherwise, boxing conversion converts p into areference r of classand type
Float such that r.isNaN() evaluatesto true.

If pisavalueof type double, then
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o If pisnot NaN, boxing conversion converts p into areference r of classand
type DoubTe, such that r.doublevValue() evaluatesto p

o Otherwise, boxing conversion converts p into areference r of classand type
Double such that r.1isNaN() evaluatesto true.

 If pisavaue of any other type, boxing conversion is equivalent to an identity
conversion (5.1.1).

If the value p being boxed is true, false, abyte, achar in the range \u0000 to
\u007f, or an int or short number between -128 and 127, then let r1 and r2 be
the results of any two boxing conversions of p. It is awaysthe case that r1 ==
r2.

DiscussioN

Ideally, boxing a given primitive value p, would always yield an identical reference. In prac-
tice, this may not be feasible using existing implementation techniques. The rules above
are a pragmatic compromise. The final clause above requires that certain common values
always be boxed into indistinguishable objects. The implementation may cache these, lazily
or eagerly.

For other values, this formulation disallows any assumptions about the identity of the
boxed values on the programmer's part. This would allow (but not require) sharing of some
or all of these references.

This ensures that in most common cases, the behavior will be the desired one, without
imposing an undue performance penalty, especially on small devices. Less memory-limited
implementations might, for example, cache all characters and shorts, as well as integers
and longs in the range of -32K - +32K.

A boxing conversion may result in an OutOfMemoryError if a new instance of
one of the wrapper classes (Boolean, Byte, Character, Short, Integer, Long,
Float, or Double) needsto be alocated and insufficient storage is available.

5.1.7
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5.1.8 Unboxing Conversion

Unboxing conversion converts values of reference type to corresponding values of
primitive type. Specifically, the following 8 conversion are called the unboxing
conversions:

From type Boolean to type boolean
From type Byte to type byte

From type Character to type char
From type Short to type short
Fromtype Integer totypeint
From type Long to type Tong

From type Float to type float
From type DoubTe to type double

At run time, unboxing conversion proceeds as follows:

If risareference of type Boolean, then unboxing conversion converts r into
r.booleanValue()

If ris areference of type Byte, then unboxing conversion converts r into
r.bytevalue()

If risareference of type Character, then unboxing conversion converts r
into r.charvalue()

If ris areference of type Short, then unboxing conversion converts r into
r.shortvValue()

If risareference of type Integer, then unboxing conversion converts r into
r.intValue()

If ris areference of type Long, then unboxing conversion converts r into
r.TongvValue()

If r is a reference of type Float, unboxing conversion converts r into
r.floatvalue()

If risareference of type Double, then unboxing conversion converts r into
r.doublevValue()

If risnul1, unboxing conversion throws aNul1PointerException
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A typeis said to be convertible to a numeric type if it isanumeric type, or itisa
reference type that may be converted to a numeric type by unboxing conversion. A
type is said to be convertible to an integral type if it is an integral type, or itisa
reference type that may be converted to an integral type by unboxing conversion.

5.1.9 Unchecked Conversion

Let G name a generic type declaration with n formal type parameters. Thereis
an unchecked conversion from the raw type (84.8) G to any parameterized type of
theform G<T7 ... Tp>. Useof an unchecked conversion generates a mandatory
compile-time warning (which can only be suppressed using the SuppressWarn-
ings annotation (89.6.1.5)) unless the parameterized type G is a parameterized
typein which al type arguments are unbounded wildcards (84.5.1).

DiscussIoN

Unchecked conversion is used to enable a smooth interoperation of legacy code, written
before the introduction of generic types, with libraries that have undergone a conversion to
use genericity (a process we call generification).

In such circumstances (most notably, clients of the collections framework in
java.util), legacy code uses raw types (e.g., Collection instead of Collec-
tion<String>). Expressions of raw types are passed as arguments to library methods
that use parameterized versions of those same types as the types of their corresponding
formal parameters.

Such calls cannot be shown to be statically safe under the type system using generics.
Rejecting such calls would invalidate large bodies of existing code, and prevent them from
using newer versions of the libraries. This in turn, would discourage library vendors from
taking advantage of genericity.

To prevent such an unwelcome turn of events, a raw type may be converted to an arbi-
trary invocation of the generic type declaration the raw type refers to. While the conversion
is unsound, it is tolerated as a concession to practicality. A warning (known as an
unchecked warning) is issued in such cases.

5.1.10 Capture Conversion

Let G name a generic type declaration with n formal type parameters A1
Apnwith corresponding bounds U7 ... U, Thereexistsacapture conversion from
G<T1 ... Tp>10G<S7 ... Sp>, where, for 1<i<n:
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 If T isawildcard type argument (84.5.1) of theform ? then S; isafresh type
variable whose upper bound is U; [A7 = Sq, ..., An := Sp] and whose lower
bound is the null type.

o If T; is awildcard type argument of the form ? extends B, then S;jisa
fresh type variable whose upper bound isglb(B;, Ui [A7:=S1, ..., Ap := Snl)
and whose lower bound isthe null type, where glb(V, ... ,Vp)isV: & ...
& V. Itisacompile-time error if for any two classes (not interfaces) v; and
Vi, Vi is not a subclass of Vjor viceversa

 If T; isawildcard type argument of the form ? super B;, then S;jisafresh
type variable whose upper bound is U;[A7 = S1, ..., Ay := S,] and whose
lower bound is B;.

e Otherwise, S; = T5.

Capture conversion on any type other than a parameterized type (84.5) acts as
an identity conversion (85.1.1). Capture conversions never require a special action
at run time and therefore never throw an exception at run time.

Capture conversion is not applied recursively.

DiscussIoN

Capture conversion is designed to make wildcards more useful. To understand the motiva-
tion, let’s begin by looking at the method java.util.Collections.reverse():

public static void reverse(List<?> 1list);

The method reverses the list provided as a parameter. It works for any type of list, and
so the use of the wildcard type List<?> as the type of the formal parameter is entirely
appropriate.

Now consider how one would implement reverse().

public static void reverse(List<?> 1list) { rev(list);}
private static <T> void rev(List<T> Tlist) {
List<T> tmp = new ArraylList<T>(Tlist);
for (int i = 0; i < Tist.size(Q); i++) {
Tist.set(i, tmp.get(list.size() - i - 1));
}
3

The implementation needs to copy the list, extract elements from the copy , and insert
them into the original. To do this in a type safe manner, we need to give a name, T, to the
element type of the incoming list. We do this in the private service method rev() .
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This requires us to pass the incoming argument list, of type List<?>, as an argument
to rev() . Note that in general, List<?> is a list of unknown type. It is not a subtype of
List<T>, for any type T. Allowing such a subtype relation would be unsound. Given the
method:

pubTlic static <T> void fill(List<T> 1, T obj)

a call
List<String> 1s = new ArrayList<String>Q);
List<?> 1 = 1s;
Collections.fil1(1, new Object()); // not really Tegal - but assume
// it was
String s = 1s.get(@); // ClassCastException - 1s contains Objects,
//not Strings.

would undermine the type system.

So, without some special dispensation, we can see that the call from reverse() to
rev() would be disallowed. If this were the case, the author of reverse() would be
forced to write its signature as:

public static <T> void reverse(List<T> Tist)

This is undesirable, as it exposes implementation information to the caller. Worse, the
designer of an APl might reason that the signature using a wildcard is what the callers of
the API require, and only later realize that a type safe implementation was precluded.

The call from reverse() to rev() is in fact harmless, but it cannot be justified on the
basis of a general subtyping relation between List<?> and List<T>. The call is harm-
less, because the incoming argument is doubtless a list of some type (albeit an unknown
one). If we can capture this unknown type in a type variable X, we can infer T to be X. That
is the essence of capture conversion. The specification of course must cope with complica-
tions, like non-trivial (and possibly recursively defined) upper or lower bounds, the pres-
ence of multiple arguments etc.

DiscussioN

Mathematically sophisticated readers will want to relate capture conversion to established
type theory. Readers unfamiliar with type theory can skip this discussion - or else study a
suitable text, such as Types and Programming Languages by Benjamin Pierce, and then
revisit this section.

Here then is a brief summary of the relationship of capture conversion to established
type theoretical notions.

Wildcard types are a restricted form of existential types. Capture conversion corre-
sponds loosely to an opening of a value of existential type. A capture conversion of an
expression e, can be thought of as an open of e in a scope that comprises the top-level
expression that encloses e.

5.1.10
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The classical open operation on existentials requires that the captured type variable
must not escape the opened expression. The open that corresponds to capture conversion
is always on a scope sufficiently large that the captured type variable can never be visible
outside that scope.

The advantage of this scheme is that there is no need for a close operation, as
defined in the paper On Variance-Based Subtyping for Parametric Types by Atsushi Iga-
rashi and Mirko Viroli, in the proceedings of the 16th European Conference on Object Ori-
ented Programming (ECOOP 2002).

For a formal account of wildcards, see Wild FJ by Mads Torgersen, Erik Ernst and
Christian Plesner Hansen, in the 12th workshop on Foundations of Object Oriented Pro-
gramming (FOOL 2005).

5.1.11 String Conversions

There is a string conversion to type String from every other type, including the
null type. See (85.4) for details of the string conversion context.

5.1.12 Forbidden Conversions

Any conversion that is not explicitly allowed is forbidden.

5.1.13 Value Set Conversion

Value set conversion is the process of mapping a floating-point value from one
value set to another without changing itstype.

Within an expression that is not FP-strict (815.4), value set conversion pro-
vides choices to an implementation of the Java programming language:

« If the value is an element of the float-extended-exponent value set, then the
implementation may, at its option, map the value to the nearest element of the
float value set. This conversion may result in overflow (in which case the
value is replaced by an infinity of the same sign) or underflow (in which case
the value may lose precision because it is replaced by a denormalized number
or zero of the same sign).

« If the valueis an element of the double-extended-exponent value set, then the
implementation may, at its option, map the value to the nearest element of the
double value set. This conversion may result in overflow (in which case the
value is replaced by an infinity of the same sign) or underflow (in which case
the value may lose precision because it is replaced by a denormalized number
or zero of the same sign).
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Within an FP-gtrict expression (815.4), value set conversion does not provide
any choices; every implementation must behave in the same way:

* If thevalueis of type float and is not an element of the float value set, then
the implementation must map the value to the nearest element of the float
value set. This conversion may result in overflow or underflow.

« If the value is of type double and is not an element of the double value set,
then the implementation must map the value to the nearest element of the dou-
ble value set. This conversion may result in overflow or underflow.

Within an FP-strict expression, mapping values from the fl oat-extended-exponent
value set or double-extended-exponent value set is necessary only when a method
is invoked whose declaration is not FP-strict and the implementation has chosen
to represent the result of the method invocation as an element of an extended-
exponent value set.

Whether in FP-strict code or code that is not FP-strict, value set conversion
aways leaves unchanged any value whose type is neither f1oat nor double.

5.2 Assignment Conversion

Assignment conversion occurs when the value of an expression is assigned
(815.26) to avariable: the type of the expression must be converted to the type of
the variable. Assignment contexts allow the use of one of the following:

* anidentity conversion (85.1.1)
» awidening primitive conversion (85.1.2)
» awidening reference conversion (85.1.5)

» aboxing conversion (85.1.7) optionally followed by a widening reference
conversion

* an unboxing conversion (85.1.8) optionally followed by a widening primitive
conversion.

If, after the conversions listed above have been applied, the resulting typeisa
raw type (84.8), unchecked conversion (85.1.9) may then be applied. It is a com-
pile time error if the chain of conversions contains two parameterized types that
are not not in the subtype relation.
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DiscussIioN

An example of such an illegal chain would be:

Integer, Comparable<Integer>, Comparable, Comparable<String>

The first three elements of the chain are related by widening reference conversion,
while the last entry is derived from its predecessor by unchecked conversion. However, this
dis not a valid assignment conversion, because the chain contains two parameterized
types, Comparable<Integer> and Comparable<String>, that are not subtypes.

In addition, if the expression is a constant expression (815.28) of type byte,
short, charorint:

» A narrowing primitive conversion may be used if the type of the variable is
byte, short, or char, and the value of the constant expression is represent-
able in the type of the variable.

» A narrowing primitive conversion followed by a boxing conversion may be
used if the type of the variableis:

o Byte and the value of the constant expression is representable in the type
byte.

o Short and the value of the constant expression is representable in the type
short.

o Character and the value of the constant expression is representable in the
type char.

If the type of the expression cannot be converted to the type of the variable by
a conversion permitted in an assignment context, then a compile-time error
OCCUrs.

If the type of the variable is float or double, then value set conversion is
applied to the value v that is the results of the type conversion:

» If visof type float and is an element of the float-extended-exponent value
set, then the implementation must map v to the nearest element of the float
value set. This conversion may result in overflow or underflow.

e If vis of type double and is an element of the double-extended-exponent
value set, then the implementation must map v to the nearest element of the
double value set. This conversion may result in overflow or underflow.
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If the type of an expression can be converted to the type of a variable by
assignment conversion, we say the expression (or its value) is assignable to the
variable or, equivalently, that the type of the expression is assignment compatible
with the type of the variable.

If, after the type conversions above have been applied, the resulting value is
an object which is not an instance of a subclass or subinterface of the erasure of
the type of the variable, then aClassCastException isthrown.

DiscussioN

This circumstance can only arise as a result of heap pollution (84.12.2.1).

In practice, implementations need only perfom casts when accessing a field or method
of an object of parametized type, when the erased type of the field, or the erased result
type of the method differ from their unerased type.

The only exceptions that an assignment conversion may cause are:
e AnOutOfMemoryError asaresult of aboxing conversion.
* A (ClassCastException inthe special circumstances indicated above.

* A NullPointerException as aresult of an unboxing conversion on a null
reference.

(Note, however, that an assignment may result in an exception in special cases
involving array elements or field access —see §10.10 and §15.26.1.)

The compile-time narrowing of constants means that code such as:

byte theAnswer = 42;
is alowed. Without the narrowing, the fact that the integer literal 42 hastype int
would mean that a cast to byte would be required:

byte theAnswer = (byte)42;// castispermitted but not required

The following test program contains examples of assignment conversion of
primitive values:

class Test {

public static void main(String[] args) {
short s = 12; // narrow 12 to short
float f = s; // widen short to float
System.out.printin("f=" + f);
char ¢ = "\u0123"';

Tong 1 = c; // widen char to Tong
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System.out.printin("1=0x" + Long.toString(1,16));

f = 1.23f;
double d = f; // widen float to double
System.out.printin("d=" + d);
}
}
It produces the following output:
f=12.0
1=0x123

d=1.2300000190734863

The following test, however, produces compile-time errors:
class Test {

public static void main(String[] args) {
short s = 123;
char c = s; // error: would require cast
s = C; // error: would require cast

}

because not al short vaues are char values, and neither are all char vaues
short vaues.

A value of the null type (the null reference is the only such value) may be
assigned to any reference type, resulting in anull reference of that type.

Here is a sample program illustrating assignments of references:
public class Point { int x, y; }

public class Point3D extends Point { int z; }

pubTlic interface Colorable {
void setColor(int color);

}

public class ColoredPoint extends Point implements Colorable

{

int color;
public void setColor(int color) { this.color = color; }

}

class Test {
public static void main(String[] args) {
// Assignments to variables of classtype:
Point p = new Point();
p = new Point3D(); // ok: because Point3Disa
// subclass of Point
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Point3D p3d = p; // error: will require a cast because a
// Point might not beaPoint3D
// (eventhoughitis, dynamically,
// inthisexample.)

// Assignments to variables of type Object:

Object o = p; // ok: any object to Object
int[] a = new int[3];
Object 02 = a; // ok:anarray toObject

// Assignments to variables of interface type:
ColoredPoint cp = new ColoredPoint();
Colorable c = cp; // ok: ColoredPoint implements
// Colorable
// Assignments to variables of array type:
byte[] b = new byte[4];
a=b; // error: these are not arrays
// of the same primitive type
Point3D[] p3da = new Point3D[3];
Point[] pa = p3da; // ok:sincewecanassigna
// Point3DtoaPoint
p3da = pa; // error: (cast needed) sinceaPoint
// can't be assigned to a Point3D

}

The following test program illustrates assignment conversions on reference
values, but failsto compile, as described in its comments. This example should be
compared to the preceding one.

pubTlic class Point { int x, y; }

public interface Colorable { void setColor(int color); }

public class ColoredPoint extends Point implements Colorable

{

int color;

public void setColor(int color) { this.color = color; }
}
class Test {

public static void main(String[] args) {

Point p = new Point(Q);

ColoredPoint cp = new ColoredPoint();

// Okay because ColoredPoint isasubclass of Point:

p = Cp;

// Okay because ColoredPoint implements Colorable:
Colorable c = cp;
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}

// Thefollowing cause compile-time errors because

// we cannot be sure they will succeed, depending on

// therun-timetype of p; arun-time check will be

// necessary for the needed narrowing conversion and

// must be indicated by including a cast:

cp = p; // p might be neither aColoredPoint
// nor asubclass of CoToredPoint

c =p; // p might not implement Colorable

Here is another example involving assignment of array objects:
class Point { int x, y; }

class ColoredPoint extends Point { int color; }

class Test {

}

public static void main(String[] args) {

long[] veclong = new long[100];

Object o = veclong; // okay

Long 1 = veclong; // compile-time error

short[] vecshort = veclong;// compile-timeerror

Point[] pvec = new Point[100];

ColoredPoint[] cpvec = new ColoredPoint[100];

pvec = cpvec; // oOkay

pvec[@] = new Point(); // okay at compiletime,
// but would throw an
// exception at run time

cpvec = pvec; // compile-time error

In this example:

» The value of veclong cannot be assigned to a Long variable, because Long
is aclass type other than Object. An array can be assigned only to a variable
of a compatible array type, or to a variable of type Object, Cloneable or
java.io.Serializable.

* The value of veclong cannot be assigned to vecshort, because they are
arrays of primitive type, and short and Tong are not the same primitive type.

* The value of cpvec can be assigned to pvec, because any reference that
could be the value of an expression of type ColoredPoint can be the value of
avariable of type Point. The subsegquent assignment of the new Point to a
component of pvec then would throw an ArrayStoreException (if the pro-
gram were otherwise corrected so that it could be compiled), because a
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ColoredPoint array can't have an instance of Point as the value of a com-
ponent.

» The value of pvec cannot be assigned to cpvec, because not every reference
that could be the value of an expression of type ColoredPoint can correctly
be the value of avariable of type Point. If the value of pvec at run time were
a reference to an instance of Point[], and the assignment to cpvec were
allowed, a simple reference to a component of cpvec, say, cpvec[0], could
return a Point, and a Point is not a ColoredPoint. Thus to alow such an
assignment would alow a violation of the type system. A cast may be used
(85.5, 815.16) to ensure that pvec referencesaColoredPoint[]:

cpvec = (ColoredPoint[])pvec;// okay, but may throw an
// exception at run time

5.3 Method I nvocation Conversion

Method invocation conversion is applied to each argument value in a method or
constructor invocation (88.8.7.1, 815.9, §15.12): the type of the argument expres-
sion must be converted to the type of the corresponding parameter. Method invo-
cation contexts alow the use of one of the following:

 anidentity conversion (85.1.1)
» awidening primitive conversion (85.1.2)
 awidening reference conversion (85.1.5)

» aboxing conversion (85.1.7) optionally followed by widening reference con-
version

* an unboxing conversion (85.1.8) optionally followed by a widening primitive
conversion.

If, after the conversions listed above have been applied, the resulting typeisa
raw type (84.8), an unchecked conversion (85.1.9) may then be applied. It is a
compile time error if the chain of conversions contains two parameterized types
that are not not in the subtype relation.

If the type of an argument expression is either float or double, then value
set conversion (85.1.13) is applied after the type conversion:

« If an argument value of type float is an element of the float-extended-expo-
nent value set, then the implementation must map the value to the nearest ele-
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ment of the float value set. This conversion may result in overflow or
underflow.

* If an argument value of type double is an element of the double-extended-
exponent value set, then the implementation must map the value to the nearest
element of the double value set. This conversion may result in overflow or
underflow.

If, after the type conversions above have been applied, the resulting value is
an object which is not an instance of a subclass or subinterface of the erasure of
the corresponding formal parameter type, then aClassCastException isthrown.

DiscussioN

This circumstance can only arise as a result of heap pollution (84.12.2.1).

Method invocation conversions specifically do not include the implicit nar-
rowing of integer constants which is part of assignment conversion (85.2). The
designers of the Java programming language felt that including these implicit nar-
rowing conversions would add additional complexity to the overloaded method
matching resolution process (§15.12.2).

Thus, the example:

class Test {

static int m(byte a, int b) { return a+b; }
static int m(short a, short b) { return a-b; }

public static void main(String[] args) {
System.out.printin(m(12, 2));// compile-time error
3

}

causes a compile-time error because the integer literals 12 and 2 havetype int, so
neither method m matches under the rules of (815.12.2). A language that included
implicit narrowing of integer constants would need additional rules to resolve
cases like this example.
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5.4 String Conversion

String conversion applies only to the operands of the binary + operator when one
of theargumentsisaString. Inthissingle special case, the other argument to the
+ is converted to a String, and a new String which is the concatenation of the
two strings is the result of the +. String conversion is specified in detail within the
description of the string concatenation + operator (815.18.1).

5.5 Casting Conversion

Casting conversion is applied to the operand of a cast operator (§15.16): the type
of the operand expression must be converted to the type explicitly named by the
cast operator. Casting contexts allow the use of:

 an identity conversion (85.1.1)
» awidening primitive conversion (85.1.2)
* anarrowing primitive conversion (85.1.3)

» a widening reference conversion (85.1.5) optionally followed by an
unchecked conversion (85.1.9)

e a narrowing reference conversion (85.1.6) optionally followed by an
unchecked conversion

 aboxing conversion (85.1.7)

* an unboxing conversion (85.1.8).

Thus casting conversions are more inclusive than assignment or method invo-
cation conversions. a cast can do any permitted conversion other than a string con-
version or a capture conversion (85.1.10).

Value set conversion (85.1.13) is applied after the type conversion.

Some casts can be proven incorrect at compile time; such casts result in a
compile-time error.

A value of a primitive type can be cast to another primitive type by identity
conversion, if the types are the same, or by a widening primitive conversion or a
narrowing primitive conversion.
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A value of a primitive type can be cast to areference type by boxing conver-
sion (85.1.7).
A value of areference type can be cast to a primitive type by unboxing con-
version (85.1.8).

The remaining cases involve conversion of a compile-time reference type S
(source) to a compile-time reference type T (target).

A cast from atype S to atype Tis statically known to be correct if and only if
S <: T(84.10).

A cast from atype S to a parameterized type (84.5) T is unchecked unless at
least one of the following conditions hold:

e S T.
« All of the type arguments (84.5.1) of T are unbounded wildcards.

e T<: Sand Shasno subtype X # T , such that the erasures (84.6) of Xand T are
the same.

A cast to atype variable (84.4) is always unchecked.

An unchecked cast from S to T is completely unchecked if the cast from |S] to
|7 is statically known to be correct. Otherwise it is partially unchecked. An
unchecked cast causes an unchecked warning to occur (unless it is suppressed
using the SuppressWarnings annotation (89.6.1.5)).

A cast is achecked cast if it is not statically known to be correct and it is not
unchecked.

The detailed rules for compile-time legality of a casting conversion of avaue
of compile-time reference type S to a compile-time reference type T are as fol-
lows:

e If Sisaclasstype:

o If Tisaclasstype, then either |S| <: | T|, or | T| <: |S|; otherwise a
compile-time error occurs. Furthermore, if there exists a supertype X of T,
and a supertype Y of S, such that both X and Y are provably distinct parame-
terized types (84.5), and that the erasures of X and Y are the same, a com-
pile-time error occurs.

o If Tisaninterfacetype:

o If Sisnot afinal class (88.1.1), then, if there exists a supertype X of T,
and a supertype Y of S, such that both X and Y are provably distinct param-
eterized types, and that the erasures of X and Y are the same, a compile-
time error occurs. Otherwise, the cast is aways legal at compile time
(because even if S does not implement 7, a subclass of S might).
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v If Sisafinal class (88.1.1), then S must implement T, or a compile-
time error occurs.

o If T isatype variable, then this algorithm is applied recursively, using the
upper bound of Tin placeof T.

o If T isan array type, then S must be the class Object, or a compile-time
error occurs.

 If Sisaninterfacetype:

o If T is an array type, then T must implement S, or a compile-time error
OCCuUrs.

o If Tisa typethatisnot final (88.1.1), then if there exists a supertype X of
T, and asupertype Y of S, such that both X and Y are provably distinct param-
eterized types, and that the erasures of X and Y are the same, a compile-time
error occurs. Otherwise, the cast is always legal at compile time (because
evenif T does not implement S, a subclass of T might).

o If Tisa typethat is final, then:

o If Sisnot a parameterized type or a raw type, then T must implement S,
and the cast is statically known to be correct, or a compile-time error
occurs.

o Otherwise, S is either a parameterized type that is an invocation of some
generic type declaration G, or a raw type corresponding to a generic type
declaration G. Then there must exist a supertype X of T, such that X is an
invocation of G, or a compile-time error occurs. Furthermore, if S and X
are provably distinct parameterized types then a compile-time error
OCCUrs.

» If S isatype variable, then this algorithm is applied recursively, using the
upper bound of Sin place of S.
» If Sisanarray type SC[1, that is, an array of components of type SC:

o If Tisaclasstype, thenif Tisnot Object, then acompile-time error occurs
(because Object isthe only class type to which arrays can be assigned).

o If T is an interface type, then a compile-time error occurs unless T is the
type java.io.Serializable or the type Cloneable, the only interfaces
implemented by arrays.

o If Tisatype variable, then:
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o If the upper bound of TisObject or thetype java.io.Serializable or
the type Cloneable, or atype variable that S could legally be cast to by
recursively applying theserules, then the cast islegal (though unchecked).

o If the upper bound of T is an array type TC[], then a compile-time error
occurs unless the type SC[] can be cast to TC[] by arecursive applica-
tion of these compile-time rules for casting.

o Otherwise, a compile-time error occurs.

o If Tisanarray type TC[], that is, an array of components of type TC, thena
compile-time error occurs unless one of the following is true:
o TC and SC are the same primitive type.

o TC and SC are reference types and type SC can be cast to TC by arecursive
application of these compile-time rules for casting.

See 88 for the specification of classes, 89 for interfaces, and 810 for arrays.

If acast to areference typeisnot acompile-time error, there are several cases:

The cast is statically known to be correct. No run time action is performed for
such acast.

The cast is a completely unchecked cast. No run time action is performed for
such acast.

The cast is apartialy unchecked cast. Such a cast requires a run-time validity
check. The check is performed as if the cast had been a checked cast between
|S] and | 7], as described bel ow.

The cast is a checked cast. Such a cast requires a run-time validity check. If
thevalue at run timeisnu11, then the cast is allowed. Otherwise, let R be the
class of the object referred to by the run-time reference value, and let T be the
erasure of the type named in the cast operator. A cast conversion must check,
at run time, that the class R is assignment compatible with the type T. (Note
that R cannot be an interface when these rules are first applied for any given
cast, but R may be an interface if the rules are applied recursively because the
run-time reference value may refer to an array whose element type is an inter-
face type.) The algorithm for performing the check is shown here:

o If Risan ordinary class (not an array class):

o If Tisaclasstype, then R must be either the same class (§84.3.4) as T or a
subclass of T, or arun-time exception is thrown.
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u}

u}

If Tisan interface type, then R must implement (88.1.5) interface T, or a
run-time exception is thrown.

If Tisan array type, then arun-time exception is thrown.

o If Risaninterface:

u]

u}

u}

If Tisaclasstype, then T must be Object (84.3.2), or arun-time excep-
tion is thrown.

If Tisaninterfacetype, then R must be either the same interfaceas T or a
subinterface of T, or arun-time exception is thrown.

If Tisan array type, then arun-time exception is thrown.

If R isaclass representing an array type RC[]—that is, an array of compo-
nents of type RC:

u}

If Tisaclasstype, then T must be Object (84.3.2), or arun-time excep-
tion is thrown.

If T isan interface type, then a run-time exception is thrown unless T is
thetype java.io.Serializable or the type CloneabTe, the only inter-
faces implemented by arrays (this case could dip past the compile-time
checking if, for example, areference to an array were stored in avariable
of type Object).

If Tisanarray type TC[1], that is, an array of components of type TC, then
arun-time exception is thrown unless one of the following istrue:

o TC and RC are the same primitive type.

o TC and RC are reference types and type RC can be cast to TC by arecur-
sive application of these run-time rules for casting.

If arun-time exception isthrown, itisaClassCastException.

Here are some examples of casting conversions of reference types, similar to
the example in §85.2:

public class Point { int x, y; }

pubTlic interface Colorable { void setColor(int color); }

public class ColoredPoint extends Point implements Colorable

{

}

int color;
public void setColor(int color) { this.color = color; }

final class EndPoint extends Point { }
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class Test {
public static void main(String[] args) {

Point p = new Point();

ColoredPoint cp = new ColoredPoint();

Colorable c;

// Thefollowing may cause errors at run time because

// we cannot be sure they will succeed; this possibility

// 1ssuggested by the casts:

cp = (ColoredPoint)p;// p might not reference an
// objectwhichisaColoredPoint
// or asubclass of ColoredPoint

c = (Colorable)p; // p might not beColorable

// Thefollowing are incorrect at compile time because

// they can never succeed as explained in the text:
Long 1 = (Long)p; // compile-time error #1
EndPoint e = new EndPoint();

c = (Colorable)e; // compile-time error #2

}

Here the first compile-time error occurs because the class types Long and Point
are unrelated (that is, they are not the same, and neither is a subclass of the other),
S0 a cast between them will alwaysfail.

The second compile-time error occurs because a variable of type EndPoint
can never reference a value that implements the interface Colorable. This is
because EndPoint isafinal type, and avariable of a final type aways holds a
value of the same run-time type as its compile-time type. Therefore, the run-time
type of variable e must be exactly the type EndPoint, and type EndPoint does
not implement ColorabTe.

Here is an example involving arrays (810):

class Point {

int x, y;

Point(int x, int y) { this.x = x; this.y = y; }

public String toString() { return "("+x+","+y+")"; }
}

pubTlic interface Colorable { void setColor(int color); }

public class ColoredPoint extends Point implements Colorable

{

int color;
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ColoredPoint(int x, int y, int color) {
super(x, y); setColor(color);

}

public void setColor(int color) { this.color = color; }

pubTlic String toString() {
return super.toString() + "@" + color;
}

}
class Test {
public static void main(String[] args) {

Point[] pa = new ColoredPoint[4];

pa[@] = new ColoredPoint(2, 2, 12);

pa[l] = new ColoredPoint(4, 5, 24);

ColoredPoint[] cpa = (ColoredPoint[])pa;

System.out.print("cpa: {");

for (int i = 0; i < cpa.length; i++)
System.out.print((i == 2", + cpalil);

System.out.printin(" }'");

}

This example compiles without errors and produces the output:
cpa: { (2,2)@12, (4,5)@24, null, null }

The following example uses casts to compile, but it throws exceptions at run
time, because the types are incompatibl e:

public class Point { int x, y; }
pubTlic interface Colorable { void setColor(int color); }
pubTlic class ColoredPoint extends Point implements Colorable
{

int color;

pubTlic void setColor(int color) { this.color = color; }
}
class Test {

public static void main(String[] args) {

Point[] pa = new Point[100];

// Thefollowing line will throw aClassCastException:
ColoredPoint[] cpa = (ColoredPoint[])pa;

System.out.printin(cpal0]);
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int[] shortvec = new int[2];

Object o = shortvec;

// Thefollowing line will throw aClassCastException:
Colorable c = (Colorable)o;

c.setColor(0);

5.6 Numeric Promotions

Numeric promotion is applied to the operands of an arithmetic operator. Numeric
promotion contexts allow the use of an identity conversion (85.1.1) a widening
primitive conversion (85.1.2), or an unboxing cornversion (85.1.8).

Numeric promotions are used to convert the operands of a numeric operator to
a common type so that an operation can be performed. The two kinds of numeric
promotion are unary numeric promotion (85.6.1) and binary numeric promotion
(85.6.2).

5.6.1 Unary Numeric Promotion

Some operators apply unary numeric promotion to a single operand, which must
produce a value of a numeric type:

* If the operand is of compile-time type Byte, Short, Character, or Integer
it is subjected to unboxing conversion. The result is then promoted to a value
of type int by awidening conversion (85.1.2) or an identity conversion.

» Otherwise, if the operand is of compile-time type Long, Float, or DoubTe it
is subjected to unboxing conversion.

e Otherwise, if the operand is of compile-time type byte, short, or char,
unary numeric promotion promotes it to a value of type int by a widening
conversion (85.1.2).

» Otherwise, aunary numeric operand remains asis and is not converted.
In any case, value set conversion (85.1.13) is then applied.
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Unary numeric promotion is performed on expressions in the following situa-

tions:

» Each dimension expression in an array creation expression (§15.10)

» Theindex expression in an array access expression (8§15.13)

» The operand of aunary plus operator + (§15.15.3)

» The operand of aunary minus operator - (815.15.4)

» The operand of a bitwise complement operator ~ (815.15.5)

 Each operand, separately, of ashift operator >>, >>>, or << (815.19); therefore
a long shift distance (right operand) does not promote the value being shifted
(left operand) to Tong

Here isatest program that includes examples of unary numeric promotion:
class Test {

public static void main(String[] args) {

byte b = 2;
int a[] = new int[b]; // dimension expression promotion
char c = "\u@ool';

alc] = 1; // index expression promotion
a[0] = -c; // unary - promotion
System.out.println("a: " + a[@] + "," + a[l1l]);
b =-1;

int i = ~b; // bitwise complement promotion

System.out.printin("~0x" + Integer.toHexString(b)
+ "==0x" + Integer.toHexString(i));
i=b << 4L; // shift promotion (left operand)
System.out.printIn("0x" + Integer.toHexString(b)
+ "<<4L==0x" + Integer.toHexString(i));

Thistest program produces the output:

a:

-1,1

~OxFFFFFFFf==0x0
OxFFFFFFffe<dL==0xFFFffffo

5.6.1
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5.6.2 Binary Numeric Promotion

When an operator applies binary numeric promotion to apair of operands, each of
which must denote a value that is convertible to a numeric type, the following
rules apply, in order, using widening conversion (85.1.2) to convert operands as
necessary:

« If any of the operands is of a reference type, unboxing conversion (85.1.8) is
performed. Then:

* If either operand is of type doube, the other is converted to doubTe.

» Otherwise, if either operand is of type f1oat, the other is converted to float.
» Otherwise, if either operand is of type Tong, the other is converted to Tong.

» Otherwise, both operands are converted to type int.

After the type conversion, if any, value set conversion (85.1.13) is applied to each
operand.
Binary numeric promotion is performed on the operands of certain operators:

* The multiplicative operators *, / and % (815.17)

 The addition and subtraction operators for numeric types + and - (815.18.2)
e The numerical comparison operators <, <=, >, and >= (815.20.1)

» The numerical equality operators == and != (815.21.1)

» Theinteger bitwise operators &, A, and | (815.22.1)

* In certain cases, the conditional operator ? : (815.25)

An example of binary numeric promotion appears above in 85.1. Here is
another:

class Test {
public static void main(String[] args) {
int i = 0;
float f = 1.0f;
double d = 2.0;

// Firstint*float ispromoted to float*float, then

// float==double ispromoted to double==doub1e:
if Gk F == d)
System.out.printin("oops");
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// A char&byte ispromoted to int&int:
byte b = 0x1f;
char c 'G';
int control = c & b;
System.out.printin(Integer.toHexString(control));

// Heredint:float ispromotedto float:float:
f=(b==0) ? i : 4.0f;
System.out.printin(1.0/f);

}

which produces the output:
7
0.25

The example converts the ASCII character G to the ASCII control-G (BEL), by
masking off all but the low 5 bits of the character. The 7 is the numeric value of
this control character.

5.6.2
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CHAPTER 6

Names

NAM ES are used to refer to entities declared in a program. A declared entity
(86.1) isapackage, classtype (normal or enum), interface type (normal or annota-
tion type), member (class, interface, field, or method) of a reference type, type
parameter (of a class, interface, method or constructor) (84.4), parameter (to a
method, constructor, or exception handler), or local variable.

Names in programs are either simple, consisting of a single identifier, or
qualified, consisting of a sequence of identifiers separated by “.” tokens (86.2).

Every declaration that introduces a name has a scope (86.3), which is the part
of the program text within which the declared entity can be referred to by asimple
name.

Packages and reference types (that is, class types, interface types, and array
types) have members (86.4). A member can be referred to using a qualified name
N.x, where N is a simple or qualified name and x is an identifier. If N names a
package, then x is a member of that package, which is either a class or interface
type or asubpackage. If N names areference type or avariable of areference type,
then x names a member of that type, which iseither aclass, an interface, afield, or
amethod.

In determining the meaning of a name (86.5), the context of the occurrenceis
used to disambiguate among packages, types, variables, and methods with the
same name.

Access control (86.6) can be specified in a class, interface, method, or field
declaration to control when access to a member is allowed. Access is a different
concept from scope; access specifies the part of the program text within which the
declared entity can be referred to by a qualified name, a field access expression

113



6.1

114

Declarations NAMES

(815.11), or a method invocation expression (815.12) in which the method is not
specified by a simple name. The default access is that a member can be accessed
anywhere within the package that contains its declaration; other possibilities are
public, protected, and private.

Fully qualified and canonical names (86.7) and naming conventions (86.8) are
also discussed in this chapter.

The name of afield, parameter, or local variable may be used as an expression
(815.14.2). The name of a method may appear in an expression only as part of a
method invocation expression (815.12). The name of aclass or interface type may
appear in an expression only as part of aclass literal (815.8.2), a qualified this
expression (815.8.4), a class instance creation expression (815.9), an array cre-
ation expression (815.10), a cast expression (815.16), an instanceof expression
(815.20.2), an enum constant (88.9), or as part of a qualified name for a field or
method. The name of a package may appear in an expression only as part of a
qualified name for a class or interface type.

6.1 Declarations

A declaration introduces an entity into a program and includes an identifier (83.8)
that can be used in anameto refer to this entity. A declared entity is one of thefol-
lowing:

A package, declared in a package declaration (87.4)

« An imported type, declared in a single-type-import declaration (87.5.1) or a
type-import-on-demand declaration (§7.5.2)

A class, declared in a class type declaration (88.1)

An interface, declared in an interface type declaration (89.1)

» A type variable (84.4), declared as aformal type parameter of a generic class
(88.1.2), interface (89.1.2), method (88.4.4) or constructor (88.8.1).

» A member of areference type (88.2, 8§9.2, §10.7), one of the following:
o A member class (88.5, §9.5).
o A member interface (88.5, §9.5).
o an enum constant (88.9).
o A field, one of the following:
o A field declared in aclass type (88.3)
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o A constant field declared in an interface type (89.3)

o The field Tength, which is implicitly a member of every array type
(810.7)

o A method, one of the following:
o A method (abstract or otherwise) declared in aclass type (88.4)
o A method (always abstract) declared in an interface type (§89.4)
» A parameter, one of the following:
o A parameter of amethod or constructor of a class (88.4.1, §88.8.1)
o A parameter of an abstract method of an interface (89.4)

o A parameter of an exception handler declared in a catch clause of a try
statement (814.20)

A local variable, one of the following:
o A local variable declared in ablock (814.4)
o A local variable declared in a for statement (814.14)

Constructors (88.8) are also introduced by declarations, but use the name of the
classin which they are declared rather than introducing a new name.

6.2 Namesand ldentifiers

A nameis used to refer to an entity declared in a program.

There are two forms of names: simple names and qualified names. A simple
name is asingle identifier. A qualified name consists of a name, a*“.” token, and
an identifier.

In determining the meaning of a name (86.5), the context in which the name
appears is taken into account. The rules of 86.5 distinguish among contexts where
a name must denote (refer to) a package (86.5.3), a type (86.5.5), a variable or
value in an expression (86.5.6), or amethod (86.5.7).

Not all identifiersin programs are a part of aname. Identifiersare also used in

the following situations:

6.2
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* In declarations (86.1), where an identifier may occur to specify the name by
which the declared entity will be known

* In field access expressions (815.11), where an identifier occurs after a “.”
token to indicate a member of an object that is the value of an expression or

the keyword super that appears before the “.” token

* In some method invocation expressions (815.12), where an identifier may
occur after a “.” token and before a “ (" token to indicate a method to be
invoked for an object that is the value of an expression or the keyword super
that appears before the “.” token

* In qualified class instance creation expressions (815.9), where an identifier
occurs immediately to the right of the leftmost new token to indicate a type
that must be a member of the compile-time type of the primary expression

w o

preceding the “.” preceding the leftmost new token.

» Aslabelsin labeled statements (814.7) and in break (814.15) and continue
(814.16) statements that refer to statement labels.

In the example:
class Test {

public static void main(String[] args) {
Class ¢ = System.out.getClass();
System.out.printin(c.toString().length() +
args[0].length() + args.length);
}
}

the identifiers Test, main, and the first occurrences of args and c are not names;
rather, they are used in declarations to specify the names of the declared entities.
The names String, Class, System.out.getClass, System.out.println,
c.toString, args, and args.length appear in the example. The first occur-
rence of Tength isnot aname, but rather an identifier appearing in amethod invo-
cation expression (815.12). The second occurrence of Tength is not a name, but
rather an identifier appearing in amethod invocation expression (815.12).

The identifiers used in labeled statements and their associated break and
continue statements are completely separate from those used in declarations.
Thus, the following code is valid:

class TestString {

char[] value;
int offset, count;

int indexOf(TestString str, int fromIndex) {
char[] vl = value, v2 = str.value;
int max = offset + (count - str.count);
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int start = offset + ((fromIndex < @) ? @ : fromIndex);

for (int i = start; i <= max; i++)

{
int n = str.count, j = i, k = str.offset;
while (n-- = 0) {
if (vi[j++] !'= v2[k++]1)
continue 1i;
}
return i - offset;
}
return -1;

}
}

This code was taken from a version of the class String and its method indexOf,
where the label was originally called test. Changing the label to have the same
name as the local variable i does not obscure (86.3.2) the label in the scope of the
declaration of i. The identifier max could also have been used as the statement
|abel; the label would not obscure the local variable max within the labeled state-
ment.

6.3 Scope of a Declaration

The scope of a declaration is the region of the program within which the entity
declared by the declaration can be referred to using a simple name (provided it is
visible (86.3.1)). A declaration is said to bein scope at a particular point in apro-
gram if and only if the declaration’s scope includes that point.

The scoping rules for various constructs are given in the sections that describe
those constructs. For convenience, the rules are repeated here:

The scope of the declaration of an observable (87.4.3) top level package is all
observable compilation units (87.3). The declaration of a package that is not
observable is never in scope. Subpackage declarations are never in scope.

The scope of atype imported by asingle-type-import declaration (§87.5.1) or a
type-import-on-demand declaration (§7.5.2) isal the class and interface type dec-
larations (87.6) in the compilation unit in which the import declaration appears.

The scope of a member imported by a single-static-import declaration
(87.5.3) or a static-import-on-demand declaration (87.5.4) is al the class and
interface type declarations (87.6) in the compilation unit in which the import dec-
laration appears.

The scope of atop level typeis al type declarations in the package in which
the top level typeis declared.

6.3
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The scope of a declaration of a member m declared in or inherited by a class
type Cisthe entire body of C, including any nested type declarations.

The scope of the declaration of a member m declared in or inherited by an
interface type I isthe entire body of I, including any nested type declarations.

The scope of a parameter of a method (88.4.1) or constructor (88.8.1) is the
entire body of the method or constructor.

The scope of an interface's type parameter is the entire declaration of the
interface including the type parameter section itself. Therefore, type parameters
can appear as parts of their own bounds, or as bounds of other type parameters
declared in the same section.

The scope of a method's type parameter is the entire declaration of the
method, including the type parameter section itself. Therefore, type parameters
can appear as parts of their own bounds, or as bounds of other type parameters
declared in the same section.

The scope of a constructor’s type parameter is the entire declaration of the
constructor, including the type parameter section itself. Therefore, type parame-
ters can appear as parts of their own bounds, or as bounds of other type parameters
declared in the same section.

The scope of alocal variable declaration in a block (814.4.2) isthe rest of the
block in which the declaration appears, starting with itsown initializer (§14.4) and
including any further declaratorsto theright in the local variable declaration state-
ment.

The scope of alocal classimmediately enclosed by ablock (814.2) isthe rest
of theimmediately enclosing block, including its own class declaration. The scope
of a local class immediately enclosed by in a switch block statement group
(814.11)is the rest of the immediately enclosing switch block statement group,
including its own class declaration.

The scope of alocal variable declared in the Forlnit part of abasic for state-
ment (814.14) includes al of the following:

 Itsowninitializer
» Any further declarators to the right in the Forlnit part of the for statement
» The Expression and ForUpdate parts of the for statement
* The contained Satement
The scope of a local variable declared in the Formal Parameter part of an
enhanced for statement (814.14) is the contained Satement

The scope of a parameter of an exception handler that is declared in a catch
clause of a try statement (814.20) is the entire block associated with the catch.
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These rules imply that declarations of class and interface types need not
appear before uses of the types.
In the example:
package points;
class Point {
int x, y;
PointList Tist;
Point next;
}
class PointList {

Point first;
}
theuse of PointList inclass Point iscorrect, because the scope of the class

declaration PointList includes both class Point and class PointList, as well
as any other type declarations in other compilation units of package points.

6.3.1 Shadowing Declarations

Some declarations may be shadowed in part of their scope by another declaration
of the same name, in which case a simple name cannot be used to refer to the
declared entity.

A declaration d of atype named n shadows the declarations of any other types
named n that are in scope at the point where d occurs throughout the scope of d.

A declaration d of a field, local variable, method parameter, constructor
parameter or exception handler parameter named n shadows the declarations of
any other fields, local variables, method parameters, constructor parameters or
exception handler parameters named n that are in scope at the point where d
occurs throughout the scope of d.

A declaration d of a method named n shadows the declarations of any other
methods named n that are in an enclosing scope at the point where d occurs
throughout the scope of d.

A package declaration never shadows any other declaration.

A single-type-import declaration d in a compilation unit ¢ of package p that
imports atype named n shadows the declarations of:

* any top level type named n declared in another compilation unit of p.
* any type named n imported by a type-import-on-demand declarationin c.

« any type named n imported by a static-import-on-demand declaration in c.

throughout c.

6.3.1
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A single-static-import declaration d in a compilation unit ¢ of package p that
imports a field named n shadows the declaration of any static field named n
imported by a static-import-on-demand declaration in ¢, throughout c.

A single-static-import declaration d in a compilation unit ¢ of package p that
imports a method named n with signature s shadows the declaration of any static
method named n with signature s imported by a static-import-on-demand decla-
ration in ¢, throughout c.

A single-static-import declaration d in a compilation unit ¢ of package p that
imports a type named n shadows the declarations of:

* any static type named n imported by a static-import-on-demand declaration in
C.

* any top level type (87.6) named n declared in another compilation unit (87.3)
of p.

 any type named n imported by a type-import-on-demand declaration (87.5.2)
inc.

throughout c.

A type-import-on-demand declaration never causes any other declaration to
be shadowed.

A static-import-on-demand declaration never causes any other declaration to
be shadowed.

A declaration dis said to be visible at point p in a programif the scope of d
includes p, and d is not shadowed by any other declaration at p. When the pro-
gram point we are discussing is clear from context, we will often simply say that a
declarationisvisible.

Note that shadowing is distinct from hiding (88.3, §8.4.8.2, §8.5, §9.3, 89.5).
Hiding, in the technical sense defined in this specification, applies only to mem-
bers which would otherwise be inherited but are not because of a declaration in a
subclass. Shadowing is also distinct from obscuring (86.3.2).

Here is an example of shadowing of afield declaration by alocal variable dec-
laration:

class Test {

static int x = 1;

public static void main(String[] args) {
int x = 0;
System.out.print("x=" + x);
System.out.printin(", Test.x=" + Test.x);

}
}

produces the output:
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x=0, Test.x=1
This example declares:

eaclassTest

eaclass(static) variable x that is amember of the class Test
» aclass method main that isamember of the class Test

* aparameter args of the main method.

* alocal variable x of the main method

Since the scope of a class variable includes the entire body of the class (88.2)
the class variable x would normally be available throughout the entire body of the
method main. In this example, however, the class variable x is shadowed within
the body of the method main by the declaration of the local variable x.

A local variable has as its scope the rest of the block in which it is declared
(814.4.2); in this case this is the rest of the body of the main method, namely its
initializer “@” and the invocations of print and printin.

This means that:

* The expression “x” in the invocation of print refers to (denotes) the value of
thelocal variable x.

* The invocation of print1n uses a qualified name (86.6) Test.x, which uses
the class type name Test to access the class variable x, because the declara-
tion of Test.x is shadowed at this point and cannot be referred to by its sim-
ple name.

The following example illustrates the shadowing of one type declaration by
another:
import java.util.*;
class Vector {
int val[]l] = {1, 2 };

class Test {
public static void main(String[] args) {
Vector v = new Vector();
System.out.println(v.val[0]);

}
}
compiles and prints:
1

using the class Vector declared here in preference to the generic (88.1.2) class
java.util.Vector that might be imported on demand.
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6.3.2 Obscured Declarations

A simple name may occur in contexts where it may potentially be interpreted as
the name of a variable, atype or a package. In these situations, the rules of 86.5
specify that a variable will be chosen in preference to atype, and that a type will
be chosen in preference to a package. Thus, it is may sometimes be impossible to
refer to avisible type or package declaration viaits simple name. We say that such
adeclaration is obscured.

Obscuring is distinct from shadowing (86.3.1) and hiding (88.3, §8.4.8.2,
88.5, 89.3, §9.5). The naming conventions of 86.8 help reduce obscuring.

6.4 Membersand Inheritance

Packages and reference types have members.

This section provides an overview of the members of packages and reference
types here, as background for the discussion of qualified names and the determi-
nation of the meaning of names. For a complete description of membership, see
84.4,84.5.2,84.8,84.9, 87.1, 88.2, 89.2, and §10.7.

6.4.1 The Membersof Type Variables, Parameterized Types, Raw Types
and Intersection Types

The members of atype variable were specified in 8§4.4, the members of a parame-
terized typein 84.5.2, those of araw type in 8§4.8, and the members of an intersec-
tion type were specified in §4.9.

6.4.2 The Membersof a Package

The members of a package (87) are specified in 87.1. For convenience, we repeat
that specification here:

The members of a package are its subpackages and al the top level (87.6)
class types (88) and top level interface types (89) declared in all the compilation
units (87.3) of the package.

In general, the subpackages of a package are determined by the host system
(87.2). However, the package java always includes the subpackages 1ang and io
and may include other subpackages. No two distinct members of the same pack-
age may have the same simple name (87.1), but members of different packages
may have the same simple name.
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For example, it is possible to declare a package:

package vector;

public class Vector { Object[] vec; }
that has as a member a publ1ic class named Vector, even though the package
java.util also declares aclass named Vector. These two class types are differ-
ent, reflected by the fact that they have different fully qualified names (86.7). The
fully qualified name of this example Vector is vector.Vector, whereas
java.util.Vector is the fully qualified name of the Vector class usualy
included in the Java platform. Because the package vector contains a class
named Vector, it cannot also have a subpackage named Vector.

6.4.3 The Membersof aClass Type

The members of aclasstype (88.2) are classes (88.5, §9.5), interfaces (88.5, §9.5),
fields (88.3, §9.3, §10.7), and methods (88.4, §9.4). Members are either declared
in the type, or inherited because they are accessible members of a superclass or
superinterface which are neither private nor hidden nor overridden (88.4.8).

The members of aclass type are all of the following:

» Members inherited from its direct superclass (88.1.4), if it has one (the class
Object has no direct superclass)

» Members inherited from any direct superinterfaces (88.1.5)

Members declared in the body of the class (§8.1.6)
Constructors (88.8) and type variables (84.4) are not members.

There is no restriction against afield and a method of a class type having the
same simple name. Likewise, there is no restriction against a member class or
member interface of a class type having the same simple name as a field or
method of that class type.

A class may have two or more fields with the same simple name if they are
declared in different interfaces and inherited. An attempt to refer to any of the
fields by its simple name results in a compile-time error (86.5.7.2, 88.2).

In the example:

interface Colors {
int WHITE = @, BLACK = 1;
}

interface Separates {
int CYAN = 0, MAGENTA = 1, YELLOW = 2, BLACK = 3;
}

6.4.3
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class Test implements Colors, Separates {

public static void main(String[] args) {
System.out.print1n(BLACK); // compile-time error: ambiguous
}

}
the name BLACK in the method main is ambiguous, because class Test has two
members named BLACK, one inherited from CoTlors and one from Separates.

A classtype may have two or more methods with the same simple name if the
methods have signatures that are not override-equivalent (88.4.2). Such a method
member nameis said to be overloaded.

A class type may contain a declaration for a method with the same name and
the same signature as a method that would otherwise be inherited from a super-
class or superinterface. In this case, the method of the superclass or superinterface
is not inherited. If the method not inherited is abstract, then the new declaration
issaid to implement it; if the method not inherited is not abstract, then the new
declaration is said to overrideit.

In the example:

class Point {

float x, y;
void move(int dx, int dy) { x += dx; y += dy; }
void move(float dx, float dy) { x += dx; y += dy; }

public String toString() { return "("+x+","+y+")"; }

}
the class Point has two members that are methods with the same name, move.
The overloaded move method of class Point chosen for any particular method
invocation is determined at compile time by the overloading resolution procedure
givenin 815.12.

In this example, the members of the class Point are the float instance vari-
ables x and y declared in Point, the two declared move methods, the declared
toString method, and the members that Point inherits from its implicit direct
superclass Object (84.3.2), such as the method hashCode. Note that Point does
not inherit the toString method of class Object because that method is overrid-
den by the declaration of the toString method in class Point.

6.4.4 TheMembersof an Interface Type

The members of an interface type (89.2) may be classes (88.5, 89.5), interfaces
(88.5, 89.5), fields (88.3, §9.3, §10.7), and methods (8§8.4, §9.4). The members of
an interface are:

* Those members declared in the interface.

» Those members inherited from direct superinterfaces.
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 If an interface has no direct superinterfaces, then the interface implicitly

declares a public abstract member method m with signature s, return type r,
and throws clause t corresponding to each public instance method m with
signature s, returntype r, and throws clause t declared in Object, unlessa
method with the same signature, same return type, and a compatible throws
clause is explicitly declared by the interface. It is a compile-time error if the
interface explicitly declares such amethod m in the case where mis declared to
be final inObject.

Type variables (84.4) are not members.

An interface may have two or more fields with the same simple name if they

are declared in different interfaces and inherited. An attempt to refer to any such
field by its simple name results in a compile-time error (86.5.6.1, 89.2).

}

In the example:
interface Colors {
int WHITE = @0, BLACK = 1;
3
interface Separates {
int CYAN = 0, MAGENTA = 1, YELLOW = 2, BLACK = 3;
}
interface ColorsAndSeparates extends Colors, Separates {
int DEFAULT = BLACK; // compile-time error: ambiguous

the members of the interface ColorsAndSeparates include those members
inherited from Colors and those inherited from Separates, namely WHITE,
BLACK (first of two), CYAN, MAGENTA, YELLOW, and BLACK (second of two). The
member name BLACK is ambiguous in the interface ColorsAndSeparates.

6.4.5 TheMembersof an Array Type

The members of an array type are specified in 810.7. For convenience, we repeat
that specification here.

The members of an array type are adl of the following:

* The public final field Tength, which contains the number of components

of the array (1ength may be positive or zero).

» The pub1ic method c1one, which overrides the method of the same namein

class Object and throws no checked exceptions. The return type of the clone
method of an array type T[] isST[].

* All the membersinherited from class Object; the only method of Object that

is not inherited isits cTone method.

6.4.5
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The example:
class Test {

public static void main(String[] args) {
int[] ia = new int[3];
int[] ib = new int[6];
System.out.printin(ia.getClass() == ib.getClass());
System.out.printin("ia has Tength=" + ia.length);
}
}

produces the output:

true

ia has Tength=3
This example uses the method getClass inherited from class Object and the
field Tength. The result of the comparison of the Class objects in the first
println demonstrates that all arrays whose components are of type int are
instances of the same array type, whichisint[].

6.5 Determining the Meaning of a Name

The meaning of a name depends on the context in which it is used. The determina-
tion of the meaning of a name requires three steps. First, context causes a name
syntactically to fall into one of six categories: PackageName, TypeName, Expres-
sionName, MethodName, PackageOrTypeName, or AmbiguousName. Second, a
name that isinitially classified by its context as an AmbiguousName or as a Pack-
ageOrTypeName is then reclassified to be a PackageName, TypeName, or Expres-
sionName. Third, the resulting category then dictates the final determination of
the meaning of the name (or a compilation error if the name has no meaning).

PackageName:
| dentifier
PackageName . Identifier

TypeName:
I dentifier
PackageOrTypeName . |dentifier

ExpressionName:
I dentifier
AmbiguousName . Identifier
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MethodName:
Identifier
AmbiguousName . ldentifier
PackageOr TypeName:
Identifier

PackageOrTypeName . |dentifier

AmbiguousName:
| dentifier
AmbiguousName . ldentifier

The use of context helps to minimize name conflicts between entities of dif-
ferent kinds. Such conflicts will be rare if the naming conventions described in
86.8 are followed. Nevertheless, conflicts may arise unintentionally as types
developed by different programmers or different organizations evolve. For exam-
ple, types, methods, and fields may have the same name. It is always possible to
distinguish between a method and a field with the same name, since the context of
ause aways tells whether a method is intended.

6.5.1 Syntactic Classification of a Name According to Context

A nameis syntactically classified as a PackageName in these contexts:
* In apackage declaration (87.4)
» Totheleft of the”.” in aqualified PackageName

A nameis syntactically classified as a TypeName in these contexts:
* Inasingle-type-import declaration (87.5.1)
» Totheleft of the"." in asingle static import (87.5.3) declaration
» Totheleft of the"." in a static import-on-demand (87.5.4) declaration
 Totheleft of the"<" in a parameterized type (84.5)
* Inan actua type argument list of a parameterized type

* In an explicit actual type argument list in a generic method (88.4.4) or con-
structor (88.8.4) invocation

* Inan extends clausein atype variable declaration (88.1.2)
* Inan extends clause of awildcard type argument (84.5.1)

 Inasuper clause of awildcard type argument (84.5.1)

6.5.1
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* Inan extends clause in aclass declaration (88.1.4)

* Inan implements clause in aclass declaration (88.1.5)
* Inan extends clausein an interface declaration (89.1.3)
o After the"@" signin an annotation (89.7)

» AsaType (or the part of a Type that remains after all brackets are deleted) in
any of the following contexts:

o Inafied declaration (88.3, §9.3)
o Asthe result type of amethod (88.4, §9.4)

o As the type of a formal parameter of a method or constructor (88.4.1,
§8.8.1, 89.4)

o Asthe type of an exception that can be thrown by a method or constructor
(88.4.6, 88.8.5, §89.4)

o Asthetype of alocal variable (§14.4)

o Asthetype of an exception parameter in acatch clause of a try statement
(814.20)

o Asthetypein aclassliteral (815.8.2)
o Asthe qualifying type of aqualified this expression (815.8.4).

o Asthe class type which isto be instantiated in an unqualified class instance
creation expression (815.9)

o As the direct superclass or direct superinterface of an anonymous class
(815.9.5) which isto beinstantiated in an unqualified class instance creation
expression (§15.9)

o Asthe element type of an array to be created in an array creation expression
(815.10)

o Asthe qualifying type of field access using the keyword super (815.11.2)

o As the qualifying type of a method invocation using the keyword super
(815.12)

o Asthe type mentioned in the cast operator of acast expression (§15.16)
o Asthetypethat followsthe instanceof relationa operator (815.20.2)
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A nameis syntactically classified as an ExpressionName in these contexts:

» Asthe qualifying expression in a qualified superclass constructor invocation
(88.8.7.1)

» Asthe qualifying expression in a qualified class instance creation expression
(815.9)

» Asthe array reference expression in an array access expression (815.13)
» AsaPostfixExpression (§15.14)
» Asthe left-hand operand of an assignment operator (815.26)

A nameis syntactically classified as a MethodName in these contexts:
» Beforethe” (" in amethod invocation expression (815.12)
» Totheleft of the"=" sign in an annotation’s element value pair (89.7)

A nameis syntactically classified as a PackageOr TypeName in these contexts:
» Totheleft of the“.” in aqualified TypeName
¢ In atype-import-on-demand declaration (§7.5.2)

A nameis syntactically classified as an AmbiguousName in these contexts:
» Totheleft of the“.” in aqualified ExpressionName
To the left of the“.” in a qualified MethodName
To theleft of the® .” in aqualified AmbiguousName
In the default value clause of an annotation type element declaration (89.6)

To theright of an "=" in an an element value pair (89.7)

6.5.2 Reclassification of Contextually Ambiguous Names

An AmbiguousName is then reclassified as follows:
« If the AmbiguousName is a simple name, consisting of asingle Identifier:

o If the Identifier appears within the scope (86.3) of alocal variable declara-
tion (814.4) or parameter declaration (88.4.1, §8.8.1, §14.20) or field decla-
ration (88.3) with that name, then the AmbiguousName is reclassified as an
ExpressionName.
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o Otherwise, if afield of that name is declared in the compilation unit (87.3)
containing the Identifier by a single-static-import declaration (87.5.3), or by
a static-import-on-demand declaration (87.5.4) then the AmbiguousName is
reclassified as an ExpressionName.

o Otherwise, if the Identifier appears within the scope (86.3) of a top level
class (88) or interface type declaration (89), alocal class declaration (§14.3)
or member type declaration (88.5, §9.5) with that name, then the Ambiguou-
sName is reclassified as a TypeName.

o Otherwise, if atype of that name is declared in the compilation unit (87.3)
containing the | dentifier, either by a single-type-import declaration (87.5.1),
or by a type-import-on-demand declaration (§7.5.2), or by a single-static-
import declaration (87.5.3), or by a static-import-on-demand declaration
(87.5.4), then the AmbiguousName is reclassified as a TypeName.

o Otherwise, the AmbiguousName is reclassified as a PackageName. A later
step determines whether or not a package of that name actually exists.

* If the AmbiguousName is a qualified name, consisting of aname, a“.”, and an
I dentifier, then the name to the left of the“.” isfirst reclassified, for it isitself
an AmbiguousName. There is then a choice:

o If the name to the left of the “.” is reclassified as a PackageName, then if
there is a package whose name is the name to the left of the “.” and that
package contains a declaration of a type whose name is the same as the
Identifier, then this AmbiguousName is reclassified as a TypeName. Other-
wise, this AmbiguousName is reclassified as a PackageName. A later step
determines whether or not a package of that name actually exists.

o If the name to the left of the “.” is reclassified as a TypeName, then if the
Identifier isthe name of amethod or field of the type denoted by TypeName,
this AmbiguousName is reclassified as an ExpressionName. Otherwise, if
the Identifier is the name of a member type of the type denoted by Type-
Name, this AmbiguousName is reclassified as a TypeName. Otherwise, a
compile-time error results.

o If the name to the left of the “.” isreclassified as an ExpressionName, then
let T be the type of the expression denoted by ExpressionName. If the I den-
tifier isthe name of amethod or field of the type denoted by T, this Ambigu-
ousName is reclassified as an ExpressionName. Otherwise, if the Identifier
isthe name of amember type (88.5, §9.5) of the type denoted by T, then this
AmbiguousName is reclassified as a TypeName. Otherwise, a compile-time
error results.
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As an example, consider the following contrived “library code”:

package org.rpgpoet;

import java.util.Random;

interface Music { Random[] wizards = new Random[4]; }
and then consider this example code in another package:

package bazola;

class Gabriel {

static int n = org.rpgpoet.Music.wizards.length;

}
First of all, the name org. rpgpoet.Music.wizards.length is classified as an
ExpressionName because it functions as a PostfixExpression. Therefore, each of
the names:

org.rpgpoet.Music.wizards

org.rpgpoet.Music
org.rpgpoet
org

isinitially classified as an AmbiguousName. These are then reclassified:

» The simple name org is reclassified as a PackageName (since there is no vari-
able or type named org in scope).

 Next, assuming that thereis no class or interface named rpgpoet in any com-
pilation unit of package org (and we know that there is no such class or inter-
face because package org has a subpackage named rpgpoet), the qualified
nameorg. rpgpoet is reclassified as a PackageName.

* Next, because package org. rpgpoet has an interface type named Musi c, the
gualified name org. rpgpoet.Music isreclassified as a TypeName.

* Finally, because the name org. rpgpoet.Music is a TypeName, the qualified
nameorg. rpgpoet.Music.wizards isreclassified as an ExpressionName.

6.5.3 Meaning of Package Names

The meaning of a name classified as a PackageName is determined as follows.

6.5.3.1 Smple Package Names

If a package name consists of a single Identifier, then this identifier denotes a top
level package named by that identifier. If no top level package of that nameisin
scope (87.4.4), then a compile-time error occurs.

6.5.3
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6.5.3.2 Qualified Package Names

If apackage nameis of the form Q. Id, then @ must also be a package name. The
package name Q. Id names a package that is the member named Id within the
package named by Q. If Q@ does not name an observable package (87.4.3), or Id is
not the simple name an observable subpackage of that package, then a compile-
time error occurs.

6.5.4 Meaning of PackageOr TypeNames

6.5.4.1 Smple PackageOr TypeNames

If the PackageOrTypeName, Q, occurs in the scope of a type named Q, then the
PackageOrTypeNameis reclassified as a TypeName.

Otherwise, the PackageOrTypeName is reclassified as a PackageName. The
meaning of the PackageOr TypeName is the meaning of the reclassified name.

6.5.4.2 Qualified PackageOr TypeNames

Given a qualified PackageOr TypeName of the form Q. Id, if the type or package
denoted by Q@ has a member type named Id, then the qualified PackageOrType-
Name name isreclassified as a TypeName.

Otherwise, it is reclassified as a PackageName. The meaning of the qualified
PackageOr TypeName is the meaning of the reclassified name.

6.5.5 Meaning of Type Names

The meaning of a name classified as a TypeName is determined as follows.

6.5.5.1 Smple Type Names

If atype name consists of asingle Identifier, then the identifier must occur in the
scope of exactly one visible declaration of a type with this name, or a compile-
time error occurs. The meaning of the type nameis that type.

6.5.5.2 Qualified Type Names

If atype nameis of the form Q. Id, then Q must be either atype name or a pack-
age name. If Id names exactly one type that is a member of the type or package
denoted by @, then the qualified type name denotes that type. If Id does not name
amember type (88.5, §9.5) within Q, or the member type named Id within Qis not
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accessible (86.6), or Id names more than one member type within @, then a com-
pile-time error occurs.

The example:

package wnj.test;

class Test {

public static void main(String[] args) {
java.util.Date date =
new java.util.Date(System.currentTimeMillis());
System.out.printin(date.tolLocaleString());

}
}
produced the following output the first time it was run;

Sun Jan 21 22:56:29 1996
In this example the name java.util.Date must denote atype, so wefirst usethe
procedure recursively to determine if java.util is an accessible type or a pack-
age, which it is, and then look to seeif the type Date is accessible in this package.

DiscussioN

Type names are distinct from type declaration specifiers (84.3). A type name is always
qualified by meas of another type name. In some cases, it is necessary to access an inner
class that is a member of a parameterized type:
class GenericOuter<T extends Number> {
public class Inner<S extends Comparable<S>> {
T getTQ { return null;}
S getSQ { return null;}
}
};
GenericOuter<Integer>.Inner<Double> x1 = null;
Integer i = x1.getTQ);
Double d = x1.getSQ);

If we accessed Inner by qualifying it with a type name, as in:
GenericOuter.Inner x2 = null;
we would force its use as a raw type, losing type information.
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6.5.6 Meaning of Expression Names

The meaning of a name classified as an ExpressionName is determined as follows.

6.5.6.1 Smple Expression Names

If an expression name consists of a single Identifier, then there must be exactly
one visible declaration denoting either alocal variable, parameter or field in scope
at the point at which the the Identifier occurs. Otherwise, a compile-time error
OCCUrs.

If the declaration declares afinal field, the meaning of the name isthe value of
that field. Otherwise, the meaning of the expression name is the variable declared
by the declaration.

If the field is an instance variable (88.3), the expression name must appear
within the declaration of an instance method (88.4), constructor (88.8), instance
initializer (88.6), or instance variable initializer (88.3.2.2). If it appears within a
static method (88.4.3.2), static initializer (88.7), or initializer for astatic vari-
able (88.3.2.1, 812.4.2), then a compile-time error occurs.

The type of the expression name is the declared type of the field, local vari-
able or parameter after capture conversion (85.1.10).

In the example:
class Test {
static int v;
static final int f = 3;
public static void main(String[] args) {

int 1;

i=1;

vV = 2;

f = 33; // compile-time error
System.out.printin(i + " " + v + " " + f);

}
}

the names used as the | eft-hand-sides in the assignments to 1, v, and f denote the
local variable 1, the field v, and the value of f (not the variable f, because f isa
final variable). The example therefore produces an error at compile time
because the last assignment does not have a variable as its left-hand side. If the
erroneous assignment is removed, the modified code can be compiled and it will
produce the output:
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6.5.6.2 Qualified Expression Names

If an expression nameis of the form Q. Id, then Q has already been classified asa
package name, atype name, or an expression name:

* If Q isapackage name, then a compile-time error occurs.
« If Q isatype name that names a class type (88), then:

o If thereis not exactly one accessible (86.6) member of the classtypethat is
afield named Id, then acompile-time error occurs.

o Otherwise, if the single accessible member field is not a class variable (that
is, itisnot declared static), then a compile-time error occurs.

o Otherwise, if the class variable is declared final, then Q. Id denotes the
value of the class variable. The type of the expression Q. Id is the declared
type of the class variable after capture conversion (85.1.10). If Q.Id
appears in acontext that requires a variable and not a value, then a compile-
time error occurs.

o Otherwise, Q.Id denotes the class variable. The type of the expression
Q.Id is the declared type of the class variable after capture conversion
(85.1.10). Note that this clause covers the use of enum constants (88.9),
since these always have a corresponding final class variable.

« If Q isatype name that hames an interface type (89), then:

o If there is not exactly one accessible (86.6) member of the interface type
that isafield named Id, then acompile-time error occurs.

o Otherwise, Q. Id denotes the value of the field. The type of the expression
Q. Id isthe declared type of the field after capture conversion (85.1.10). If
Q. Id appears in a context that requires a variable and not a value, then a
compile-time error occurs.

 If Q isan expression name, let T be the type of the expression Q:
o If T isnot areference type, a compile-time error occurs.

o If there is not exactly one accessible (86.6) member of the type T that is a
field named Id, then acompile-time error occurs.

o Otherwiseg, if thisfield is any of the following:
o A field of an interface type

o A final field of aclass type (which may be either a class variable or an
instance variable)

6.5.6
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o The final field Tength of an array type

then Q. Id denotesthe value of thefield. The type of the expression Q. Id is
the declared type of the field after capture conversion (85.1.10). If Q. Id
appearsin acontext that requires a variable and not avalue, then a compile-
time error occurs.

o Otherwise, Q. Id denotes a variable, the field Id of class T, which may be
either a class variable or an instance variable. The type of the expression
Q. Id isthe type of the field member after capture conversion (85.1.10).

The example:
class Point {
int x, y;
static int nPoints;
}
class Test {
public static void main(String[] args) {

int i = 0;

T XH++; // compile-time error
Point p = new Point(Q);

p.nPoints(Q); // compile-time error

}
}

encounters two compile-time errors, because the int variable i has no members,
and because nPoints is not amethod of class Point.

DiscussIoN

Note that expression names may be qualified by type names, but not by types in general. A
consequence is that it is not possible to access a class variable through a parameterized
type
class Foo<T> {
public static int classVar = 42;

}

Foo<String>.classVar = 91; // illegal

Instead, one writes

Foo.classVar = 91;

This does not restrict the language in any meaningful way. Type parameters may not
be used in the types of static variables, and so the actual parameters of a parameterized
type can never influence the type of a static variable. Therefore, no expressive power is
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lost. Technically, the type name Foo above is a raw type, but this use of raw types is harm-
less, and does not give rise to warnings

6.5.7 Meaning of Method Names

A MethodName can appear only in a method invocation expression (815.12) or as
an element name in an element-value pair (89.7). The meaning of a name classi-
fied as a MethodName is determined as follows.

6.5.7.1 Smple Method Names

A simple method name may appear as the element name in an element-value
pair. The Identifier in an ElementValuePair must be the simple name of one of the
elements of the annotation type identified by TypeName in the containing annota-
tion. Otherwise, a compile-time error occurs. (In other words, the identifier in an
element-value pair must also be amethod namein the interface identified by Type-
Name.)

Otherwise, a simple method name necessarily appears in the context of a method
invocation expression. In that case, if a method name consists of a single Identi-
fier, then Identifier is the method name to be used for method invocation. The
Identifier must name at least one visible (86.3.1) method that is in scope at the
point where the Identifier appear or a method imported by a single-static-import
declaration (87.5.3) or static-import-on-demand declaration (87.5.4) within the
compilation unit within which the Identifier appears.

See 815.12 for further discussion of the interpretation of simple method namesin
method invocation expressions.

6.5.7.2 Qualified Method Names

A qualified method name can only appear in the context of a method invocation
expression. If amethod nameis of the form Q. Id, then Q has already been classi-
fied as a package name, a type name, or an expression name. If Q is a package
name, then a compile-time error occurs. Otherwise, Id isthe method name to be
used for method invocation. If Q is atype name, then Id must name at least one
static method of thetype Q. If Q isan expression name, then let T be the type of
the expression Q; Id must name at |east one method of the type T. See §15.12 for
further discussion of the interpretation of qualified method names in method invo-
cation expressions.

6.5.7
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DiscussIioN

Like expression names, method names may be qualified by type names, but not by types in
general. The implications are similar to those for expression names as discussed in
86.5.6.2.

6.6 Access Control

The Java programming language provides mechanisms for access control, to pre-
vent the users of a package or class from depending on unnecessary details of the
implementation of that package or class. If accessis permitted, then the accessed
entity is said to be accessible.

Note that accessibility is a static property that can be determined at compile
time; it depends only on types and declaration modifiers. Qualified names are a
means of access to members of packages and reference types; related means of
access include field access expressions (815.11) and method invocation expres-
sions (815.12). All three are syntactically similar inthat a“.” token appears, pre-
ceded by some indication of a package, type, or expression having a type and
followed by an Identifier that names a member of the package or type. These are
collectively known as constructs for qualified access.

Access control applies to qualified access and to the invocation of construc-
tors by class instance creation expressions (815.9) and explicit constructor invoca-
tions (88.8.7.1). Accessibility also effects inheritance of class members (88.2),
including hiding and method overriding (88.4.8.1).

6.6.1 Determining Accessibility
» A packageisaways accessible.

* If aclassor interface typeisdeclared pub1ic, then it may be accessed by any
code, provided that the compilation unit (87.3) in which it is declared is
observable. If atop level class or interface typeis not declared pub1ic, then it
may be accessed only from within the package in which it is declared.

» Anarray typeisaccessibleif and only if its element typeis accessible.
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» A member (class, interface, field, or method) of a reference (class, interface,
or array) type or a constructor of a class type is accessible only if the typeis
accessible and the member or constructor is declared to permit access:

o If the member or constructor is declared pub1ic, then access is permitted.
All members of interfaces are implicitly public.

o Otherwise, if the member or constructor isdeclared protected, then access
is permitted only when one of the following istrue:

o Access to the member or constructor occurs from within the package
containing the class in which the protected member or constructor is
declared.

o Accessis correct as described in §6.6.2.

o Otherwise, if the member or constructor isdeclared private, then accessis
permitted if and only if it occurs within the body of thetop level class (87.6)
that encloses the declaration of the member or constructor.

o Otherwise, we say there is default access, which is permitted only when the
access occurs from within the package in which the type is declared.

6.6.2 Detailson protected Access

A protected member or constructor of an object may be accessed from outside
the package in which it is declared only by code that is responsible for the imple-
mentation of that object.

6.6.2.1 Accessto aprotected Member

Let C bethe classin which aprotected member misdeclared. Accessis permit-
ted only within the body of a subclass S of C. In addition, if Id denotes an
instance field or instance method, then:

« If the access is by a qualified name Q. Id, where Q is an ExpressionName,
then the accessis permitted if and only if the type of the expression Qis S or a
subclass of S.

* If the access is by a field access expression E.Id, where E is a Primary
expression, or by a method invocation expression £.Id(...), where E isa
Primary expression, then the access is permitted if and only if thetype of E is
S orasubclassof S.
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6.6.2.2 Qualified Accessto a protected Constructor

Let C be the class in which aprotected constructor is declared and let S be the
innermost class in whose declaration the use of the protected constructor
occurs. Then:

« If the access is by a superclass constructor invocation super(. . .) or by a
qualified superclass constructor invocation of the form E. super(. . .), where
E isaPrimary expression, then the accessis permitted.

* If the access is by an anonymous class instance creation expression of the
formnew C(.. .){...} or by aqualified class instance creation expression of
the form E.new C(. . ){...}, where E is a Primary expression, then the
access is permitted.

» Otherwise, if the access is by a simple class instance creation expression of
theformnew C(. ..) or by aqualified classinstance creation expression of the
form E.new C(. . .), where E is a Primary expression, then the access is not
permitted. A protected constructor can be accessed by a class instance cre-
ation expression (that does not declare an anonymous class) only from within
the package in which it is defined.

6.6.3 An Example of Access Control

For examples of access control, consider the two compilation units:
package points;
class PointVec { Point[] vec; }
and:
package points;
public class Point {

protected int x, y;
public void move(int dx, int dy) { x += dx; y += dy; }
public int getX() { return x; }
public int getY() { return y; }
}

which declare two class types in the package points:

* The class type PointVec is not publ1ic and not part of the public interface
of the package points, but rather can be used only by other classes in the
package.

* The classtype Point is declared pub1ic and is available to other packages. It
is part of the pub11 c interface of the package points.
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» The methods move, getX, and getY of the class Point are declared public
and so are available to any code that uses an object of type Point.

» The fields x and y are declared protected and are accessible outside the
package points only in subclasses of class Point, and only when they are
fields of objects that are being implemented by the code that is accessing
them.

See 86.6.7 for an example of how the protected access modifier limits access.

6.6.4 Example: Accessto public and Non-public Classes

If a class lacks the pub1ic modifier, access to the class declaration is limited to
the package in which it is declared (86.6). In the example:

package points;

public class Point {

public int x, y;
public void move(int dx, int dy) { x += dx; y += dy; }

class PointList {
Point next, prev;

}
two classes are declared in the compilation unit. The class Point is available out-
side the package points, while the class PointList is available for access only
within the package.

Thus a compilation unit in another package can access points.Point, either
by using its fully qualified name:

package pointsUser;

class Test {

public static void main(String[] args) {
points.Point p = new points.Point();
System.out.printin(p.x + " " + p.y);
}
}

or by using a single-type-import declaration (87.5.1) that mentions the fully quali-
fied name, so that the simple name may be used thereafter:

package pointsUser;

import points.Point;

class Test {

public static void main(String[] args) {
Point p = new Point();
System.out.printin(p.x +
13

+ p.y);

6.6.4
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However, this compilation unit cannot use or import points.PointList, which
isnot declared pub1ic and is therefore inaccessible outside package points.

6.6.5 Example: Default-Access Fields, M ethods, and Constructors

If none of the access modifiers public, protected, or private are specified, a
class member or constructor is accessible throughout the package that contains the
declaration of the class in which the class member is declared, but the class mem-
ber or constructor is not accessible in any other package.

If apublic class has a method or constructor with default access, then this
method or constructor is not accessible to or inherited by a subclass declared out-
side this package.

For example, if we have:

package points;

public class Point {

public int x, y;
void move(int dx, int dy) { x += dx; y += dy; }
public void moveAlso(int dx, int dy) { move(dx, dy); }

}

then a subclass in another package may declare an unrelated move method, with

the same signature (88.4.2) and return type. Because the original move method is
not accessible from package morepoints, super may not be used:
package morepoints;
pubTlic class PlusPoint extends points.Point {
pubTic void move(int dx, int dy) {
super.move(dx, dy); // compile-time error
moveAlso(dx, dy);
3
}
Because move of Point is not overridden by move in PTusPoint, the method
moveAlso in Point never calsthe method movein PTusPoint.
Thus if you delete the super.move call from PTusPoint and execute the test
program:
import points.Point;
import morepoints.PlusPoint;
class Test {
public static void main(String[] args) {
PlusPoint pp = new PlusPoint();
pp.move(l, 1);



NAMES Example: protected Fields, Methods, and Constructors ~ 6.6.7

it terminates normally. If move of Point were overridden by move in PTusPoint,
then this program would recurse infinitely, until a StackoverflowError
occurred.

6.6.6 Example: public Fields, Methods, and Constructors

A public class member or constructor is accessible throughout the package
whereit is declared and from any other package, provided the package in which it
is declared is observable (87.4.3). For example, in the compilation unit:
package points;
public class Point {
int x, y;
pubTic void move(int dx, int dy) {
X += dx; y += dy;
moves++;
}
public static int moves = 0;
}
the pub1ic class Point has as pub1ic members the move method and the moves
field. These pub1ic members are accessible to any other package that has access
to package points. Thefields x and y are not pub1i c and therefore are accessible
only from within the package points.

6.6.7 Example: protected Fields, Methods, and Constructors

Consider this example, where the points package declares:
package points;
pubTlic class Point {
protected int x, y;
void warp(threePoint.Point3d a) {
if (a.z > 0) // compile-time error: cannot accessa. z
a.delta(this);
}
}
and the threePoint package declares:
package threePoint;
import points.Point;
public class Point3d extends Point {
protected int z;
pubTic void delta(Point p) {
p.x += this.x; // compile-time error: cannot accessp.x
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p.y += this.y; // compile-timeerror: cannot accessp.y

pubTlic void delta3d(Point3d q) {
q.X += this.x;
q.y += this.y;
g.z += this.z;
}
}

which defines a class Point3d. A compile-time error occurs in the method delta
here: it cannot access the protected members x and y of its parameter p, because
while Point3d (the class in which the references to fields x and y occur) is a sub-
class of Point (the class in which x and y are declared), it is not involved in the
implementation of a Point (the type of the parameter p). The method delta3d
can access the protected members of its parameter q, because the class Point3d is
asubclass of Point and isinvolved in the implementation of a Point3d.

The method delta could try to cast (85.5, §15.16) its parameter to be a
Point3d, but this cast would fail, causing an exception, if the class of p at run
time were not Point3d.

A compile-time error also occursin the method warp: it cannot access the pro-
tected member z of its parameter a, because while the class Point (the class in
which the reference to field z occurs) is involved in the implementation of a
Point3d (the type of the parameter a), it isnot a subclass of Point3d (theclassin
which z is declared).

6.6.8 Example: private Fields, Methods, and Constructors

A private class member or constructor is accessible only within the body of the
top level class (8§7.6) that encloses the declaration of the member or constructor. It
isnot inherited by subclasses. In the example:
class Point {

Point() { setMasterID(); }

int x, y;

private int ID;

private static int masterID = 0;

private void setMasterID() { ID = masterID++; }

}
the private members ID, masterID, and setMasterID may be used only
within the body of class Point. They may not be accessed by qualified names,
field access expressions, or method invocation expressions outside the body of the
declaration of Point.

See §8.8.8 for an example that uses aprivate constructor.
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6.7 Fully Qualified Names and Canonical Names

Every package, top level class, top level interface, and primitive type has a fully
gualified name. An array type has a fully qualified name if and only if its element
type has afully qualified name.

The fully qualified name of a primitive type is the keyword for that primitive
type, namely boolean, char, byte, short, int, Tong, float, or double.

The fully qualified nhame of a named package that is not a subpackage of a
named package isits simple name.

The fully qualified name of a named package that is a subpackage of another
named package consists of the fully qualified name of the containing package,
followed by “.”, followed by the simple (member) name of the subpackage.

The fully qualified name of a top level class or top level interface that is
declared in an unnamed package is the simple name of the class or interface.

The fully qualified name of a top level class or top level interface that is
declared in a named package consists of the fully qualified name of the pack-
age, followed by “.”, followed by the simple name of the class or interface.

A member class or member interface M of another class € has afully qualified
name if and only if C has afully qualified name. In that case, the fully quali-
fied name of M consists of the fully qualified name of ¢, followed by “.”, fol-
lowed by the simple name of M.

The fully qualified name of an array type consists of the fully qualified name
of the component type of the array type followed by “[]”.

Examples:

In

 The fully qualified name of the type Tong is“1ong”.

* The fully qualified name of the package java.lang is“java.lang” because
it is subpackage 1ang of package java.

 The fully qualified name of the class Object, which is defined in the package
java.lang,is“java.lang.Object”.

» The fully quaified name of the interface Enumeration, which is defined in
the package java.util,is“java.util.Enumeration”.

 The fully qualified name of the type “array of double” is“double[]".

* The fully qualified name of the type “array of array of array of array of
String” is“java.lang.String[J[]1[]1[]".

the example:

6.7
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package points;

class Point { int x, y; }

class PointVec {

Point[] vec;

}
the fully qualified name of the type Point is“points.Point”; the fully qualified
name of the type PointVec is“points.PointVec”; and the fully qualified name
of the type of thefield vec of class PointVec is“points.Point[]”.

Every package, top level class, top leve interface, and primitive type has a
canonical name. An array type has a canonical name if and only if its element
type has a canonical name. A member class or member interface M declared in
another class € has a canonical name if and only if C has a canonical name. In that
case, the canonical name of M consists of the canonical name of C, followed by
“.”, followed by the simple name of M. For every package, top level class, top
level interface and primitive type, the canonical name is the same as the fully
qualified name. The canonical name of an array type is defined only when the
component type of the array has a canonical name. In that case, the canonical
name of the array type consists of the canonical hame of the component type of
the array type followed by “[1”.

The difference between a fully qualified name and a canonical name can be
seen in examples such as:

package p;

class 01 { class I{}}

class 02 extends 01{};

Inthisexampleboth p.01.I and p.02.1I arefully qualified names that denote the
same class, but only p.01.I isits canonical name.

6.8 Naming Conventions

The class libraries of the Java platform attempt to use, whenever possible, names
chosen according to the conventions presented here. These conventions help to
make code more readable and avoid certain kinds of name conflicts.

We recommend these conventions for use in all programs written in the Java
programming language. However, these conventions should not be followed dav-
ishly if long-held conventional usage dictates otherwise. So, for example, the sin
and cos methods of the class java. Tang.Math have mathematically conventional
names, even though these method names flout the convention suggested here
because they are short and are not verbs.
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6.8.1 Package Names

Names of packages that are to be made widely available should be formed as
described in 87.7. Such names are always qualified names whose first identifier
consists of two or three lowercase letters that name an Internet domain, such as
com, edu, gov, mil, net, org, or atwo-letter ISO country code such as uk or jp.
Here are examples of hypothetical unique names that might be formed under this
convention:

com.JavaSoft.jag.0ak

org.npr.pledge.driver
uk.ac.city.rugby.game

Names of packages intended only for local use should have a first identifier
that begins with a lowercase letter, but that first identifier specifically should not
be the identifier java; package names that start with the identifier java are
reserved by Sun for naming Java platform packages.

When package names occur in expressions:

« If apackage nameis obscured by afield declaration, then import declarations
(87.5) can usually be used to make available the type names declared in that
package.

« If a package name is obscured by a declaration of a parameter or local vari-
able, then the name of the parameter or local variable can be changed without
affecting other code.

The first component of a package name is normally not easily mistaken for a
type name, as a type name normally begins with a single uppercase letter. (The
Java programming language does not actually rely on case distinctions to deter-
mine whether aname is a package hame or atype name.)

6.8.2 Classand Interface Type Names

Names of class types should be descriptive houns or noun phrases, not overly
long, in mixed case with the first letter of each word capitalized. For example:
ClasslLoader

SecurityManager
Thread

Dictionary
BufferedInputStream

Likewise, names of interface types should be short and descriptive, not overly
long, in mixed case with thefirst letter of each word capitalized. The name may be
a descriptive noun or noun phrase, which is appropriate when an interface is used
as if it were an abstract superclass, such as interfaces java.io.DataInput and

6.8.2
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java.io.DataOutput; or it may be an adjective describing a behavior, as for the
interfaces RunnabTe and CloneabTe.

Obscuring involving class and interface type names is rare. Names of fields,
parameters, and local variables normally do not obscure type names because they
conventionally begin with a lowercase letter whereas type names conventionally
begin with an uppercase letter.

6.8.3 Type Variable Names

Type variable names should be pithy (single character if possible) yet evocative,
and should not include lower case |etters.

DiscussioN

This makes it easy to distinguish formal type parameters from ordinary classes and inter-
faces.

Ccontainer types should use the name E for their element type. Maps should use K
for the type of their keys and V for the type of their values. The name X should be
used for arbitrary exception types. We use T for type, whenever there isn’t any-
thing more specific about the type to distinguishiit.

DiscussIoN

This is often the case in generic methods.

If there are multiple type parameters that denote arbitrary types, one should
use lettersthat neighbor T in the al phabet, such as S. Alternately, it is acceptable to
use numeric subscripts (e.g., T1, T2) to distinguish among the different type vari-
ables. In such cases, all the variables with the same prefix should be subscripted.
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DiscussIioN

If a generic method appears inside a generic class, it's a good idea to avoid using the same
names for the type parameters of the method and class, to avoid confusion. The same
applies to nested generic classes.

DiscussIoN

These conventions are illustrated in the code snippets below:
public class HashSet<E> extends AbstractSet<E> { ... }
public class HashMap<K,V> extends AbstractMap<K,V> { ... }
public class ThreadLocal<T> { ... }
pubTlic interface Functor<T, X extends Throwable> {
T eval() throws X;
}

When type parameters do not fall conveniently into one of the categories men-
tioned, names should be chosen to be as meaningful as possible within the con-
fines of asingleletter. The names mentioned above (E, K, T, V, X) should not
be used for type parameters that do not fall into the designated categories.

6.8.4 Method Names

Method names should be verbs or verb phrases, in mixed case, with the first letter
lowercase and the first letter of any subsequent words capitalized. Here are some
additional specific conventions for method names:

* Methods to get and set an attribute that might be thought of as a variable V
should be named getV and setV. An example is the methods getPriority
and setPriority of classThread.

» A method that returns the length of something should be named Tength, asin
classString.

» A method that tests a boolean condition V about an object should be hamed
isV. An exampleisthe method isInterrupted of class Thread.
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* A method that converts its object to a particular format F should be named
toF. Examples are the method toString of class Object and the methods
toLocaleString and toGMTString of class java.util.Date.

Whenever possible and appropriate, basing the names of methods in a new class
on names in an existing class that is similar, especialy a class from the Java
Application Programming Interface classes, will make it easier to use.

Method names cannot obscure or be obscured by other names (86.5.7).

6.8.5 Field Names

Names of fields that are not final should be in mixed case with alowercase first
letter and thefirst |etters of subsequent words capitalized. Note that well-designed
classes have very few public or protected fields, except for fields that are con-
stants (final static fields) (86.8.6).

Fields should have names that are nouns, noun phrases, or abbreviations for
nouns. Examples of this convention are the fields buf, pos, and count of the class
java.io.ByteArrayInputStream and thefield bytesTransferred of the class
java.io.InterruptedIOException.

Obscuring involving field namesisrare.

« If afield name obscures a package name, then an import declaration (87.5)
can usually be used to make available the type names declared in that pack-

age.
« If afield name obscures a type name, then a fully qualified name for the type
can be used unless the type name denotes alocal class (814.3).

* Field names cannot obscure method names.

« If afield name is shadowed by a declaration of a parameter or local variable,
then the name of the parameter or local variable can be changed without
affecting other code.

6.8.6 Constant Names

The names of constants in interface types should be, and final variables of class
types may conventionally be, a sequence of one or more words, acronyms, or
abbreviations, all uppercase, with components separated by underscore “_" char-
acters. Constant names should be descriptive and not unnecessarily abbreviated.
Conventionally they may be any appropriate part of speech. Examples of hames
for constants include MIN_VALUE, MAX_VALUE, MIN_RADIX, and MAX_RADIX of the
class Character.
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A group of constants that represent alternative values of a set, or, less fre-
guently, masking bits in an integer value, are sometimes usefully specified with a
common acronym as a name prefix, asin:

interface ProcessStates {

int PS_RUNNING = 0;
int PS_SUSPENDED = 1;

}
Obscuring involving constant namesis rare:

» Constant names normally have no lowercase |etters, so they will not normally
obscure names of packages or types, nor will they normally shadow fields,
whose names typically contain at |east one lowercase |etter.

* Constant names cannot obscure method names, because they are distin-
guished syntacticaly.

6.8.7 Local Variable and Parameter Names
Local variable and parameter names should be short, yet meaningful. They are
often short sequences of lowercase |etters that are not words. For example:

* Acronyms, that is the first letter of a series of words, as in cp for a variable
holding areferenceto aColoredPoint

* Abbreviations, asin buf holding a pointer to abuffer of some kind

* Mnemonic terms, organized in some way to aid memory and understanding,
typically by using a set of local variables with conventional names patterned
after the names of parameters to widely used classes. For example:

o in and out, whenever somekind of input and output are involved, patterned
after the fields of System

o off and T1en, whenever an offset and length are involved, patterned after the
parameters to the read and write methods of the interfaces DataInput
and DataOutput of java.io

One-character local variable or parameter names should be avoided, except
for temporary and looping variables, or where a variable holds an undistinguished
value of atype. Conventional one-character names are:

*b for abyte

e c forachar
edforadouble

e for an Exception
«fforafloat

6.8.7
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*1, j, and k for integers
*1foralong

eoforanObject

esforaString

« v for an arbitrary value of some type

Local variable or parameter names that consist of only two or three lowercase
letters should not conflict with theinitial country codes and domain names that are
the first component of unique package names (87.7).
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PROGRAMS are organized as sets of packages. Each package has its own set of
names for types, which helps to prevent name conflicts. A top level typeis acces-
sible (86.6) outside the package that declares it only if the type is declared pub-
Tic.

The naming structure for packages is hierarchical (87.1). The members of a
package are class and interface types (87.6), which are declared in compilation
units of the package, and subpackages, which may contain compilation units and
subpackages of their own.

A package can be stored in a file system (87.2.1) or in a database (87.2.2).
Packages that are stored in afile system may have certain constraints on the orga-
nization of their compilation units to allow a simple implementation to find
classes easily.

A package consists of a number of compilation units (8§7.3). A compilation
unit automatically has accessto all types declared in its package and al so automat-
icaly imports al of the public types declared in the predefined package
java.lang.

For small programs and casual development, a package can be unnamed
(87.4.2) or have a simple name, but if code is to be widely distributed, unique
package names should be chosen (87.7). This can prevent the conflicts that would
otherwise occur if two development groups happened to pick the same package
name and these packages were later to be used in a single program.
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7.1 Package Members

The members of a package are its subpackages and al the top level (87.6)
class types (88) and top level interface types (89) declared in al the compilation
units (87.3) of the package.

For example, in the Java Application Programming Interface:

* The package java has subpackages awt, applet, 10, lang, net, and util,
but no compilation units.

* The package java.awt has a subpackage named image, as well as a number
of compilation units containing declarations of class and interface types.

If the fully qualified name (86.7) of a package is P, and Q is a subpackage of P,
then P. Q isthe fully qualified name of the subpackage.

A package may not contain two members of the same name, or a compile-
time error results.

Here are some examples:

* Because the package java.awt has a subpackage image, it cannot (and does
not) contain a declaration of a class or interface type named image.

* If there is a package named mouse and a member type Button in that package
(which then might be referred to as mouse . Button), then there cannot be any
package with the fully qualified name mouse.Button Or mouse.But-
ton.Cl1ick.

*If com.sun.java. jag isthe fully qualified name of atype, then there cannot
be any package whose fully qualified name is either com.sun.java.jag or
com.sun.java.jag.scrabble.

The hierarchical naming structure for packages is intended to be convenient
for organizing related packages in a conventional manner, but has no significance
initself other than the prohibition against a package having a subpackage with the
same simple name as atop level type (87.6) declared in that package. Thereis no
specia access relationship between a package named o11iver and another pack-
age named oliver. twist, or between packages named evelyn.wood and eve-
Tyn.waugh. For example, the code in a package named oliver.twist has no
better access to the types declared within package oT11iver than code in any other
package.
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7.2 Host Support for Packages

Each host determines how packages, compilation units, and subpackages are cre-
ated and stored, and which compilation units are observable (§7.3) in a particular
compilation.

The observahility of compilation units in turn determines which packages are
observable, and which packages are in scope.

The packages may be stored in alocal file system in simple implementations
of the Java platform. Other implementations may use a distributed file system or
some form of database to store source and/or binary code.

7.2.1 Storing Packagesin a File System

As an extremely simple example, al the packages and source and binary code on
asystem might be stored in asingle directory and its subdirectories. Each immedi-
ate subdirectory of this directory would represent atop level package, that is, one
whose fully qualified name consists of a single simple name. The directory might
contain the following immediate subdirectories:

com

gls

jag

java

wnj
where directory java would contain the Java Application Programming Interface
packages; the directories jag, g1s, and wnj might contain packages that three of
the authors of this specification created for their personal use and to share with
each other within this small group; and the directory com would contain packages
procured from companies that used the conventions described in 87.7 to generate
unique names for their packages.

Continuing the example, the directory java would contain, among others, the
following subdirectories:

applet

awt

10

Tang

net

util
corresponding to the packages java.applet, java.awt, java.io, java.lang,
java.net, and java.util that are defined as part of the Java Application Pro-
gramming Interface.

7.2.1
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Still continuing the example, if we were to look inside the directory uti1, we
might see the following files:

BitSet.java Observable.java
BitSet.class Observable.class
Date.java Observer.java
Date.class Observer.class

where each of the . java files contains the source for a compilation unit (87.3)
that contains the definition of a class or interface whose binary compiled form is
contained in the corresponding . class file.

Under this simple organization of packages, an implementation of the Java
platform would transform a package name into a pathname by concatenating the
components of the package name, placing afile name separator (directory indica-
tor) between adjacent components.

For example, if this simple organization were used on a UNIX system, where
the file name separator is /, the package name:

jag.scrabble.board
would be transformed into the directory name:

jag/scrabble/board
and:

com. sun.sunsoft.DOE
would be transformed to the directory name:;

com/sun/sunsoft/DOE

A package name component or class name might contain a character that can-
not correctly appear in ahost file system’s ordinary directory name, such asa Uni-
code character on a system that allows only ASCII charactersin file names. As a
convention, the character can be escaped by using, say, the @ character followed
by four hexadecimal digits giving the numeric value of the character, as in the
\uxxxx escape (83.3), so that the package name:

children.activities.crafts.papierM\u@e2ch\u00e9
which can aso be written using full Unicode as:

children.activities.crafts.papierMaché
might be mapped to the directory name:
children/activities/crafts/papierM@d0e2ch@0e9
If the @ character is not a valid character in a file name for some given host file
system, then some other character that is not valid in a identifier could be used
instead.
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7.2.2 Storing Packagesin a Database

A host system may store packages and their compilation units and subpackagesin
a database.

Such a database must not impose the optional restrictions (87.6) on compila-
tion units in file-based implementations. For example, a system that uses a data-
base to store packages may not enforce a maximum of one public class or
interface per compilation unit.

Systems that use a database must, however, provide an option to convert a
program to a form that obeys the restrictions, for purposes of export to file-based
implementations.

7.3 Compilation Units

CompilationUnit is the goal symbol (82.1) for the syntactic grammar (82.3) of
Java programs. It is defined by the following productions:

CompilationUnit:
PackageDeclarationgy ImportDeclarations,y TypeDeclarationsyy

ImportDeclarations:
ImportDeclaration
ImportDeclarations ImportDeclaration

TypeDeclarations:
TypeDeclaration
TypeDeclarations TypeDeclaration

Types declared in different compilation units can depend on each other, circularly.
A Java compiler must arrange to compile all such types at the same time.
A compilation unit consists of three parts, each of which is optional:

* A package declaration (87.4), giving the fully qualified name (86.7) of the
package to which the compilation unit belongs. A compilation unit that has no
package declaration is part of an unnamed package (87.4.2).

* import declarations (87.5) that allow types from other packages and static
members of types to be referred to using their simple names

» Top level type declarations (87.6) of class and interface types

Which compilation units are observable is determined by the host system.
However, all the compilation units of the package java and its subpackages 1ang

7.3
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and io must always be observable. The observahility of a compilation unit influ-
ences the observahility of its package (87.4.3).

Every compilation unit automatically and implicitly imports every public
type name declared by the predefined package java.lang, so that the names of
all those types are available as simple names, as described in §7.5.5.

7.4 Package Declarations

A package declaration appears within a compilation unit to indicate the package
to which the compilation unit belongs.

7.4.1 Named Packages

A package declaration in acompilation unit specifies the name (86.2) of the pack-
age to which the compilation unit belongs.

PackageDeclaration:
Annotationsy, package PackageName ;

The keyword package may optionaly be preceded by annotation modifiers
(89.7). If an annotation a on a package declaration corresponds to an annotation
type T, and T has a (meta-)annotation m that corresponds to annotation.Tar-
get, then m must have an element whose value is annotation.Element-
Type . PACKAGE, or acompile-time error occurs.

The package name mentioned in a package declaration must be the fully qual-
ified name (86.7) of the package.

7.4.1.1 Package Annotations

Annotations may be used on package declarations, with the restriction that at
most one annotated package declaration is permitted for a given package.

DiscussIioN

The manner in which this restriction is enforced must, of necessity, vary from implementa-
tion to implementation. The following scheme is strongly recommended for file-system-
based implementations: The sole annotated package declaration, if it exists, is placed in a
source file called package-info.java in the directory containing the source files for the
package. This file does not contain the source for a class called package-info.java; indeed it
would be illegal for it to do so, as package-info is not a legal identifier. Typically package-
info.java contains only a package declaration, preceded immediately by the annotations
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on the package. While the file could technically contain the source code for one or more
package-private classes, it would be very bad form.

It is recommended that package-info.java, if it is present, take the place of pack-
age.html for javadoc and other similar documentation generation systems. If this file is
present, the documentation generation tool should look for the package documentation
comment immediately preceding the (possibly annotated) package declaration in package-
info.java. In this way, package-info.java becomes the sole repository for package level
annotations and documentation. If, in future, it becomes desirable to add any other pack-
age-level information, this file should prove a convenient home for this information.

7.4.2 Unnamed Packages

A compilation unit that has no package declaration is part of an unnamed package.
Note that an unnamed package cannot have subpackages, since the syntax of a
package declaration always includes a reference to a named top level package.
As an example, the compilation unit:
class FirstCall {

public static void main(String[] args) {
System.out.printin("Mr. Watson, come here.
+ "I want you.");

}

defines a very simple compilation unit as part of an unnamed package.

An implementation of the Java platform must support at least one unnamed
package; it may support more than one unnamed package but is not required to do
so. Which compilation units are in each unnamed package is determined by the
host system.

In implementations of the Java platform that use a hierarchical file system for
storing packages, one typical strategy is to associate an unnamed package with
each directory; only one unnamed packageis observable at atime, namely the one
that is associated with the “current working directory.” The precise meaning of
“current working directory” depends on the host system.

Unnamed packages are provided by the Java platform principally for conve-
nience when developing small or temporary applications or when just beginning
development.

74.2
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7.4.3 Observability of a Package
A package is observableif and only if either:

» A compilation unit containing a declaration of the package is observable.

« A subpackage of the package is observable.

One can conclude from the rule above and from the requirements on observ-
able compilation units, that the packages java, java.lang, and java.io are
aways observable.

7.4.4 Scope of a Package Declaration

The scope of the declaration of an observable (87.4.3) top level package is all
observable compilation units (87.3). The declaration of a package that is not
observable is never in scope. Subpackage declarations are never in scope.

It follows that the package java is alwaysin scope (86.3).

Package declarations never shadow other declarations.

7.5 Import Declarations

Animport declaration allows a static member or anamed type to be referred to by
a simple name (86.2) that consists of a single identifier. Without the use of an
appropriate import declaration, the only way to refer to atype declared in another
package, or a static member of another type, is to use a fully qualified name
(86.7).

ImportDeclaration:
SngleTypelmportDeclaration
Typel mportOnDemandDeclaration
SingleSaticlmportDeclaration
SaticlmportOnDemandDeclaration

A single-type-import declaration (87.5.1) imports a single named type, by men-
tioning its canonical name (86.7).

A type-import-on-demand declaration (87.5.2) imports all the accessible
(86.6) types of a named type or package as needed. It is a compile time error to
import atype from the unnamed package.

A single static import declaration (87.5.3) imports all accessible static mem-
bers with a given name from atype, by giving its canonical name.
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A static-import-on-demand declaration (87.5.4) imports all accessible static
members of a named type as needed.

The scope of atype imported by a single-type-import declaration (§87.5.1) or a
type-import-on-demand declaration (§7.5.2) isal the class and interface type dec-
larations (87.6) in the compilation unit in which the import declaration appears.

The scope of a member imported by a single-static-import declaration
(87.5.3) or a static-import-on-demand declaration (87.5.4) is all the class and
interface type declarations (87.6) in the compilation unit in which the import dec-
laration appears.

An import declaration makes types available by their simple names only
within the compilation unit that actually contains the import declaration. The
scope of the entities(s) it introduces specifically does not include the package
statement, other import declarations in the current compilation unit, or other
compilation unitsin the same package. See §7.5.6 for an illustrative example.

7.5.1 Single-Type-Import Declaration

A single-type-import declaration imports a single type by giving its canonical
name, making it available under a ssmple name in the class and interface declara-
tions of the compilation unit in which the single-type import declaration appears.

SngleTypel mportDeclaration:
import TypeName ;

The TypeName must be the canonical name of a class or interface type; a compile-
time error occurs if the named type does not exist. The named type must be acces-
sible (86.6) or a compile-time error occurs.

A single-type-import declaration d in a compilation unit ¢ of package p that
imports a type named n shadows the declarations of:

* any top level type named n declared in another compilation unit of p.
* any type named n imported by a type-import-on-demand declarationin c.
* any type named n imported by a static-import-on-demand declaration in c.
throughout c.
The example:
import java.util.Vector;

causes the simple name Vector to be available within the class and interface dec-
larations in a compilation unit. Thus, the simple name Vector refers to the type
declaration Vector in the package java.util in al places where it is not shad-
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owed (86.3.1) or obscured (86.3.2) by a declaration of a field, parameter, local
variable, or nested type declaration with the same name.

DiscussIioN

Note that Vector is declared as a generic type. Once imported, the name Vector can be
used without qualification in a parameterized type such as Vector<String>, or as the raw
type Vector.

This highlights a limitation of the import declaration. A type nested inside a generic
type declaration can be imported, but its outer type is always erased.

If two single-type-import declarations in the same compilation unit attempt to
import types with the same simple name, then a compile-time error occurs, unless
the two types are the same type, in which case the duplicate declaration isignored.
If the type imported by the the single-type-import declaration is declared in the
compilation unit that contains the import declaration, the import declaration is
ignored. If a compilation unit contains both a single-static-import (87.5.3) decla-
ration that imports a type whose simple name s n, and a single-type-import decla-
ration (87.5.1) that imports a type whose simple name is n, a compile-time error
OCCUrs.

If another top level type with the same simple name is otherwise declared in
the current compilation unit except by a type-import-on-demand declaration
(87.5.2) or a static-import-on-demand declaration (87.5.4), then a compile-time
error occurs.

So the sample program:

import java.util.Vector;

class Vector { Object[] vec; }
causes a compile-time error because of the duplicate declaration of Vector, as
does:

import java.util.Vector;

import myVector.Vector;
where myVector is a package containing the compilation unit:

package myVector;

public class Vector { Object[] vec; }
The compiler keeps track of types by their binary names (813.1).
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Note that an import statement cannot import a subpackage, only a type. For
example, it does not work to try to import java.util and then use the name
util.Random to refer to thetype java.util.Random:

import java.util; // incorrect: compile-time error

class Test { util.Random generator; }

7.5.2 Type-Import-on-Demand Declar ation

A type-import-on-demand declaration allows all accessible (86.6) types declared
in the type or package named by a canonical name to be imported as needed.

TypelmportOnDemandDeclaration:
import PackageOrTypeName . * ;

It is a compile-time error for a type-import-on-demand declaration to name a
type or package that is not accessible. Two or more type-import-on-demand decla-
rations in the same compilation unit may name the same type or package. All but
one of these declarations are considered redundant; the effect is asif that type was
imported only once.

If acompilation unit contains both a static-import-on-demand declaration and
atype-import-on-demand (87.5.2) declaration that name the same type, the effect
isasif the static member types of that type were imported only once.

It is not a compile-time error to name the current package or java.langina
type-import-on-demand declaration. The type-import-on-demand declaration is
ignored in such cases.

A type-import-on-demand declaration never causes any other declaration to
be shadowed.

The example:

import java.util.*;
causes the simple names of al pub1ic types declared in the package java.util
to be available within the class and interface declarations of the compilation unit.
Thus, the simple name Vector refers to the type Vector in the package
java.util inal placesin the compilation unit where that type declaration is not
shadowed (86.3.1) or obscured (86.3.2). The declaration might be shadowed by a
single-type-import declaration of a type whose simple name is Vector; by atype
named Vector and declared in the package to which the compilation unit belongs,
or any nested classes or interfaces. The declaration might be obscured by a decla-
ration of afield, parameter, or local variable named Vector (It would be unusual
for any of these conditions to occur.)

7.5.2
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7.5.3 Single Static Import Declaration

A single-static-import declaration imports all accessible (86.6) static members
with a given simple name from atype. This makes these static members available
under their simple name in the class and interface declarations of the compilation
unit in which the single-static import declaration appears.

SngleStaticlmportDeclaration:
import static TypeName. Identifier;

The TypeName must be the canonical name of a class or interface type; acompile-
time error occursif the named type does not exist. The named type must be acces-
sible (86.6) or a compile-time error occurs. The Identifier must name at least one
static member of the named type; a compile-time error occursif there is no mem-
ber of that name or if all of the named members are not accessible.

A single-static-import declaration d in a compilation unit ¢ of package p that
imports a field named n shadows the declaration of any static field named n
imported by a static-import-on-demand declaration in ¢, throughout c.

A single-static-import declaration d in a compilation unit ¢ of package p that
imports a method named n with signature s shadows the declaration of any static
method named n with signature s imported by a static-import-on-demand decla-
ration in c, throughout c.

A single-static-import declaration d in a compilation unit ¢ of package p that
imports a type named n shadows the declarations of:

* any static type named n imported by a static-import-on-demand declaration in
C.

« any top level type (87.6) named n declared in another compilation unit (87.3)
of p.

* any type named n imported by a type-import-on-demand declaration (87.5.2)
inc.

throughout c.

Note that it is permissable for one single-static-import declaration to import
several fields or types with the same name, or several methods with the same
name and signature.

If a compilation unit contains both a single-static-import (87.5.3) declaration
that imports a type whose simple name is n, and a single-type-import declaration
(87.5.1) that imports a type whose simple name is n, a compile-time error occurs.

If a single-static-import declaration imports a type whose simple name is n,
and the compilation unit also declares atop level type (87.6) whose simple name
is n, acompile-time error occurs.
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7.5.4 Static-lmport-on-Demand Declaration

A static-import-on-demand declaration allows all accessible (86.6) static mem-
bers declared in the type named by a canonical name to be imported as needed.

SaticlmportOnDemandDeclaration:
import static TypeName . * ;

It isacompile-time error for a static-import-on-demand declaration to name a
type that does not exist or atype that is not accessible. Two or more static-import-
on-demand declarations in the same compilation unit may name the same type or
package; the effect is as if there was exactly one such declaration. Two or more
static-import-on-demand declarations in the same compilation unit may name the
same member; the effect is as if the member was imported exactly once.

Note that it is permissable for one static-import-on-demand declaration to
import severa fields or types with the same name, or several methods with the
same name and signature.

If acompilation unit contains both a static-import-on-demand declaration and
a type-import-on-demand (87.5.2) declaration that name the same type, the effect
isasif the static member types of that type were imported only once.

A static-import-on-demand declaration never causes any other declaration to
be shadowed.

7.5.5 Automatic Imports

Each compilation unit automatically imports al of the public type names
declared in the predefined package java.lang, asif the declaration:

import java.lang.*;

appeared at the beginning of each compilation unit, immediately following any
package statement.

7.5.6 A Strange Example

Package names and type names are usually different under the naming conven-
tions described in 86.8. Nevertheless, in a contrived example where there is an
unconventionally-named package Vector, which declares apub1ic class whose

7.5.6
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nameisMosquito:

package Vector;

public class Mosquito { int capacity; }
and then the compilation unit:

package strange.example;
import java.util.Vector;
import Vector.Mosquito;

class Test {
public static void main(String[] args) {
System.out.printin(new Vector().getClass());
System.out.printin(new Mosquito().getClass());
}
}
the single-type-import declaration (87.5.1) importing class Vector from package
java.util does not prevent the package name Vector from appearing and being
correctly recognized in subsequent import declarations. The example compiles
and produces the output:
class java.util.Vector
class Vector.Mosquito

7.6 Top Level Type Declarations

A top level type declaration declares atop level classtype (88) or atop level inter-
face type (89):

TypeDeclaration:
ClassDeclaration
InterfaceDeclaration

By default, the top level types declared in a package are accessible only
within the compilation units of that package, but a type may be declared to be
public to grant access to the type from code in other packages (86.6, §8.1.1,
§9.1.1).

The scope of atop level typeisall type declarations in the package in which
the top level type is declared.

If atop level type named T is declared in a compilation unit of a package
whose fully qualified name is P, then the fully qualified name of the typeis P. T.
If the type is declared in an unnamed package (87.4.2), then the type has the fully
gualified name T.
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Thusin the example:

package wnj.points;

class Point { int x, y; }
the fully qualified name of class Point iswnj.points.Point.

An implementation of the Java platform must keep track of typeswithin pack-
ages by their binary names (813.1). Multiple ways of naming a type must be
expanded to binary names to make sure that such names are understood as refer-
ring to the sametype.

For example, if acompilation unit contains the single-type-import declaration
(87.5.2):

import java.util.Vector;

then within that compilation unit the ssimple name Vector and the fully qualified
name java.util.Vector refer to the sametype.

When packages are stored in a file system (87.2.1), the host system may
choose to enforce the restriction that it is a compile-time error if a type is not
found in afile under a name composed of the type name plus an extension (such
as .java or .jav) if either of the following istrue:

» The type is referred to by code in other compilation units of the package in
which the type is declared.

» The type is declared public (and therefore is potentially accessible from
code in other packages).

This restriction implies that there must be at most one such type per compilation
unit. This restriction makes it easy for a compiler for the Java programming lan-
guage or an implementation of the Java virtua machine to find a named class
within a package; for example, the source code for a public type
wet.sprocket.Toad would be found in afile Toad. java in the directory wet/
sprocket, and the corresponding object code would be found in the file
Toad.class in the same directory.

When packages are stored in a database (87.2.2), the host system must not
impose such restrictions. In practice, many programmers choose to put each class
or interface type in its own compilation unit, whether or not it is public or is
referred to by code in other compilation units.

A compile-time error occurs if the name of a top level type appears as the
name of any other top level class or interface type declared in the same package
(87.6).

7.6
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A compile-time error occurs if the name of atop level typeis also declared as
atype by a single-type-import declaration (87.5.1) in the compilation unit (87.3)
containing the type declaration.

In the example:

class Point { int x, y; }
the class Point is declared in a compilation unit with no package statement, and
thus Point isitsfully qualified name, whereasin the example:

package vista;

class Point { int x, y; }
the fully qualified name of the class Point is vista.Point. (The package name
vista is suitable for local or personal use; if the package were intended to be
widely distributed, it would be better to give it a unique package name (87.7).)

In the example:

package test;

import java.util.Vector;

class Point {

int x, y;

}

interface Point { // compile-time error #1
int getRQ);
int getTheta();

}

class Vector { Point[] pts; }// compile-time error #2

the first compile-time error is caused by the duplicate declaration of the name
Point as both a 1555 and an interface in the same package. A second error
detected at compile timeisthe attempt to declare the name Vector both by aclass
type declaration and by a single-type-import declaration.

Note, however, that it is not an error for the name of a classto aso to name a
type that otherwise might be imported by a type-import-on-demand declaration
(87.5.2) in the compilation unit (87.3) containing the class declaration. In the
example:

package test;
import java.util.®;
class Vector { Point[] pts; }// notacompile-time error
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the declaration of the class Vector is permitted even though there is also a class
java.util.Vector. Within this compilation unit, the simple name Vector refers
to the class test.Vector, not to java.util.Vector (which can still be referred
to by code within the compilation unit, but only by its fully qualified name).

As another example, the compilation unit:
package points;
class Point {

int x, y; // coordinates
PointColor color; // color of this point
Point next; // next point with this color
static int nPoints;

}

class PointColor {
Point first; // first point with this color
PointColor(int color) {

this.color = color;

}
private int color; // color components

}

defines two classes that use each other in the declarations of their class members.
Because the class types Point and PointColor have all the type declarations in
package points, including all those in the current compilation unit, as their
scope, this example compiles correctly—that is, forward reference is not a prob-
lem.

Itisacompile-timeerror if atop level type declaration contains any one of the
following access modifiers: protected, private oOr static.

7.7 Unigque Package Names

Developers should take steps to avoid the possibility of two published packages
having the same name by choosing unique package names for packages that are
widely distributed. This allows packages to be easily and automatically installed
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and catalogued. This section specifies a suggested convention for generating such
unigue package names. Implementations of the Java platform are encouraged to
provide automatic support for converting a set of packages from local and casual
package names to the unique name format described here.

If unique package names are not used, then package name conflicts may arise
far from the point of creation of either of the conflicting packages. This may
create a situation that is difficult or impossible for the user or programmer to
resolve. The class ClassLoader can be used to isolate packages with the same
name from each other in those cases where the packages will have constrained
interactions, but not in away that is transparent to a naive program.

You form a unique package name by first having (or belonging to an organiza-
tion that has) an Internet domain name, such as sun.com. You then reverse this
name, component by component, to obtain, in this example, com. sun, and use this
as a prefix for your package names, using a convention developed within your
organization to further administer package names.

In some cases, the internet domain name may not be a valid package name.
Here are some suggested conventions for dealing with these situations:

* If the domain name contains a hyphen, or any other special character not
allowed in anidentifier (83.8), convert it into an underscore.

«If any of the resulting package name components are keywords (83.9) then
append underscore to them.

«If any of the resulting package name components start with a digit, or any
other character that is not allowed as an initial character of an identifier, have
an underscore prefixed to the component.

Such a convention might specify that certain directory hame components be
division, department, project, machine, or login names. Some possible examples:

com. sun.sunsoft.DOE

com.sun.java.jag.scrabble

com.apple.quicktime.v2

edu.cmu.cs.bovik.cheese

gov.whitehouse.socks.mousefinder

The first component of a unique package name is aways written in all-lowercase
ASCII letters and should be one of the top level domain names, currently com,
edu, gov, mi1, net, org, or one of the English two-letter codes identifying coun-
tries as specified in 1SO Standard 3166, 1981. For more information, refer to the
documents stored at ftp://rs.internic.net/rfc, for example, rfc920.txt
and rfcl1032. txt.

The name of a package is hot meant to imply where the package is stored
within the Internet; for example, a package named edu.cmu.cs.bovik.cheese
is not necessarily obtainable from Internet address cmu. edu or from cs. cmu. edu
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or from bovik.cs.cmu.edu. The suggested convention for generating unique
package names is merely away to piggyback a package naming convention on top
of an existing, widely known unique name registry instead of having to create a
separate registry for package names.

1.7
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CHAPTER 8

Classes

CLASS declarations define new reference types and describe how they are
implemented (88.1).

A nested class is any class whose declaration occurs within the body of
another class or interface. A top level classisaclassthat is not a nested class.

This chapter discusses the common semantics of all classes—top level (87.6)
and nested (including member classes (88.5, §9.5), local classes (814.3) and anon-
ymous classes (815.9.5)). Details that are specific to particular kinds of classes are
discussed in the sections dedicated to these constructs.

A named class may be declared abstract (88.1.1.1) and must be declared
abstract if it isincompletely implemented; such a class cannot be instantiated,
but can be extended by subclasses. A class may be declared final (88.1.1.2), in
which case it cannot have subclasses. If aclassis declared public, then it can be
referred to from other packages. Each class except Object isan extension of (that
is, a subclass of) a single existing class (88.1.4) and may implement interfaces
(88.1.5). Classes may be generic, that is, they may declare type variables (84.4)
whose bindings may differ among different instances of the class.

Classes may be decorated with annotations (89.7) just like any other kind of
declaration.

The body of a class declares members (fields and methods and nested classes
and interfaces), instance and static initializers, and constructors (88.1.6). The
scope (86.3) of amember (88.2) isthe entire body of the declaration of the classto
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which the member belongs. Field, method, member class, member interface, and
constructor declarations may include the access modifiers (86.6) public, pro-
tected, or private. The members of a class include both declared and inherited
members (88.2). Newly declared fields can hide fields declared in a superclass or
superinterface. Newly declared class members and interface members can hide
class or interface members declared in a superclass or superinterface. Newly
declared methods can hide, implement, or override methods declared in a super-
class or superinterface.

Field declarations (88.3) describe class variables, which are incarnated once,
and instance variables, which are freshly incarnated for each instance of the class.
A field may be declared final (88.3.1.2), in which caseit can be assigned to only
once. Any field declaration may include an initializer.

Member class declarations (88.5) describe nested classes that are members of
the surrounding class. Member classes may be static, in which case they have
no access to the instance variables of the surrounding class; or they may be inner
classes (88.1.3).

Member interface declarations (88.5) describe nested interfaces that are mem-
bers of the surrounding class.

Method declarations (88.4) describe code that may be invoked by method
invocation expressions (815.12). A class method is invoked relative to the class
type; an instance method is invoked with respect to some particular object that is
an instance of aclasstype. A method whose declaration does not indicate how it is
implemented must be declared abstract. A method may be declared final
(88.4.3.3), in which case it cannot be hidden or overridden. A method may be
implemented by platform-dependent native code (88.4.3.4). A synchronized
method (88.4.3.6) automatically locks an object before executing its body and
automatically unlocks the object on return, asif by use of a synchronized state-
ment (814.19), thus alowing its activities to be synchronized with those of other
threads (817).

Method names may be overloaded (88.4.9).

Instance initializers (88.6) are blocks of executable code that may be used to
help initialize an instance when it is created (815.9).

Static initializers (88.7) are blocks of executable code that may be used to
help initialize a class.

Constructors (88.8) are similar to methods, but cannot be invoked directly by
a method call; they are used to initialize new class instances. Like methods, they
may be overloaded (88.8.8).
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8.1 ClassDeclaration

A class declaration specifies a new named reference type. There are two kinds of
class declarations - normal class declarations and enum declarations:
ClassDeclaration:
Normal ClassDeclaration
EnumbDeclaration

Normal ClassDeclaration:
ClassModifiersyy class Identifier TypeParametersyy SUperop
Interfacesyy ClassBody

Therulesin this section apply to all class declarations unless this specification
explicitly states otherwise. In many cases, special restrictions apply to enum dec-
larations. Enum declarations are described in detail in §8.9.

The Identifier in a class declaration specifies the name of the class. A com-
pile-time error occurs if a class has the same simple name as any of its enclosing
classes or interfaces.

8.1.1 ClassModifiers

A class declaration may include class modifiers.

ClassModifiers:
ClassModifier
ClassModifiers ClassModifier

ClassModifier: one of
Annotation public protected private
abstract static final strictfp

Not all modifiers are applicable to all kinds of class declarations. The access
modifier pub1ic pertains only to top level classes (87.6) and to member classes
(88.5, 89.5), and is discussed in 86.6, 88.5 and 89.5. The access modifiers
protected and private pertain only to member classes within a directly enclos-
ing class declaration (88.5) and are discussed in 88.5.1. The access modifier
static pertains only to member classes (88.5, §9.5). A compile-time error occurs
if the same modifier appears more than once in a class declaration.

If an annotation a on a class declaration corresponds to an annotation type T,
and T has a (meta-)annotation m that corresponds to annotation.Target, then m
must have an element whose value is annotation.ElementType.TYPE, Or a
compile-time error occurs. Annotation modifiers are described further in §9.7.

8.11
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If two or more class modifiers appear in a class declaration, then it is custom-
ary, though not required, that they appear in the order consistent with that shown
above in the production for ClassModifier.

8.1.1.1 abstract Classes

An abstract classis a class that is incomplete, or to be considered incom-
plete. Normal classes may have abstract methods (88.4.3.1, 89.4), that is meth-
ods that are declared but not yet implemented, only if they are abstract classes.
If anormal classthat isnot abstract contains an abstract method, then a com-
pile-time error occurs.

Enum types (88.9) must not be declared abstract; doing so will result in a
compile-time error. It is a compile-time error for an enum type E to have an
abstract method m as a member unless E has one or more enum constants, and all
of E's enum constants have class bodies that provide concrete implementations of
m. 1t is acompile-time error for the class body of an enum constant to declare an
abstract method.

A class C has abstract methodsif any of the following is true:

» Cexplicitly contains a declaration of an abstract method (§8.4.3).

» Any of C's superclasses has an abstract method and C neither declares nor
inherits a method that implements (§8.4.8.1) it.

* A direct superinterface (88.1.5) of C declares or inherits a method (which is
therefore necessarily abstract) and C neither declares nor inherits a method
that implementsit.

In the example:

abstract class Point {
int x =1, y=1;
void move(int dx, int dy) {

X += dx;
y += dy;
alert();
}
abstract void alert();
}
abstract class ColoredPoint extends Point {
int color;
}
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class SimplePoint extends Point {
void alert() { }
}

aclass Point is declared that must be declared abstract, because it contains a
declaration of an abstract method named alert. The subclass of Point named
ColoredPoint inherits the abstract method alert, so it must also be declared
abstract. On the other hand, the subclass of Point named SimplePoint pro-
vides an implementation of alert, so it need not be abstract.

A compile-time error occurs if an attempt is made to create an instance of an
abstract classusing aclass instance creation expression (815.9).

Thus, continuing the example just shown, the statement:

Point p = new Point();
would result in a compile-time error; the class Point cannot be instantiated
because it is abstract. However, a Point variable could correctly be initialized
with a reference to any subclass of Point, and the class SimplePoint is hot
abstract, so the statement:

Point p = new SimplePoint();
would be correct.

A subclass of an abstract class that is not itself abstract may be instanti-
ated, resulting in the execution of a constructor for the abstract class and, there-
fore, the execution of thefield initializersfor instance variables of that class. Thus,
in the example just given, instantiation of a Simp1ePoint causes the default con-
structor and field initializers for x and y of Point to be executed.

It isacompile-time error to declare an abstract class type such that it is not
possible to create a subclass that implements all of its abstract methods. This
situation can occur if the class would have as members two abstract methods
that have the same method signature (88.4.2) but incompatible return types.

As an example, the declarations:

interface Colorable { void setColor(int color); }

abstract class Colored implements Colorable {

abstract int setColor(int color);

}

result in a compile-time error: it would be impossible for any subclass of class
Colored to provide an implementation of a method named setCoTlor, taking one
argument of type int, that can satisfy both abstract method specifications,
because the one in interface Colorable requires the same method to return no
value, while the one in class Colored requires the same method to return avalue
of typeint (88.4).

A classtype should be declared abstract only if theintent isthat subclasses
can be created to complete the implementation. If the intent is simply to prevent

8.11
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instantiation of a class, the proper way to express this is to declare a constructor
(88.8.10) of no arguments, make it private, never invoke it, and declare no other
constructors. A class of this form usually contains class methods and variables.
The classMath is an example of a class that cannot be instantiated; its declaration
lookslikethis:

public final class Math {

private Math() { } // never instantiate this class
.. . declarations of class variables and methods.. . .

}

8.1.1.2 final Classes

A class can be declared final if its definition is complete and no subclasses are
desired or required. A compile-time error occurs if the name of a final class
appearsin the extends clause (88.1.4) of another class declaration; thisimplies
that a final class cannot have any subclasses. A compile-time error occurs if a
classisdeclared both final and abstract, because the implementation of such a
class could never be completed (88.1.1.1).

Because afinal class never has any subclasses, the methods of afinal class
are never overridden (88.4.8.1).

8.1.1.3 strictfp Classes

The effect of the strictfp modifier isto make all float or double expressions
within the class declaration be explicitly FP-strict (815.4). This implies that all
methods declared in the class, and all nested types declared in the class, are
implicitly strictfp.

Note also that al float or double expressions within all variable initializ-
ers, instance initializers, static initializers and constructors of the classwill also be
explicitly FP-strict.

8.1.2 Generic Classes and Type Parameters

A classisgenericif it declares one or more type variables (84.4). These type vari-
ables are known as the type parameters of the class. The type parameter section
follows the class name and is delimited by angle brackets. It defines one or more
type variables that act as parameters. A generic class declaration defines a set of
parameterized types, one for each possible invocation of the type parameter sec-
tion. All of these parameterized types share the same class at runtime.
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DiscussIioN

For instance, executing the code
Vector<String> x = new Vector<String>(Q);
Vector<Integer> y = new Vector<Integer>();
boolean b = x.getClass() == y.getClass();

will result in the variable b holding the value true.

TypeParameters ::= < TypeParameterList >
TypeParameterList ::= TypeParameterList , TypeParameter
| TypeParameter

It is a compile-time error if a generic class is adirect or indirect subclass of
Throwable.

DiscussIoN

This restriction is needed since the catch mechanism of the Java virtual machine works
only with non-generic classes.

The scope of a class type parameter is the entire declaration of the class
including the type parameter section itself. Therefore, type parameters can appear
as parts of their own bounds, or as bounds of other type parameters declared in the
same section.

It isacompile-time error to refer to atype parameter of a class C anywherein
the declaration of a static member of C or the declaration of a static member of
any type declaration nested within C. It is a compile-time error to refer to atype
parameter of a class C within a static initializer of C or any class nested within C.

DiscussioN

Example: Mutually recursive type variable bounds.
interface ConvertibleTo<T> {

8.1.2
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T convert();

}

class ReprChange<T implements ConvertibleTo<S>,
S implements ConvertibleTo<T>> {
T t;
void set(S s) { t = s.convert(); }
S get() { return t.convert(); }

Parameterized class declarations can be nested inside other declarations.

DiscussioN

This is illustrated in the following example:
class Seq<T> {
T head;
Seq<T> tail;
Seq() { this(null, null); }
boolean isEmpty() { return tail == null; }
Seq(T head, Seq<T> tail) { this.head = head; this.tail = tail; }

class Zipper<S> {
Seq<Pair<T,S>> zip(Seq<S> that) {
if (this.isEmpty() || that.isEmpty())
return new Seq<Pair<T,S>>(Q);
else
return new Seq<Pair<T,S>>(
new Pair<T,S>(this.head, that.head),
this.tail.zip(that.tail));

}
3
}
class Pair<T, S> {
T fst; S Snd;
Pair(T f, S s) {fst = f; snd = s;}
}

class Client {
{
Seq<String> strs =
new Seq<String>("a", new Seq<String>("b",
new Seq<String>()));
Seg<Number> nums =
new Seq<Number>(new Integer(l),

new Seq<Number>(new Double(1.5),
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new Seq<Number>()));
Seq<String>.Zipper<Number> zipper =
strs.new Zipper<Number>();
Seqg<Pair<String,Number>> combined = zipper.zip(nums);

}

8.1.3 Inner Classes and Enclosing I nstances

An inner class is a nested class that is not explicitly or implicitly declared
static. Inner classes may not declare static initializers (88.7) or member inter-
faces. Inner classes may not declare static members, unless they are compile-time
constant fields (815.28).

To illustrate these rules, consider the example below:

class HasStatic{

static int j = 100;
}

class Outer{
class Inner extends HasStatic{
static final int x = 3;// ok - compile-time constant
static int y = 4; // compile-time error, an inner class
}

static class NestedButNotInner{ _
static int z = 5; // ok, not aninner class
}

interface NeverInner{}// interfacesare never inner
}

Inner classes may inherit static members that are not compile-time constants even
though they may not declare them. Nested classes that are not inner classes may
declare static members freely, in accordance with the usual rules of the Java pro-
gramming language. Member interfaces (88.5) are always implicitly static so they
are never considered to be inner classes.

A statement or expression occurs in a static context if and only if the inner-
most method, constructor, instance initializer, static initializer, field initializer, or
explicit constructor invocation statement enclosing the statement or expression is
astatic method, a static initializer, the variable initializer of a static variable, or an
explicit constructor invocation statement (88.8.7).

Aninner class Cisadirect inner class of a class 0if 0 istheimmediately lex-
ically enclosing class of € and the declaration of C does not occur in a static con-

8.1.3
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text. A class Cisaninner class of class 0 if it is either a direct inner class of 0 or
an inner class of an inner class of 0.

A class 0 is the zeroth lexically enclosing class of itself. A class 0 is the nth
lexically enclosing class of a class Cif it isthe immediately enclosing class of the
n—1st lexically enclosing class of C.

An instance 7 of a direct inner class C of a class 0 is associated with an
instance of 0, known as the immediately enclosing instance of 7. The immediately
enclosing instance of an object, if any, is determined when the object is created
(815.9.2).

An abject o is the zeroth lexically enclosing instance of itself. An object o is
the nth lexically enclosing instance of an instance 7 if it is the immediately
enclosing instance of the n—1 st lexically enclosing instance of 7.

When an inner class refers to an instance variable that is a member of alexi-
cally enclosing class, the variable of the corresponding lexically enclosing
instance is used. A blank final (84.12.4) field of a lexically enclosing class may
not be assigned within an inner class.

An instance of an inner class T whose declaration occurs in a static context
has no lexically enclosing instances. However, if Tisimmediately declared within
a static method or static initializer then T does have an enclosing block, which is
the innermost block statement lexically enclosing the declaration of I.

Furthermore, for every superclass S of Cwhichisitself adirect inner classof a
class S0, there is an instance of S0 associated with 7, known as the immediately
enclosing instance of i with respect to S. The immediately enclosing instance of an
object with respect to its class' direct superclass, if any, is determined when the
superclass constructor isinvoked viaan explicit constructor invocation statement.

Any local variable, forma method parameter or exception handler parameter
used but not declared in an inner class must be declared final. Any local vari-
able, used but not declared in an inner class must be definitely assigned (816)
before the body of the inner class.

Inner classes include local (814.3), anonymous (815.9.5) and non-static mem-
ber classes (88.5). Here are some examples:

class Outer {

int i = 100;
static void classMethod() {
final int 1 = 200;
class LocalInStaticContext{
int k = i; // compile-time error
intm=1; // ok
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void foo() {
class Local { // alocal class
int j = 1
}

}

The declaration of class LocalInStaticContext Occursin astatic context—
within the static method cl1assMethod. Instance variables of class Outer are not
available within the body of a static method. In particular, instance variables of
Outer are not available inside the body of LocalInStaticContext. However,
local variables from the surrounding method may be referred to without error
(provided they are marked final).

Inner classes whose declarations do not occur in a static context may freely
refer to the instance variables of their enclosing class. An instance variable is
always defined with respect to an instance. In the case of instance variables of an
enclosing class, the instance variable must be defined with respect to an enclosing
instance of that class. So, for example, the class Local above has an enclosing
instance of class Outer. Asafurther example:

class WithDeepNesting{
boolean toBe;

WithDeepNesting(boolean b) { toBe = b;}

class Nested {
boolean theQuestion;
class DeeplyNested {
DeeplyNested() {
theQuestion = toBe || !toBe;

}

}

Here, every instance of WithDeepNesting.Nested.DeeplyNested has an
enclosing instance of class WithDeepNesting.Nested (its immediately enclos-
ing instance) and an enclosing instance of class WithDeepNesting (its 2nd lexi-
cally enclosing instance).

8.1.3
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8.1.4 Superclasses and Subclasses

The optional extends clause in a normal class declaration specifies the direct
superclass of the current class.

Super:
extends ClassType

Thefollowing is repeated from 84.3 to make the presentation here clearer:

ClassType:
TypeDecl Soecifier TypeArgumentsyp

A classissaid to be adirect subclass of its direct superclass. The direct super-
class is the class from whose implementation the implementation of the current
class is derived. The direct superclass of an enum type E is Enum<E>. The
extends clause must not appear in the definition of the classObject, becauseitis
the primordial class and has no direct superclass.

Given a (possibly generic) class declaration for C<Fip,...,Fp> n=0,
C # Object , the direct superclass of the classtype (84.5) C<Fyq, .. ., Fp> isthetype
given in the extends clause of the declaration of Cif an extends clause is present,
or Object otherwise.

Let C<Fy1,...,Fp> n>0, beageneric class declaration. The direct superclass
of the parameterized class type C<Ty1,...,Tp>, Where T4, 1<i<n, isatype, is
D<U7 theta , ..., Uk theta>, where D<U7, ..., Ur> isthe direct superclass of
C<F1,...,Fp> andthetaisthe substitution [F; := Ty, ..., Fp = Tp].

The ClassType must name an accessible (86.6) class type, or a compile-time
error occurs. If the specified ClassType names a class that is final (88.1.1.2),
then a compile-time error occurs; final classes are not alowed to have sub-
classes. It is a compile-time error if the ClassType names the class Enum or any
invocation of it. If the TypeName is followed by any type arguments, it must be a
correct invocation of the type declaration denoted by TypeName, and none of the
type arguments may be wildcard type arguments, or a compile-time error occurs.

In the example:

class Point { int x, y; }
final class ColoredPoint extends Point { int color; }

class Colored3DPoint extends ColoredPoint { int z; } // error
the relationships are as follows:

* Theclass Point isadirect subclass of Object.
* The classObject isthe direct superclass of the class Point.
* The class ColoredPoint isadirect subclass of class Point.
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» The class Point isthe direct superclass of class ColoredPoint.

The declaration of class CoTored3dPoint causes a compile-time error because it
attempts to extend the final class ColoredPoint.

The subclass relationship is the transitive closure of the direct subclass rela-
tionship. A class A isasubclass of class C if either of the following is true:

* Aisthedirect subclass of C.

* There exists a class B such that A is a subclass of B, and B is a subclass of C,
applying this definition recursively.

Class C issaid to be a superclass of class A whenever A isasubclass of C.
In the example:
class Point { int x, y; }
class ColoredPoint extends Point { int color; }

final class Colored3dPoint extends ColoredPoint { int z; }
the relationships are as follows:

* The class Point isasuperclass of class ColoredPoint.

* The class Point isasuperclass of class Colored3dPoint.

* The class ColoredPoint isasubclass of class Point.

* The class ColoredPoint isasuperclass of class Colored3dPoint.
* The class Colored3dPoint isasubclass of class ColoredPoint.

* The class Colored3dPoint isasubclass of class Point.

A class Cdirectly depends on atype Tif Tismentioned in the extends or imple-
ments clause of C either as a superclass or superinterface, or as a qualifier of a
superclass or superinterface name. A class C depends on a reference type T if any
of the following conditions hold:

» Cdirectly dependson T.
 Cdirectly depends on an interface I that depends (89.1.3) on T.
» Cdirectly depends on aclass D that depends on T (using this definition recur-
sively).
It isacompile-time error if aclass depends on itself.
For example:

class Point extends ColoredPoint { int x, y; }

class ColoredPoint extends Point { int color; }

8.14
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causes a compile-time error.
If circularly declared classes are detected at run time, as classes are loaded
(812.2), then aClassCircularityError isthrown.

8.1.5 Superinterfaces

The optiona implements clause in a class declaration lists the names of inter-
faces that are direct superinterfaces of the class being declared:

Interfaces:
implements InterfaceTypelist

InterfaceTypelist:
InterfaceType
InterfaceTypeList , InterfaceType

The following is repeated from 84.3 to make the presentation here clearer:

InterfaceType:
TypeDecl Soecifier TypeArgumentsyp
Given a (possibly generic) class declaration for C<Fi,...,Fp> n=0,
C # Object, the direct superinterfaces of the class type (84.5) C<Fy, ..., Fp> ae

the types given in the implements clause of the declaration of C if an implements
clause is present.

Let C<Fy1,...,Fp> n>0, be a generic class declaration. The direct super-
interfaces of the parameterized classtype C<T7, ..., Tp>,Where T4, 1<i<n,isa
type, are dl types I<U; theta , ..., Ug theta>, where I<U7,...,Ur> IS a
direct superinterface of C<Fy, ..., Fp>, and theta is the substitution [F; := T1, ...,
Fn:=T4l.

Each InterfaceType must name an accessible (86.6) interface type, or a com-
pile-time error occurs. If the TypeName is followed by any type arguments, it must
be a correct invocation of the type declaration denoted by TypeName, and none of
the type arguments may be wildcard type arguments, or a compile-time error
OCCUrs.

A compile-time error occurs if the same interface is mentioned as a direct
superinterface two or moretimesin asingle implements clause names.

Thisistrue even if the interface is named in different ways; for example, the
code:

class Redundant implements java.lang.Cloneable, Cloneable {
int x;

}
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results in a compile-time error because the names java.lang.Cloneable and
Cloneable refer to the same interface.

An interface type I is a superinterface of class type C if any of the following
istrue:

» TIisadirect superinterface of C.

 C has some direct superinterface J for which T is a superinterface, using the
definition of “superinterface of an interface” givenin 89.1.3.

» I isasuperinterface of the direct superclass of C.

A classissaid to implement all its superinterfaces.
In the example:
public interface Colorable {

void setColor(int color);
int getColor(Q);
}

public enum Finish {MATTE, GLOSSY}

pubTlic interface Paintable extends Colorable {
void setFinish(Finish finish);
Finish getFinish();

}

class Point { int x, y; }

class ColoredPoint extends Point implements Colorable {
int color;
public void setColor(int color) { this.color = color; }
public int getColor() { return color; }
}
class PaintedPoint extends ColoredPoint implements Paintable
{
Finish finish;
public void setFinish(Finish finish) {
this.finish = finish;
}

pubTlic Finish getFinish() { return finish; }
}
the relationships are as follows:
» Theinterface Paintable is asuperinterface of class PaintedPoint.

* The interface Colorable is a superinterface of class ColoredPoint and of
class PaintedPoint.

8.15
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* The interface Paintable is a subinterface of the interface Colorable, and
Colorable isasuperinterface of Paintable, asdefined in 89.1.3.

A class can have a superinterface in more than one way. In this example, the
class PaintedPoint has Colorable as a superinterface both because it is a
superinterface of ColoredPoint and becauseit is asuperinterface of Paintable.
Unless the class being declared is abstract, the declarations of all the method
members of each direct superinterface must be implemented either by a declara-
tion in this class or by an existing method declaration inherited from the direct
superclass, because a class that is not abstract is not permitted to have
abstract methods (88.1.1.1).

Thus, the example:

interface Colorable {

void setColor(int color);

int getColor(Q);
}

class Point { int x, y; };

class ColoredPoint extends Point implements Colorable {
int color;

}
causes a compile-time error, because ColoredPoint isnot an abstract class but
it fails to provide an implementation of methods setColor and getColor of the
interface Colorable.

It is permitted for asingle method declaration in a class to implement methods
of more than one superinterface. For example, in the code:

interface Fish { int getNumberOfScales(); }
interface Piano { int getNumberOfScales(); }

class Tuna implements Fish, Piano {

// You can tune a piano, but can you tunafish?
int getNumberOfScales() { return 91; }

}
the method getNumberOfScales in class Tuna has a hame, signature, and return
type that matches the method declared in interface Fish and also matches the
method declared in interface Piano; it is considered to implement both.

On the other hand, in a situation such as this:

interface Fish { int getNumberOfScales(); }
interface StringBass { double getNumberOfScales(); }

class Bass implements Fish, StringBass {
// Thisdeclaration cannot be correct, no matter what typeis used.
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public ??? getNumberOfScales() { return 91; }
}

It isimpossible to declare a method named getNumber0fScales whose signature
and return type are compatible with those of both the methods declared in inter-
face Fish and in interface StringBass, because a class cannot have multiple
methods with the same signature and different primitive return types (88.4).
Therefore, it isimpossible for asingle class to implement both interface Fish and
interface StringBass (88.4.8).

A class may not at the same time be a subtype of two interface types which
are different invocations of the same generic interface (§9.1.2), or an invocation of
ageneric interface and a raw type naming that same generic interface.

DiscussioN

Here is an example of an illegal multiple inheritance of an interface:
class B implements I<Integer>
class C extends B implements I<String>

This requirement was introduced in order to support translation by type erasure (84.6).

8.1.6 ClassBody and Member Declarations

A class body may contain declarations of members of the class, that is, fields
(88.3), classes (88.5), interfaces (88.5) and methods (88.4). A class body may also
contain instance initializers (88.6), static initializers (88.7), and declarations of
constructors (88.8) for the class.

ClassBody:
{ ClassBodyDeclarationsyy }

ClassBodyDeclarations:
ClassBodyDeclaration
ClassBodyDeclarations ClassBodyDeclaration

ClassBodyDeclaration:
ClassMember Declaration
Instancel nitializer
Saticlnitializer
ConstructorDeclaration
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ClassMember Declaration:
FieldDeclaration
MethodDeclaration
ClassDeclaration
InterfaceDeclaration

H

The scope of a declaration of a member m declared in or inherited by a class
type Cisthe entire body of C, including any nested type declarations.

If Citself isanested class, there may be definitions of the same kind (variable,
method, or type) and name as m in enclosing scopes. (The scopes may be blocks,
classes, or packages.) In all such cases, the member m declared or inherited in C
shadows (86.3.1) the other definitions of the same kind and name.

8.2 ClassMembers

The members of aclasstype are all of the following:

» Membersinherited from its direct superclass (88.1.4), except in classObject,
which has no direct superclass

« Membersinherited from any direct superinterfaces (88.1.5)
* Members declared in the body of the class (88.1.6)
Members of aclass that are declared private are not inherited by subclasses
of that class. Only members of a classthat are declared protected or public are
inherited by subclasses declared in a package other than the one in which the class

is declared.
We use the phrase the type of a member to denote:

» For afield, itstype.
» For amethod, an ordered 3-tuple consisting of:

o argument types: alist of the types of the arguments to the method member.
o return type: the return type of the method member and the

o throws clause: exception types declared in the throws clause of the method
member.
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Constructors, static initializers, and instance initializers are not members and
therefore are not inherited.

The example:

class Point {
int x, y;
private Point() { reset(); }
Point(int x, int y) { this.x = x; this.y = y; }
private void reset() { this.x = 0; this.y = 0; }

}
class ColoredPoint extends Point {

int color;

void clear() { reset(); } // error
}

class Test {

public static void main(String[] args) {
ColoredPoint ¢ = new ColoredPoint(@, 0);// eror
c.reset(); // error

}
causes four compile-time errors:

* An error occurs because ColoredPoint has no constructor declared with two
integer parameters, as requested by the use in main. This illustrates the fact
that ColoredPoint does not inherit the constructors of its superclass Point.

» Another error occurs because ColoredPoint declares no constructors, and

therefore a default constructor for it is automatically created (88.8.9), and this
default constructor is equivalent to:

ColoredPoint() { super(); }

which invokes the constructor, with no arguments, for the direct superclass of
theclassColoredPoint. Theerror isthat the constructor for Point that takes
no argumentsis private, and therefore is not accessible outside the class
Point, even through a superclass constructor invocation (88.8.7).

Two more errors occur because the method reset of classPoint isprivate, and
therefore is not inherited by class ColoredPoint. The method invocations in

method clear of class ColoredPoint and in method main of class Test are
therefore not correct.

8.2
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8.2.1 Examplesof Inheritance

This section illustrates inheritance of class members through several examples.

8.2.1.1 Example: Inheritance with Default Access

Consider the example where the points package declares two compilation units:
package points;

public class Point {

int x, y;

public void move(int dx, int dy) { x += dx; y += dy; }
}

and:
package points;
public class Point3d extends Point {
int z;
public void move(int dx, int dy, int dz) {
X += dx; y += dy; z += dz;
}

}
and athird compilation unit, in another package, is.

import points.Point3d;

class Point4d extends Point3d {
int w;
public void move(int dx, int dy, int dz, int dw) {

X += dx; y += dy; z += dz; w += dw; // compile-timeerrors

}

}

Here both classes in the points package compile. The class Point3d inherits the
fields x and y of class Point, because it is in the same package as Point. The
class Point4d, which isin a different package, does not inherit the fields x and y
of class Point or thefield z of class Point3d, and so fails to compile.

A better way to write the third compilation unit would be:

import points.Point3d;
class Point4d extends Point3d {
int w;
public void move(int dx, int dy, int dz, int dw) {
super.move(dx, dy, dz); w += dw;
}
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using the move method of the superclass Point3d to process dx, dy, and dz. If
Point4d iswritten in thisway it will compile without errors.

8.2.1.2 Inheritance with public and protected

Given the class Point:
package points;
public class Point {
public int x, y;
protected int useCount = 0;
static protected int totalUseCount = 0;

public void move(int dx, int dy) {
X += dx; y += dy; useCount++; totalUseCount++;
}
}

the pubTic and protected fields x, y, useCount and totalUseCount are inher-
ited in all subclasses of Point.

Therefore, this test program, in another package, can be compiled success-
fully:

class Test extends points.Point {

pubTlic void moveBack(int dx, int dy) {
X -= dx; y -= dy; useCount++; totalUseCount++;
3

8.2.1.3 Inheritancewith private

In the example:
class Point {
int x, y;

void move(int dx, int dy) {
X += dx; y += dy; totalMoves++;

}
private static int totalMoves;
void printMoves() { System.out.println(totalMoves); }

821

193



821

194

Examples of Inheritance CLASSES

class Point3d extends Point {
int z;
void move(int dx, int dy, int dz) {
super.move(dx, dy); z += dz; totalMoves++;

}
}

the class variable totalMoves can be used only within the class Point; it is hot
inherited by the subclass Point3d. A compile-time error occurs because method
move Of class Point3d triesto increment totalMoves.

8.2.1.4 Accessing Members of Inaccessible Classes

Even though a class might not be declared pub11 c, instances of the class might be
available at run time to code outside the package in which it is declared by means
apublic superclass or superinterface. An instance of the class can be assigned to
avariable of such apubic type. Aninvocation of apub1ic method of the object
referred to by such avariable may invoke a method of the classif it implements or
overrides a method of the pub1ic superclass or superinterface. (In this situation,
the method is necessarily declared public, even though it is declared in a class
that isnot public.)
Consider the compilation unit:

package points;

public class Point {
public int x, y;
public void move(int dx, int dy) {
X += dx; y += dy;
}

}
and another compilation unit of another package:

package morePoints;

class Point3d extends points.Point {
public int z;
public void move(int dx, int dy, int dz) {
super.move(dx, dy); z += dz;
}

pubTlic void move(int dx, int dy) {
move(dx, dy, 0);
}
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pubTlic class OnePoint {

public static points.Point getOne() {
return new Point3d(Q);
}

An invocation morePoints.OnePoint.getOne() in yet a third package would
return a Point3d that can be used as a Point, even though the type Point3d is
not available outside the package morePoints. The two argument version of
method move could then be invoked for that object, which is permissible because
method move of Point3d ispublic (asit must be, for any method that overridesa
pub1ic method must itself be pub1ic, precisely so that situations such asthiswill
work out correctly). The fields x and y of that object could also be accessed from
such athird package.

While the field z of class Point3d ispublic, it is not possible to access this
field from code outside the package morePoints, given only a reference to an
instance of class Point3d in a variable p of type Point. This is because the
expression p.z is not correct, as p has type Point and class Point has no field
named z; also, the expression ((Point3d)p) .z is hot correct, because the class
type Point3d cannot be referred to outside package morePoints.

The declaration of the field z as pub1ic is not useless, however. If there were
to be, in package morePoints, apublic subclass Point4d of the class Point3d:

package morePoints;

public class Point4d extends Point3d {
pubTlic int w;
public void move(int dx, int dy, int dz, int dw) {
super.move(dx, dy, dz); w += dw;
}

then class Point4d would inherit the field z, which, being pub1ic, could then be
accessed by code in packages other than morePoints, through variables and
expressions of the pub1i c type Point4d.
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8.3 Fidld Declarations

The variables of a class type are introduced by field declarations:

FieldDeclaration:
FieldModifiersyy Type VariableDeclarators ;

VariableDeclarators:
VariableDeclarator
VariableDeclarators , VariableDeclarator

VariableDeclarator:
VariableDeclaratorld
VariableDeclaratorld = Variablelnitializer

VariableDeclarator|d:
Identifier
VariableDeclaratorld [ ]

Variablelnitializer:
Expression
Arraylnitializer

The FieldModifiers are described in 88.3.1. The Identifier in a FieldDeclarator
may be used in a name to refer to the field. Fields are members; the scope (86.3)
of afield declaration is specified in 88.1.6. More than one field may be declared in
a single field declaration by using more than one declarator; the FieldModifiers
and Type apply to al the declarators in the declaration. Variable declarations
involving array types are discussed in §10.2.

It is a compile-time error for the body of a class declaration to declare two
fields with the same name. Methods, types, and fields may have the same name,
since they are used in different contexts and are disambiguated by different lookup
procedures (86.5).

If the class declares a field with a certain name, then the declaration of that
field is said to hide any and all accessible declarations of fields with the same
name in superclasses, and superinterfaces of the class. The field declaration also
shadows (86.3.1) declarations of any accessible fields in enclosing classes or
interfaces, and any local variables, formal method parameters, and exception han-
dler parameters with the same name in any enclosing blocks.
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If afield declaration hides the declaration of another field, the two fields need
not have the same type.

A class inherits from its direct superclass and direct superinterfaces al the
non-private fields of the superclass and superinterfaces that are both accessible to
code in the class and not hidden by a declaration in the class.

Note that a private field of a superclass might be accessible to a subclass (for
example, if both classes are members of the same class). Nevertheless, a private
field is never inherited by a subclass.

It is possible for a class to inherit more than one field with the same name
(88.3.3.3). Such asituation does not in itself cause acompile-time error. However,
any attempt within the body of the class to refer to any such field by its simple
name will result in a compile-time error, because such a reference is ambiguous.

There might be several paths by which the same field declaration might be
inherited from an interface. In such a situation, the field is considered to be inher-
ited only once, and it may be referred to by its smple name without ambiguity.

A hidden field can be accessed by using a qualified name (if it is static) or
by using afield access expression (8§15.11) that contains the keyword super or a
cast to a superclass type. See §15.11.2 for discussion and an example.

A value stored in afield of type float is aways an element of the float value
set (84.2.3); similarly, a value stored in a field of type double is aways an ele-
ment of the double value set. It is not permitted for afield of type f1oat to contain
an element of the float-extended-exponent value set that is not also an element of
the float value set, nor for afield of type double to contain an element of the dou-
ble-extended-exponent value set that is not also an element of the double value
Set.

8.3.1 Fied Modifiers

FieldModifiers:
FieldModifier
FieldModifiers FieldModifier

FieldModifier: one of
Annotation public protected private
static final transient volatile

The access modifiers pub1ic, protected, and private are discussed in §86.6. A
compile-time error occurs if the same modifier appears more than once in a field
declaration, or if a field declaration has more than one of the access modifiers
public, protected, and private.

If an annotation a on afield declaration corresponds to an annotation type T,
and T has a (meta-)annotation m that corresponds to annotation.Target, then m

83.1
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must have an element whose value is annotation.ElementType.FIELD, or a
compile-time error occurs. Annotation modifiers are described further in 89.7.

If two or more (distinct) field modifiers appear in afield declaration, it is cus-
tomary, though not required, that they appear in the order consistent with that
shown above in the production for FieldModifier.

8.3.1.1 static Fields

If afield is declared static, there exists exactly one incarnation of the field, no
matter how many instances (possibly zero) of the class may eventually be created.
A static field, sometimes called a class variable, isincarnated when the class is
initialized (812.4).

A field that is not declared static (sometimes called anon-static field) is
called an instance variable. Whenever a new instance of aclassis created, a new
variable associated with that instance is created for every instance variable
declared in that class or any of its superclasses. The example program:

class Point {

int x, y, useCount;
Point(int x, int y) { this.x = x; this.y = y; }
final static Point origin = new Point(0, 0);

}

class Test {
public static void main(String[] args) {
Point p = new Point(1,1);
Point q = new Point(2,2);
p.x = 3; p.y = 3; p.useCount++; p.origin.useCount++;

System.out.printin("(" + g.x + "," + q.y + ")");
System.out.println(g.useCount);
System.out.printin(q.origin == Point.origin);
System.out.printin(g.origin.useCount);
}
}
prints:
(2,2
0
true
1

showing that changing the fields x, y, and useCount of p does not affect the fields
of g, because these fields are instance variables in distinct objects. In this example,
the class variable origin of the class Point is referenced both using the class
name as a qualifier, in Point.origin, and using variables of the class type in
field access expressions (815.11), asin p.origin and q.origin. These two ways
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of accessing the origin class variable access the same object, evidenced by the
fact that the value of the reference equality expression (815.21.3):
g.origin==Point.origin
is true. Further evidenceis that the incrementation:
p.origin.useCount++;
causesthevalueof q.origin.useCount tobe1; thisisso becausep.origin and
g.origin refer to the same variable.

8.3.1.2 final Fields

A field can be declared final (84.12.4). Both class and instance variables
(static and non-static fields) may be declared final.

It isacompile-time error if ablank final (84.12.4) class variable is not defi-
nitely assigned (816.8) by a static initializer (88.7) of the class in which it is
declared.

A blank final instance variable must be definitely assigned (§16.9) at the end
of every constructor (88.8) of the class in which it is declared; otherwise a com-
pile-time error occurs.

8.3.1.3 transient Fields

Variables may be marked transient to indicate that they are not part of the per-
sistent state of an object.
If an instance of the class Point:
class Point {
int x, y;
transient float rho, theta;

}

were saved to persistent storage by a system service, then only the fields x and y
would be saved. This specification does not specify details of such services, see
the specification of java.io.SerializabTle for an example of such aservice.

8.3.1.4 volatile Fields

As described in 817, the Java programming language alows threads to access
shared variables. As arule, to ensure that shared variables are consistently and
reliably updated, athread should ensure that it has exclusive use of such variables
by obtaining a lock that, conventionaly, enforces mutual exclusion for those
shared variables.

The Java programming language provides a second mechanism, volatile
fields, that is more convenient than locking for some purposes.
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A fiedld may be declared volatile, in which case the Java memory model
(817) ensures that al threads see a consistent value for the variable.

If, in the following example, one thread repeatedly calls the method one (but
no more than Integer.MAX_VALUE times in all), and another thread repeatedly
calls the method two:

class Test {

static int i = 0, j = 0;
static void one() { i++; j++; }

static void two() {
System.out.printin("i='

+ 1+ " 3="+ 3);

}
}

then method two could occasionaly print a value for j that is greater than the
value of i, because the example includes no synchronization and, under the rules
explained in 817, the shared values of i and j might be updated out of order.

One way to prevent this out-or-order behavior would be to declare methods
one and two to be synchronized (88.4.3.6):

class Test {

static int i = 0, j = 0;
static synchronized void one() { i++; j++; }
static synchronized void two() {

System.out.printin("i=" + i +

j=" + 3);
}

}

This prevents method one and method two from being executed concurrently, and
furthermore guarantees that the shared values of i and j are both updated before
method one returns. Therefore method two never observes a value for j greater
than that for 1; indeed, it always observes the same value for i and j.

Another approach would be to declare i and j to bevolatile:

class Test {

static volatile int i = 0, j = 0;

static void one() { i++; j++; }
static void two() {
System.out.printin("i='

+ 1+ " J="+ 3);
}
}

This allows method one and method two to be executed concurrently, but
guarantees that accesses to the shared values for i and j occur exactly as many
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times, and in exactly the same order, as they appear to occur during execution of
the program text by each thread. Therefore, the shared value for j is never greater
than that for i, because each update to i must be reflected in the shared value for
i before the update to j occurs. It is possible, however, that any given invocation
of method two might observe a value for j that is much greater than the value
observed for 1, because method one might be executed many times between the
moment when method two fetches the value of i and the moment when method
two fetches the value of j.

See 8§17 for more discussion and examples.

A compile-time error occursif afinal variableis also declared volatiTe.

8.3.2 Initialization of Fields

If afield declarator contains a variable initializer, then it has the semantics of an
assignment (815.26) to the declared variable, and:

« If the declarator is for a class variable (that is, a static field), then the vari-
ableinitializer is evaluated and the assignment performed exactly once, when
theclassisinitialized (812.4).

« If the declarator isfor an instance variable (that is, afield that is not static),
then the variable initializer is evaluated and the assignment performed each
time an instance of the classis created (812.5).

The example:
class Point {

int x =1, y =05;
}

class Test {
public static void main(String[] args) {
Point p = new Point();

System.out.printin(p.x + ", " + p.y);
}
}
produces the output:
1, 5

because the assignments to x and y occur whenever anew Point is created.

Variable initializers are also used in loca variable declaration statements
(814.4), where theinitializer is evaluated and the assignment performed each time
the local variable declaration statement is executed.

8.3.2
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Itisacompile-timeerror if the evaluation of avariable initializer for astatic
field of a named class (or of an interface) can complete abruptly with a checked
exception (811.2).

It is compile-time error if an instance variable initializer of a named class can
throw a checked exception unless that exception or one of its supertypesis explic-
itly declared in the throws clause of each constructor of its class and the class has
at least one explicitly declared constructor. An instance variable initializer in an
anonymous class (815.9.5) can throw any exceptions.

8.3.2.1 Initializersfor Class Variables

If areference by simple name to any instance variable occurs in an initialization
expression for a class variable, then a compile-time error occurs.

If the keyword this (815.8.3) or the keyword super (815.11.2, §15.12)
occurs in an initialization expression for a class variable, then a compile-time
error occurs.

One subtlety hereisthat, at runtime, static variablesthat are final and that
are initialized with compile-time constant values are initialized first. This also
applies to such fields in interfaces (89.3.1). These variables are “constants’ that
will never be observed to have their default initial values (84.12.5), even by devi-
ous programs. See §12.4.2 and 813.4.9 for more discussion.

Use of class variables whose declarations appear textually after the use is
sometimes restricted, even though these class variables are in scope. See §8.3.2.3
for the precise rules governing forward reference to class variables.

8.3.2.2 Initializersfor Instance Variables

Initialization expressions for instance variables may use the simple name of any
static variable declared in or inherited by the class, even one whose declaration
occurs textually later.
Thus the example:
class Test {
float f = j;
static int j = 1;
}
compiles without error; it initializes j to 1 when class Test isinitialized, and ini-
tializes f to the current value of j every time an instance of class Test is created.
Initialization expressions for instance variables are permitted to refer to the
current object this (815.8.3) and to use the keyword super (815.11.2, §15.12).
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Use of instance variables whose declarations appear textually after the use is
sometimes restricted, even though these instance variables are in scope. See
8§8.3.2.3 for the precise rules governing forward reference to instance variables.

8.3.2.3 Restrictions on the use of Fields during Initialization

The declaration of amember needs to appear textually before it isused only if
the member is an instance (respectively static) field of aclass or interface C and
all of the following conditions hold:

» The usage occursin an instance (respectively static) variable initializer of C
or in an instance (respectively static) initializer of C.

» The usageis not on the left hand side of an assignment.
* The usageisviaasimple name.

» Cistheinnermost class or interface enclosing the usage.

A compile-time error occurs if any of the four requirements above are not
met.
This means that a compile-time error results from the test program:
class Test {
int i = j;// compile-time error: incorrect forward reference
int j = 1;
}
whereas the following example compiles without error:
class Test {
Test() { k = 2; }
int j 1;
int i js
int k;

}

even though the constructor (88.8) for Test refers to the field k that is declared
three lines |ater.

These restrictions are designed to catch, at compile time, circular or otherwise
malformed initializations. Thus, both:

class Z {

static int i = j + 2;
static int j = 4;
}
and:
class Z {

static { i =3J + 2; }
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static int i, j;
static { j = 4; }
}
result in compile-time errors. Accesses by methods are not checked in this way,
SO:
class Z {

static int peek() { return j; }
static int i = peek();
static int j = 1;

}

class Test {

public static void main(String[] args) {
System.out.printin(Z.i);

}
}
produces the output:
0

because the variable initializer for i uses the class method peek to access the
value of the variable j before j has been initialized by its variable initializer, at
which point it still hasits default value (84.12.5).
A more elaborate exampleis:
class UseBeforeDeclaration {
static {
x = 100; // ok - assignment
int y = x + 1; // error - read before declaration
int v = x = 3; // ok-Xxatleft hand side of assignment
int z UseBeforeDeclaration.x * 2;
// OK - not accessed via simple name
Object o = new Object(){
void foo(Q){x++;} // ok -occursin adifferent class
{x++;} // ok -occursin adifferent class

};
}
{
j = 200; // ok - assignment
j =3+ 1; // error-right hand side reads before declaration
intk=3j=3j+1;
int n = j = 300; // ok-| atleft hand side of assignment
int h = j++; // error - read before declaration
int 1 = this.j * 3; // ok - not accessed viasimple name

Object o = new Object(){
void foo(){j++;} // ok-occursinadifferent class
{j=13+ 1;} // ok-occursinadifferent class
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3
}
int w = x = 3; // ok-Xxatleft hand side of assignment
int p = x; // ok-instanceinitializers may access static fields

static int u = (new Object(){int bar(Q{return x;3}}).barQ;
// ok -occursinadifferent class

static int x;

int m = j = 4; // ok-j atleft hand side of assignment

int o = (new Object({int bar(Q{return j;}}).barQ;

// ok -occursinadifferent class

int j;

8.3.3 Examplesof Field Declarations

The following examples illustrate some (possibly subtle) points about field decla-
rations.

8.3.3.1 Example: Hiding of Class Variables

The example:
class Point {
static int x = 2;
}
class Test extends Point {

static double x = 4.7;

public static void main(String[] args) {
new Test().printXQ;

}

void printX() {
System.out.printin(x +
}

+ super.x);

}

produces the output:

4.7 2
because the declaration of x in class Test hides the definition of x in class Point,
S0 class Test does not inherit the field x from its superclass Point. Within the
declaration of class Test, the simple name x refers to the field declared within
classTest. Codein class Test may refer to the field x of class Point as super.x
(or, because x isstatic, asPoint.x). If the declaration of Test.x isdeleted:

class Point {

static int x = 2;

}

8.3.3
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class Test extends Point {

public static void main(String[] args) {
new Test().printXQ;
}

void printX() {
System.out.printin(x +
}

+ super.x);

}

then the field x of class Point isno longer hidden within class Test; instead, the

simple name x now refersto thefield Point.x. Codein class Test may still refer

to that same field as super. x. Therefore, the output from this variant programis:
2 2

8.3.3.2 Example: Hiding of Instance Variables

This example is similar to that in the previous section, but uses instance variables
rather than static variables. The code:
class Point {
int x = 2;

}

class Test extends Point {

double x = 4.7;

void printBoth() {
System.out.printin(x +

}

public static void main(String[] args) {
Test sample = new Test();
sample.printBoth();
System.out.printin(sample.x + " " +
((Point)sample).x);

+ super.x);

}

produces the output:
4.7 2
4.7 2

because the declaration of x in class Test hides the definition of x in class Point,
so class Test does not inherit the field x from its superclass Point. It must be
noted, however, that while the field x of class Point is not inherited by class
Test, it is nevertheless implemented by instances of class Test. In other words,
every instance of class Test contains two fields, one of type int and one of type
double. Both fields bear the name x, but within the declaration of class Test, the
simple name x always refers to the field declared within class Test. Code in
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instance methods of class Test may refer to the instance variable x of class Point
assuper.x.

Code that uses a field access expression to access field x will access the field
named x in the class indicated by the type of reference expression. Thus, the
expression sample.x accesses a double value, the instance variable declared in
class Test, because the type of the variable sample is Test, but the expression
((Point)sample).x accesses an int value, the instance variable declared in
class Point, because of the cast to type Point.

If the declaration of x isdeleted from class Test, asin the program:

class Point {

static int x = 2;
}
class Test extends Point {

void printBoth() {
System.out.printin(x +
}

public static void main(String[] args) {
Test sample = new Test();
sample.printBoth();
System.out.printin(sample.x + " " +
((Point)sample).x);

+ super.x);

}

then the field x of class Point is no longer hidden within class Test. Within
instance methods in the declaration of class Test, the simple name x now refersto
the field declared within class Point. Code in class Test may till refer to that
same field as super.x. The expression sample.x still refersto the field x within
type Test, but that field is nhow an inherited field, and so refers to the field x
declared in class Point. The output from this variant programis:

2 2

2 2

8.3.3.3 Example: Multiply Inherited Fields

A class may inherit two or more fields with the same name, either from two inter-
faces or from its superclass and an interface. A compile-time error occurs on any
attempt to refer to any ambiguously inherited field by its simple name. A qualified
name or afield access expression that contains the keyword super (815.11.2) may
be used to access such fields unambiguously. In the example:

interface Frob { float v = 2.0f; }
class SuperTest { int v = 3; }

8.3.3
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class Test extends SuperTest implements Frob {

public static void main(String[] args) {
new Test().printVQ;
}

void printV() { System.out.println(v); }

}
the class Test inherits two fields named v, one from its superclass SuperTest and
one from its superinterface Frob. This in itself is permitted, but a compile-time
error occurs because of the use of the smple name v in method printV: it cannot
be determined which v isintended.

The following variation uses the field access expression super.v to refer to
the field named v declared in class SuperTest and uses the qualified name
Frob.v to refer to the field named v declared in interface Frob:

interface Frob { float v = 2.0f; }
class SuperTest { int v = 3; }

class Test extends SuperTest implements Frob {

public static void main(String[] args) {
new Test().printvV(Q;

}
void printvV(Q) {

System.out.println((super.v + Frob.v)/2);
}

}

It compiles and prints:

2.5

Even if two distinct inherited fields have the same type, the same value, and
are both final, any reference to either field by simple name is considered ambig-
uous and resultsin a compile-time error. In the example:

interface Color { int RED=0, GREEN=1, BLUE=2; }
interface TrafficLight { int RED=0, YELLOW=1, GREEN=2; }

class Test implements Color, TrafficLight {

public static void main(String[] args) {
System.out.printIn(GREEN); // compile-time error
System.out.printTn(RED); // compile-time error
}
}

it is not astonishing that the reference to GREEN should be considered ambiguous,
because class Test inherits two different declarations for GREEN with different
values. The point of this example is that the reference to RED is also considered
ambiguous, because two distinct declarations are inherited. The fact that the two
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fields named RED happen to have the same type and the same unchanging value
does not affect this judgment.

8.3.3.4 Example: Re-inheritance of Fields

If the same field declaration is inherited from an interface by multiple paths, the
field is considered to be inherited only once. It may be referred to by its simple
name without ambiguity. For example, in the code:
public interface Colorable {
int RED = Oxff0000, GREEN = 0x00ff00, BLUE = 0x0000ff;
}
public interface Paintable extends Colorable {
int MATTE = @, GLOSSY = 1;
}

class Point { int x, y; }
class ColoredPoint extends Point implements Colorable {

}
class PaintedPoint extends ColoredPoint implements Paintable

{

}

the fields RED, GREEN, and BLUE are inherited by the class PaintedPoint both
through its direct superclass ColoredPoint and through its direct superinterface
Paintable. The simple names RED, GREEN, and BLUE may nevertheless be used
without ambiguity within the class PaintedPoint to refer to thefields declared in
interface Colorable.

RED

8.4 Method Declarations

A method declares executable code that can be invoked, passing a fixed number of
values as arguments.
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MethodDeclaration:
MethodHeader MethodBody

MethodHeader:
MethodModifiersy, TypeParametersy, ResultType MethodDeclarator

Throwsgpt

ResultType:
Type
void
MethodDeclarator:
Identifier ( FormalParameterListop )

The MethodModifiers are described in §8.4.3, the TypeParameters clause of a
method in §8.4.4, the Throws clause in §8.4.6, and the MethodBody in §8.4.7. A
method declaration either specifies the type of value that the method returns or
uses the keyword void to indicate that the method does not return avalue.

The Identifier in a MethodDeclarator may be used in a name to refer to the
method. A class can declare a method with the same name as the class or afield,
member class or member interface of the class, but this is discouraged as a matter
of syle.

For compatibility with older versions of the Java platform, a declaration form
for amethod that returns an array is allowed to place (some or all of) the empty
bracket pairs that form the declaration of the array type after the parameter list.
Thisis supported by the obsolescent production:

MethodDeclarator:
MethodDeclarator [ ]

but should not be used in new code.

It is a compile-time error for the body of a class to declare as members two
methods with override-equivalent signatures (88.4.2) (hame, number of parame-
ters, and types of any parameters). Methods and fields may have the same name,
since they are used in different contexts and are disambiguated by different lookup
procedures (86.5).

8.4.1 Formal Parameters

The formal parameters of a method or constructor, if any, are specified by alist of
commarseparated parameter specifiers. Each parameter specifier consists of atype
(optionally preceded by the final modifier and/or one or more annotations
(89.7)) and an identifier (optionally followed by brackets) that specifies the name
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of the parameter. The last formal parameter in alist is special; it may be avariable
arity parameter, indicated by an elipsis following the type:

Formal ParameterList:
LastFormal Parameter
FormalParameters , LastFormal Parameter

Formal Parameters:
Formal Parameter
FormalParameters , Formal Parameter

Formal Parameter:
VariableModifiers Type VariableDeclaratorld

VariableModifiers;
VariableModifier
VariableModifiers VariableModifier

VariableModifier: one of
final Annotation

LastFormal Parameter:
VariableModifiers Type. . . opt VariableDeclaratorld
Formal Parameter

The following is repeated from §8.3 to make the presentation here clearer:

VariableDeclaratorld:
Identifier
VariableDeclaratorld [ ]

If amethod or constructor has no parameters, only an empty pair of parenthe-
ses appearsin the declaration of the method or constructor.

If two formal parameters of the same method or constructor are declared to
have the same name (that is, their declarations mention the same Identifier), then a
compile-time error occurs.

If an annotation a on aformal parameter corresponds to an annotation type T,
and T has a (meta-)annotation m that corresponds to annotation.Target, then m
must have an element whose value is annotation.ElementType.PARAMETER, or
a compile-time error occurs. Annotation modifiers are described further in 89.7.

It isacompile-time error if amethod or constructor parameter that is declared
final isassigned to within the body of the method or constructor.

When the method or constructor is invoked (815.12), the values of the actual
argument expressions initialize newly created parameter variables, each of the
declared Type, before execution of the body of the method or constructor. The

8.4.1
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Identifier that appears in the Declaratorld may be used as a simple name in the
body of the method or constructor to refer to the formal parameter.

If the last formal parameter is avariable arity parameter of type T, it is consid-
ered to define aformal parameter of type T[]. The method isthen a variable arity
method. Otherwise, it is a fixed arity method. Invocations of a variable arity
method may contain more actual argument expressions than formal parameters.
All the actual argument expressions that do not correspond to the formal parame-
ters preceding the variable arity parameter will be evaluated and the results stored
into an array that will be passed to the method invocation (815.12.4.2).

The scope of a parameter of a method (88.4.1) or constructor (88.8.1) is the
entire body of the method or constructor.

These parameter names may not be redeclared as local variables of the
method, or as exception parameters of catch clauses in a try statement of the
method or constructor. However, a parameter of a method or constructor may be
shadowed anywhere inside a class declaration nested within that method or con-
structor. Such a nested class declaration could declare either alocal class (§14.3)
or an anonymous class (§15.9).

Formal parameters are referred to only using simple names, never by using
gualified names (86.6).

A method or constructor parameter of type f1oat always contains an element
of thefloat value set (84.2.3); similarly, amethod or constructor parameter of type
doub1e always contains an element of the double value set. It is not permitted for
a method or constructor parameter of type float to contain an element of the
float-extended-exponent value set that is not also an element of the float value set,
nor for a method parameter of type double to contain an element of the double-
extended-exponent value set that is not also an element of the double value set.

Where an actual argument expression corresponding to a parameter variableis
not FP-strict (815.4), evaluation of that actual argument expression is permitted to
use intermediate values drawn from the appropriate extended-exponent value sets.
Prior to being stored in the parameter variable the result of such an expression is
mapped to the nearest value in the corresponding standard value set by method
invocation conversion (85.3).

8.4.2 Method Signature

It isacompile-time error to declare two methods with override-equivalent sig-
natures (defined below) in aclass.

Two methods have the same signature if they have the same name and argu-
ment types.
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Two method or constructor declarations M and N have the same argument types
if al of the following conditions hold:

* They have the same number of formal parameters (possibly zero)
» They have the same number of type parameters (possibly zero)

* Let <Ayp,...,Ap> betheforma type parametersof Mand let <B7, . ..,Bp>be
the formal type parameters of N. After renaming each occurrenceof aB; in N's
typeto A; the bounds of corresponding type variables and the argument types
of Mand N are the same.

The signature of a method m1 is a subsignature of the signature of a method
m2 if either
o m2 has the same signature as m1, or

o the signature of m1 is the same as the erasure of the signature of m2.

DiscussioN

The notion of subsignature defined here is designed to express a relationship between two
methods whose signatures are not identical, but in which one may override the other.

Specifically, it allows a method whose signature does not use generic types to override
any generified version of that method. This is important so that library designers may freely
generify methods independently of clients that define subclasses or subinterfaces of the
library.

Consider the example:

class CollectionConverter {

List toList(Collection c) {...}
}

class Overrider extends CollectionConverter{
List toList(Collection c) {...}
3

Now, assume this code was written before the introduction of genericity, and now the
author of class CollectionConverter decides to generify the code, thus:
class CollectionConverter {
<T> List<T> toList(Collection<T> c) {...}
}

Without special dispensation, Overrider.toList() would no longer override Col-
TectionConverter.toList(). Instead, the code would be illegal. This would significantly
inhibit the use of genericity, since library writers would hesitate to migrate existing code.

8.4.2
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Two method signatures m1 and m2 are override-equivalent iff either m1 isasubsig-
nature of m2 or m2 is a subsignature of m1.
The example:
class Point implements Move {
int x, y;
abstract void move(int dx, int dy);
void move(int dx, int dy) { x += dx; y += dy; }
}
causes a compile-time error because it declares two move methods with the same
(and hence, override-equivalent) signature. Thisis an error even though one of the
declarationsis abstract.

8.4.3 Method Modifiers

MethodModifiers:
MethodModifier
MethodModifiers MethodModifier

MethodModifier: one of
Annotation public protected private abstract static
final synchronized native strictfp

The access modifiers public, protected, and private are discussed in
86.6. A compile-time error occurs if the same modifier appears more than oncein
amethod declaration, or if a method declaration has more than one of the access
modifiers public, protected, and private. A compile-time error occurs if a
method declaration that contains the keyword abstract also contains any one of
the keywords private, static, final, native, strictfp, or synchronized. A
compile-time error occurs if a method declaration that contains the keyword
native also contains strictfp.

If an annotation a on a method declaration corresponds to an annotation type
T, and T has a(meta-)annotation m that corresponds to annotation.Target, then
m must have an element whose value is annotation.ElementType.METHOD, or a
compile-time error occurs. Annotations are discussed further in §9.7.

If two or more method modifiers appear in a method declaration, it is custom-
ary, though not required, that they appear in the order consistent with that shown
above in the production for MethodModifier.

8.4.3.1 abstract Methods

An abstract method declaration introduces the method as a member, providing
itssignature (88.4.2), return type, and throws clause (if any), but does not provide
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an implementation. The declaration of an abstract method m must appear
directly within an abstract class (call it A) unless it occurs within an enum
(88.9); otherwise a compile-time error results. Every subclass of A that is not
abstract must provide an implementation for m, or a compile-time error occurs
as specifiedin 88.1.1.1.

It isacompile-time error for aprivate method to be declared abstract.

It would be impossible for a subclass to implement a private abstract
method, because private methods are not inherited by subclasses; therefore such
amethod could never be used.

It isacompile-time error for astatic method to be declared abstract.

It isacompile-time error for a final method to be declared abstract.

An abstract class can override an abstract method by providing another
abstract method declaration.

This can provide a place to put a documentation comment, to refine the return
type, or to declare that the set of checked exceptions (811.2) that can be thrown by
that method, when it is implemented by its subclasses, is to be more limited. For
example, consider this code:

class BufferEmpty extends Exception {
BufferEmpty() { super(Q); }
BufferEmpty(String s) { super(s); }

}

class BufferError extends Exception {
BufferError() { super(Q; }
BufferError(String s) { super(s); }

}

public interface Buffer {
char get() throws BufferEmpty, BufferError;

}

public abstract class InfiniteBuffer implements Buffer {

pubTlic abstract char get() throws BufferError;
}

The overriding declaration of method get in class InfiniteBuffer states
that method get in any subclass of InfiniteBuffer never throws a Buffer-
Empty exception, putatively because it generates the data in the buffer, and thus
can never run out of data.

An instance method that is not abstract can be overridden by an abstract
method.

8.4.3
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For example, we can declare an abstract class Point that requires its sub-
classesto implement toString if they are to be complete, instantiable classes:
abstract class Point {

int x, y;
public abstract String toString(Q);
}

This abstract declaration of toString overrides the non-abstract toString
method of class Object. (Class Object isthe implicit direct superclass of class
Point.) Adding the code:

class ColoredPoint extends Point {

int color;
public String toString() {

return super.toString() + ": color " + color; // error
}

}

results in a compile-time error because the invocation super.toString() refers
to method toString in class Point, which is abstract and therefore cannot be
invoked. Method toString of class Object can be made available to class
ColoredPoint only if class Point explicitly makes it available through some
other method, asin:

abstract class Point {

int x, y;
public abstract String toString(Q;
protected String objString() { return super.toString(); }

}
class ColoredPoint extends Point {
int color;
public String toString() {
return objString() + ": color " + color; // correct
3
}

8.4.3.2 static Methods

A method that is declared static is called a class method. A class method is
always invoked without reference to a particular object. An attempt to reference
the current object using the keyword this or the keyword super or to reference
the type parameters of any surrounding declaration in the body of a class method
results in a compile-time error. It is a compile-time error for a static method to
be declared abstract.

A method that is not declared static iscaled an instance method, and some-
times called a non-static method. An instance method is aways invoked with
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respect to an object, which becomes the current object to which the keywords
this and super refer during execution of the method body.

8.4.3.3 final Methods

A method can be declared final to prevent subclasses from overriding or hiding
it. It isacompile-time error to attempt to override or hide a final method.

A private method and all methods declared immediately within a final
class (88.1.1.2) behave as if they are final, since it is impossible to override
them.

It isacompile-time error for a final method to be declared abstract.

At run time, a machine-code generator or optimizer can “inling” the body of a
final method, replacing an invocation of the method with the code in its body.
The inlining process must preserve the semantics of the method invocation. In
particular, if the target of an instance method invocation is null, then a
Nul1PointerException must be thrown even if the method isinlined. The com-
piler must ensure that the exception will be thrown at the correct point, so that the
actual arguments to the method will be seen to have been evaluated in the correct
order prior to the method invocation.

Consider the example:

final class Point {

int x, y;

void move(int dx, int dy) { x += dx; y += dy; }
}
class Test {

public static void main(String[] args) {
Point[] p = new Point[100];
for (int i = 0; i < p.length; i++) {
p[i]l = new Point();
p[i].move(i, p.length-1-1);
}

}

Here, inlining the method move of class Point in method main would transform
the for loop to the form:
for (int i = 0; i < p.length; i++) {

p[i] = new Point(Q);

Point pi = p[i];

int j = p.length-1-1;

pi.x += 1;

pi.y += j;

8.4.3
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The loop might then be subject to further optimizations.

Such inlining cannot be done at compile time unless it can be guaranteed that
Test and Point will aways be recompiled together, so that whenever Point—
and specifically its move method—changes, the code for Test.main will aso be
updated.

8.4.3.4 native Methods

A method that is native is implemented in platform-dependent code, typically
written in another programming language such as C, C++, FORTRAN,0r assembly
language. The body of anative method is given as a semicolon only, indicating
that the implementation is omitted, instead of a block.

A compile-time error occurs if anative method isdeclared abstract.

For example, the class RandomAccessFile of the package java.io might
declare the following native methods:

package java.io;

pubTic class RandomAccessFile
implements DataOutput, Datalnput

{ ...
public native void open(String name, boolean writeable)
throws IOException;
public native int readBytes(byte[] b, int off, int Ten)
throws IOException;
public native void writeBytes(byte[] b, int off, int len)
throws IOException;
public native long getFilePointer() throws IOException;
public native void seek(long pos) throws IOException;
public native long length() throws IOException;
public native void close() throws IOException;
}

8.4.3.5 strictfp Methods

The effect of the strictfp modifier isto make all float or double expressions
within the method body be explicitly FP-strict (815.4).

8.4.3.6 synchronized Methods

A synchronized method acquires a monitor (817.1) before it executes. For a
class (static) method, the monitor associated with the Class object for the
method's class is used. For an instance method, the monitor associated with this
(the object for which the method was invoked) is used.
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These are the same locks that can be used by the synchronized statement
(814.19); thus, the code:
class Test {
int count;
synchronized void bump() { count++; }
static int classCount;
static synchronized void classBump() {
classCount++;
}

}

has exactly the same effect as:
class BumpTest {
int count;
void bump() {
synchronized (this) {
count++;
3

}
static int classCount;
static void classBump() {

try {
synchronized (Class.forName("BumpTest™)) {
classCount++;

}
} catch (ClassNotFoundException e) {

}

}

The more elaborate example:
pubTic class Box {

private Object boxContents;

public synchronized Object get() {
Object contents = boxContents;
boxContents = null;
return contents;

}

public synchronized boolean put(Object contents) {
if (boxContents != null)
return false;
boxContents = contents;
return true;

8.4.3
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defines a class which is designed for concurrent use. Each instance of the class
Box has an instance variable boxContents that can hold areference to any object.
You can put an object in aBox by invoking put, which returns false if thebox is
already full. You can get something out of aBox by invoking get, which returns a
null reference if the box is empty.

If put and get were not synchronized, and two threads were executing
methods for the same instance of Box at the same time, then the code could misbe-
have. It might, for example, lose track of an object because two invocationsto put
occurred at the sametime.

See 817 for more discussion of threads and locks.

8.4.4 Generic Methods

A method is generic if it declares one or more type variables (84.4). These type
variables are known as the formal type parameters of the method. The form of the
formal type parameter list is identical to a type parameter list of a class or inter-
face, as described in §8.1.2.

The scope of a method's type parameter is the entire declaration of the
method, including the type parameter section itself. Therefore, type parameters
can appear as parts of their own bounds, or as bounds of other type parameters
declared in the same section.

Type parameters of generic methods need not be provided explicitly when a
generic method isinvoked. Instead, they are amost always inferred as specified in
§15.12.2.7

8.4.5 Method Return Type

The return type of a method declares the type of value a method returns, if it
returns avalue, or statesthat the method is void.

A method declaration d; with return type Ry is return-type-substitutable for
another method d, with return type Ry, if and only if the following conditions
hold:

 If Ry isaprimitivetype, then R, isidentical to Rj.
 If Ry isareference type then:

o Rz is either a subtype of R, or R7 can be converted to a subtype of R, by
unchecked conversion (85.1.9), or

o R1=[R2 |
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e If R7isvoidthen Ryisvoid.

DiscussioN

The notion of return-type substitutability summarizes the ways in which return types may
vary among methods that override each other.

Note that this definition supports covariant returns - that is, the specialization of the
return type to a subtype (but only for reference types).

Also note that unchecked conversions are allowed as well. This is unsound, and
requires an unchecked warning whenever it is used; it is a special allowance is made to
allow smooth migration from non-generic to generic code.

8.4.6 Method Throws

A throws clause is used to declare any checked exceptions (811.2) that can result
from the execution of a method or constructor:

Throws:
throws ExceptionTypeList

ExceptionTypelList:
ExceptionType
ExceptionTypeList , ExceptionType

ExceptionType:
ClassType
TypeVariable

A compile-time error occurs if any ExceptionType mentioned in a throws clause
is not a subtype (84.10) of ThrowabTe. It is permitted but not required to mention
other (unchecked) exceptionsin athrows clause.

For each checked exception that can result from execution of the body of a
method or constructor, a compile-time error occurs unless that exception type or a
supertype of that exception type is mentioned in a throws clause in the declara
tion of the method or constructor.

The requirement to declare checked exceptions allows the compiler to ensure
that code for handling such error conditions has been included. Methods or con-
structors that fail to handle exceptional conditions thrown as checked exceptions
will normally result in a compile-time error because of the lack of a proper excep-
tion type in a throws clause. The Java programming language thus encourages a

8.4.6
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programming style where rare and otherwise truly exceptional conditions are doc-
umented in this way.

The predefined exceptions that are not checked in thisway are those for which
declaring every possible occurrence would be unimaginably inconvenient:

» Exceptions that are represented by the subclasses of class Error, for example
OutOfMemoryError, are thrown due to afailure in or of the virtual machine.
Many of these are the result of linkage failures and can occur at unpredictable
pointsin the execution of a program. Sophisticated programs may yet wish to
catch and attempt to recover from some of these conditions.

* The exceptions that are represented by the subclasses of the class
RuntimeException, for example Nul1PointerException, result from run-
time integrity checks and are thrown either directly from the program or in
library routines. It is beyond the scope of the Java programming language, and
perhaps beyond the state of the art, to include sufficient information in the
program to reduce to a manageable number the places where these can be
proven not to occur.

A method that overrides or hides another method (88.4.8), including methods
that implement abstract methods defined in interfaces, may not be declared to
throw more checked exceptions than the overridden or hidden method.

More precisely, suppose that B isaclass or interface, and A is a superclass or
superinterface of B, and a method declaration n in B overrides or hides a method
declaration m in A. If n hasa throws clause that mentions any checked exception
types, then m must have a throws clause, and for every checked exception type
listed in the throws clause of n, that same exception class or one of its supertypes
must occur in the erasure of the throws clause of m; otherwise, a compile-time
error occurs.

If the unerased throws clause of m does not contain a supertype of each
exception type in the throws clause of n, an unchecked warning must be issued.

DiscussIoN

See §11 for more information about exceptions and a large example.
Type variables are allowed in throws lists even though they are not allowed in catch
clauses.
interface PrivilegedExceptionAction<E extends Exception> {
void run() throws E;

}

class AccessController {
public static <E extends Exception>
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Object doPrivileged(PrivilegedExceptionAction<E> action) throws E
{ ...}
}

class Test {
public static void main(String[] args) {
try {
AccessController.doPrivileged(
new PrivilegedExceptionAction<FileNotFoundException>() {
public void run() throws FiTleNotFoundException
{... delete a file ...}
b;
} catch (FileNotFoundException f) {...} // do something
}
}

8.4.7 Method Body

A method body is either a block of code that implements the method or simply a
semicolon, indicating the lack of an implementation. The body of a method must
be a semicolon if and only if the method is either abstract (88.4.3.1) or native
(88.4.3.9).

MethodBody:
Block

A compile-time error occurs if a method declaration is either abstract or
native and hasablock for its body. A compile-time error occurs if amethod dec-
laration is neither abstract nor native and has a semicolon for its body.

If an implementation is to be provided for a method declared void, but the
implementation requires no executable code, the method body should be written
as ablock that contains no statements: “{ }”.

If a method is declared void, then its body must not contain any return
statement (814.17) that has an Expression.

If a method is declared to have a return type, then every return statement
(814.17) in its body must have an Expression. A compile-time error occurs if the
body of the method can complete normally (814.1).

In other words, amethod with areturn type must return only by using areturn
statement that provides avalue return; it is not allowed to “drop off the end of its
body.”

8.4.7
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Note that it is possible for a method to have a declared return type and yet
contain no return statements. Here is one example:

class DizzyDean {
int pitch() { throw new RuntimeException("90 mph?!"); }
}

8.4.8 Inheritance, Overriding, and Hiding

A class Cinherits from its direct superclass and direct superinterfaces all non-pri-
vate methods (whether abstract or not) of the superclass and superinterfaces
that are public, protected or declared with default access in the same package as C
and are neither overridden (88.4.8.1) nor hidden (88.4.8.2) by a declaration in the
class.

8.4.8.1 Overriding (by Instance Methods)

An instance method m1 declared in a class € overrides another instance method,
m2, declared in class A iff al of the following are true:

1. Cisasubclassof A.
2. The signature of m1 is a subsignature (88.4.2) of the signature of m2.
3. Either

o m2 is public, protected or declared with default access in the same package
as G, or

o m1 overrides a method m3, m3 distinct from m1, m3 distinct from m2, such
that m3 overrides m2.

Moreover, if m1isnot abstract, then m1issaid toimplement any and all dec-
larations of abstract methodsthat it overrides.

DiscussioN

The signature of an overriding method may differ from the overridden one if a formal
parameter in one of the methods has raw type, while the corresponding parameter in the
other has a parameterized type.

The rules allow the signature of the overriding method to differ from the overridden
one, to accommodate migration of pre-existing code to take advantage of genericity. See
section 88.4.2 for further analysis.
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A compile-time error occurs if an instance method overrides a static
method.

In this respect, overriding of methods differs from hiding of fields (88.3), for
it is permissible for an instance variable to hide a static variable.

An overridden method can be accessed by using a method invocation expres-
sion (815.12) that contains the keyword super. Note that a qualified name or a
cast to a superclass type is not effective in attempting to access an overridden
method; in this respect, overriding of methods differs from hiding of fields. See
§15.12.4.9 for discussion and examples of this point.

The presence or absence of the strictfp modifier has absolutely no effect on
the rules for overriding methods and implementing abstract methods. For exam-
ple, it is permitted for a method that is not FP-gtrict to override an FP-strict
method and it is permitted for an FP-strict method to override a method that is not
FP-strict.

8.4.8.2 Hiding (by Class Methods)

If aclass declares a static method m, then the declaration mis said to hide any
method m’, where the signature of m is a subsignature (88.4.2) of the signature of
m’, in the superclasses and superinterfaces of the class that would otherwise be
accessible to code in the class. A compile-time error occurs if a static method
hides an instance method.

In this respect, hiding of methods differs from hiding of fields (88.3), for itis
permissible for a static variable to hide an instance variable. Hiding is also dis-
tinct from shadowing (86.3.1) and obscuring (86.3.2).

A hidden method can be accessed by using a qualified name or by using a
method invocation expression (815.12) that contains the keyword super or a cast
to a superclass type. In this respect, hiding of methods is similar to hiding of
fields.

8.4.8.3 Reqguirementsin Overriding and Hiding

If amethod declaration d; with return type R overrides or hides the declaration of
another method d>» with return type Ry, then d; must be return-type substitutable
for dy, or a compile-time error occurs. Furthermore, if R7 is not a subtype of R),
an unchecked warning must be issued (unless suppressed (89.6.1.5)).

A method declaration must not have a throws clause that conflicts (88.4.6)
with that of any method that it overrides or hides; otherwise, a compile-time error
OCCUrs.

8.4.8
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DiscussIioN

The rules above allow for covariant return types - refining the return type of a method when
overriding it.
For example, the following declarations are legal although they were illegal in prior ver-
sions of the Java programming language:
class C implements Cloneable {
C copy() { return (QcloneQ); }

class D extends C implements Cloneable {
D copy() { return (D)clone(); }

The relaxed rule for overriding also allows one to relax the conditions on abstract
classes implementing interfaces.

DiscussioN

Consider
class StringSorter {

// takes a collection of strings and converts it to a sortedlist
List toList(Collection c) {...}
b

and assume that someone subclasses StringCollector
class Overrider extends StringSorter{
List toList(Collection c) {...}
}

Now, at some point the author of StringSorter decides to generify the code

class StringSorter {

// takes a collection of strings and converts it to a list
List<String> toList(Collection<String> c) {...}

b

An unchecked warning would be given when compiling Overrider against the new
definition of StringSorter because the return type of Overrider.toList() is List,
which is not a subtype of the return type of the overridden method, List<String.

In these respects, overriding of methods differs from hiding of fields (88.3),
for it is permissible for afield to hide afield of another type.
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It isacompile time error if atype declaration T has a member method m; and
there exists a method m, declared in T or a supertype of T such that all of the fol-
lowing conditions hold:

» m1 and my have the same name.
* mpisaccessiblefrom T.
» The signature of my is not a subsignature (88.4.2) of the signature of m.

» mz or some method m; overrides (directly or indirectly) has the same erasure
as my or some method m) overrides (directly or indirectly).

DiscussIioN

These restrictions are necessary because generics are implemented via erasure. The rule
above implies that methods declared in the same class with the same name must have dif-
ferent erasures. It also implies that a type declaration cannot implement or extend two dis-
tinct invocations of the same generic interface. Here are some further examples.

A class cannot have two member methods with the same name and type erasure.

class C<T> { T id (T x) {...} }

class D extends C<String> {

Object id(Object x) {...}
}

This is illegal since D.id(0Object) is a member of D, C<String>.id(String) is
declared in a supertype of D and:

* The two methods have the same name, id
* C<String>.id(String) is accessible to D

*The signature of D.id(Object) is not a subsignature of that of
C<String>.id(String)

* The two methods have the same erasure

DiscussIioN

Two different methods of a class may not override methods with the same erasure.
class C<T> { T id (T x) {...} }

interface I<T> { Tid(T x); }
class D extends C<String> implements I<Integer> {
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String id(String x) {...}
Integer id(Integer x) {...}
3

This is also illegal, since D.id(String) is a member of D, D.id(Integer) is
declared in D and:

« the two methods have the same name, id
« the two methods have different signatures.
*D.id(Integer) is accessible to D

*D.id(String) overrides C<String>.id(String) and D.id(Integer) overrides
I.id(Integer) yet the two overridden methods have the same erasure

The access modifier (86.6) of an overriding or hiding method must provide at
least as much access as the overridden or hidden method, or a compile-time error
occurs. In more detail:

« If the overridden or hidden method is pub1ic, then the overriding or hiding
method must be pub11 ¢; otherwise, a compile-time error occurs.

« If the overridden or hidden method is protected, then the overriding or hid-
ing method must be protected or public; otherwise, a compile-time error
occurs.

* If the overridden or hidden method has default (package) access, then the
overriding or hiding method must not be private; otherwise, a compile-time
error occurs.

Note that a private method cannot be hidden or overridden in the technica
sense of those terms. This means that a subclass can declare a method with the
same signature as a private method in one of its superclasses, and there is no
regquirement that the return type or throws clause of such a method bear any rela-
tionship to those of the private method in the superclass.

8.4.8.4 Inheriting Methods with Override-Equivalent Sgnatures

It is possible for a class to inherit multiple methods with override-equivalent
(88.4.2) signatures.

It isacompile time error if aclass C inherits a concrete method whose signa-
turesis a subsignature of another concrete method inherited by C.
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DiscussIioN

This can happen, if a superclass is parametric, and it has two methods that were distinct in

the generic declaration, but have the same signature in the particular invocation used.

Otherwise, there are two possible cases:

* If one of the inherited methods is not abstract, then there are two subcases:
o If the method that isnot abstract is static, acompile-time error occurs.

o Otherwise, the method that is not abstract is considered to override, and
therefore to implement, al the other methods on behalf of the class that
inherits it. If the signature of the non-abstract method is not a subsignature
of each of the other inherited methods an unchecked warning must be
issued (unless suppressed (89.6.1.5)). A compile-time error also occurs if
the return type of the non-abstract method is not return type substitutable
(88.4.5) for each of the other inherited methods. If the return type of the
non-abstract method is not a subtype of the return type of any of the other
inherited methods, an unchecked warning must be issued. M oreover, acom-
pile-time error occurs if the inherited method that is not abstract has a
throws clause that conflicts (88.4.6) with that of any other of the inherited

methods.

« If dl the inherited methods are abstract, then the class is necessarily an
abstract class and is considered to inherit al the abstract methods. A
compile-time error occurs if, for any two such inherited methods, one of the
methods is not return type substitutable for the other (The throws clauses do

not cause errorsin this case.)

There might be several paths by which the same method declaration might be
inherited from an interface. This fact causes no difficulty and never, of itself,

resultsin a compile-time error.

8.4.9 Overloading

If two methods of a class (whether both declared in the same class, or both inher-
ited by a class, or one declared and one inherited) have the same name but signa-
tures that are not override-equivalent, then the method name is said to be
overloaded. This fact causes no difficulty and never of itself resultsin a compile-

8.4.9
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time error. There is no required relationship between the return types or between
the throws clauses of two methods with the same name, unless their signatures
are override-equivalent.

Methods are overridden on a signature-by-signature basis.

If, for example, a class declares two publ1ic methods with the same name,
and a subclass overrides one of them, the subclass still inherits the other method.

When a method is invoked (815.12), the number of actual arguments (and any
explicit type arguments) and the compile-time types of the arguments are used, at
compile time, to determine the signature of the method that will be invoked
(815.12.2). If the method that is to be invoked is an instance method, the actual
method to be invoked will be determined at run time, using dynamic method
lookup (815.12.4).

8.4.10 Examples of Method Declarations

The following examples illustrate some (possibly subtle) points about method
declarations.

8.4.10.1 Example: Overriding

In the example:
class Point {
int x =0, y=0;
void move(int dx, int dy) { x += dx; y += dy; }
}
class STowPoint extends Point {
int xLimit, yLimit;
void move(int dx, int dy) {
super.move(Timit(dx, xLimit), Timit(dy, yLimit));
}
static int 1limit(int d, int Timit) {
return d > Timit ? T1imit : d < -1imit ? -Timit : d;
}
}

the class STowPoint overrides the declarations of method move of class Point
with its own move method, which limits the distance that the point can move on
each invocation of the method. When the move method is invoked for an instance
of class STowPoint, the overriding definition in class STowPoint will always be
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called, even if the reference to the STowPoint object is taken from a variable
whose type is Point.

8.4.10.2 Example: Overloading, Overriding, and Hiding

In the example:
class Point {
int x =0, y = 0;
void move(int dx, int dy) { x += dx; y += dy; }
int color;
}

class RealPoint extends Point {

float x = 0.0f, y = 0.0f;
void move(int dx, int dy) { move((float)dx, (float)dy); }
void move(float dx, float dy) { x += dx; y += dy; }

}

the class RealPoint hides the declarations of the int instance variables x and y
of class Point with its own float instance variables x and y, and overrides the
method move of class Point with itsown move method. It also overloads the name
move with another method with a different signature (88.4.2).

In this example, the members of the class RealPoint include the instance
variable color inherited from the class Point, the f1oat instance variables x and
y declared in RealPoint, and the two move methods declared in RealPoint.

Which of these overloaded move methods of class RealPoint will be chosen
for any particular method invocation will be determined at compile time by the
overloading resolution procedure described in §15.12.

8.4.10.3 Example: Incorrect Overriding

This example is an extended variation of that in the preceding section:
class Point {

int x =0, y =0, color;
void move(int dx, int dy) { x += dx; y += dy; }
int getX() { return x; }
int getY() { return vy; }
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class RealPoint extends Point {

}

float x = 0.0f, y = 0.0f;

void move(int dx, int dy) { move((float)dx, (float)dy); }
void move(float dx, float dy) { x += dx; y += dy; }

float getX() { return x; }

float getY() { return y; }

Here the class Point provides methods getX and getY that return the values of its
fields x and y; the class RealPoint then overrides these methods by declaring
methods with the same signature. The result istwo errors at compile time, one for
each method, because the return types do not match; the methods in class Point
return values of type int, but the wanna-be overriding methods in class
RealPoint return values of type float.

8.4.10.4 Example: Overriding versus Hiding

This example corrects the errors of the examplein the preceding section:
class Point {

}

int x =0, y = 0;

void move(int dx, int dy) { x += dx; y += dy; }
int getX() { return x; }

int getY() { return vy; }

int color;

class RealPoint extends Point {

}

float x = 0.0f, y = 0.0f;

void move(int dx, int dy) { move((float)dx, (float)dy); }
void move(float dx, float dy) { x += dx; y += dy; }

int getX() { return (int)Math.floor(x); }

int getY() { return (int)Math.floor(y); }

Here the overriding methods getX and getY in class RealPoint have the same
return types as the methods of class Point that they override, so this code can be
successfully compiled.
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Consider, then, this test program:
class Test {
public static void main(String[] args) {
RealPoint rp = new RealPoint();
Point p = rp;
rp.move(1.71828f, 4.14159f);
p.move(l, -1);
show(p.x, p.y);
show(rp.x, rp.y);
show(p.getX(), p.getY());
show(rp.getX(), rp.getY());
}

static void show(int x, int y) {
System.out.printin("(" + x +

Ty M
}

static void show(float x, float y) {

System.out.printin("(" + x + ", "+ y + ")");
}
}
The output from this programis:

(0, ©

(2.7182798, 3.14159)

2, 3

@, 3

Thefirst line of output illustrates the fact that an instance of RealPoint actu-
aly contains the two integer fields declared in class Point; it is just that their
names are hidden from code that occurs within the declaration of class
RealPoint (and those of any subclasses it might have). When a reference to an
instance of classRealPoint in avariable of type Point isused to access the field
x, the integer field x declared in class Point is accessed. The fact that its valueis
zero indicates that the method invocation p.move(1, -1) did not invoke the
method move of class Point; instead, it invoked the overriding method move of
classRealPoint.

The second line of output shows that the field access rp . x refersto the field x
declared in class RealPoint. Thisfield is of type float, and this second line of
output accordingly displays floating-point values. Incidentally, this also illustrates
the fact that the method name show is overloaded; the types of the arguments in
the method invocation dictate which of the two definitions will be invoked.

The last two lines of output show that the method invocations p.getX() and
rp.getX() each invoke the getX method declared in class RealPoint. Indeed,
there is no way to invoke the getX method of class Point for an instance of class
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RealPoint from outside the body of RealPoint, no matter what the type of the
variable we may use to hold the reference to the object. Thus, we see that fields
and methods behave differently: hiding is different from overriding.

8.4.10.5 Example: Invocation of Hidden Class Methods

A hidden class (stat1ic) method can be invoked by using a reference whose type
is the class that actually contains the declaration of the method. In this respect,
hiding of static methods is different from overriding of instance methods. The
example:
class Super {
static String greeting() { return "Goodnight"; }
String name() { return "Richard"; }
}
class Sub extends Super {
static String greeting() { return "Hello"; }
String name() { return "Dick"; }
}
class Test {
public static void main(String[] args) {
Super s = new Sub(Q);
System.out.printin(s.greeting() + ", " + s.name());
}
}
produces the output:
Goodnight, Dick
because the invocation of greeting uses the type of s, namely Super, to figure
out, at compile time, which class method to invoke, whereas the invocation of
name uses the class of s, namely Sub, to figure out, at run time, which instance
method to invoke.

8.4.10.6 Large Example of Overriding
Overriding makes it easy for subclasses to extend the behavior of an existing
class, as shown in this example:
import java.io.OutputStream;
import java.io.IOException;
class BufferOutput {
private OutputStream o;
BufferOutput(OutputStream o) { this.o = o; }
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protected byte[] buf = new byte[512];
protected int pos = 0;

public void putchar(char c) throws IOException {
if (pos == buf.Tlength)
flush(Q;
buf[pos++] = (byte)c;
3
public void putstr(String s) throws IOException {
for (int i = 0; i < s.lengthQ); i++)
putchar(s.charAt(i));
3
public void flush() throws IOException {
o.write(buf, 0, pos);
pos = 0;

}
class LineBufferQutput extends BufferOutput {

LineBufferOutput(OutputStream o) { super(o); }

public void putchar(char c) throws IOException {

super.putchar(c);
if (c == "\n")
flushQ);

}

class Test {

public static void main(String[] args)
throws IOException

{
LineBufferOutput Tho =
new LineBufferOutput(System.out);
Tbo.putstr("1bo\nlbo");
System.out.print("print\n");
Tbo.putstr("\n");
}
}
This example produces the outpuit:
Tbo
print
Tbo

The class BufferOutput implements a very simple buffered version of an
OutputStream, flushing the output when the buffer is full or flush is invoked.

8.4.10
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The subclass LineBufferOutput declares only aconstructor and a single method
putchar, which overrides the method putchar of BufferOutput. It inherits the
methods putstr and flush from class BufferQutput.

In the putchar method of aLineBufferOutput object, if the character argu-
ment isanewling, then it invokesthe f1ush method. The critical point about over-
riding in this example is that the method putstr, which is declared in class
BufferOutput, invokes the putchar method defined by the current object this,
which is not necessarily the putchar method declared in class BufferOutput.

Thus, when putstr isinvoked in main using the LineBufferOutput object
Tbo, theinvocation of putchar in the body of the putstr method is an invocation
of the putchar of the object Tbo, the overriding declaration of putchar that
checks for a newline. This alows a subclass of BufferOutput to change the
behavior of the putstr method without redefining it.

Documentation for a class such as BufferOutput, which is designed to be
extended, should clearly indicate what is the contract between the class and its
subclasses, and should clearly indicate that subclasses may override the putchar
method in this way. The implementor of the BufferOutput class would not,
therefore, want to change the implementation of putstr in afuture implementa-
tion of BufferOutput not to use the method putchar, because this would break
the preexisting contract with subclasses. See the further discussion of binary com-
patibility in 813, especially §13.2.

8.4.10.7 Example: Incorrect Overriding because of Throws

This example uses the usual and conventional form for declaring a new exception
type, in its declaration of the class BadPointException:
class BadPointException extends Exception {

BadPointException() { super(Q); }
BadPointException(String s) { super(s); }

}
class Point {

int x, y;

void move(int dx, int dy) { x += dx; y += dy; }
}

class CheckedPoint extends Point {
void move(int dx, int dy) throws BadPointException {
if (X +dx) <0 || (y + dy) < 0)
throw new BadPointException();
X += dx; y += dy;
}
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This example results in a compile-time error, because the override of method
move in class CheckedPoint declares that it will throw a checked exception that
the move in class Point has not declared. If this were not considered an error, an
invoker of the method move on areference of type Point could find the contract
between it and Point broken if this exception were thrown.
Removing the throws clause does not help:
class CheckedPoint extends Point {
void move(int dx, int dy) {
if (x+dx) <0 || (y + dy) <@
throw new BadPointException();
X += dx; y += dy;
}
}
A different compile-time error now occurs, because the body of the method
move cannot throw a checked exception, namely BadPointException, that does
not appear in the throws clause for move.

8.5 Member Type Declarations

A member classis a class whose declaration is directly enclosed in another class
or interface declaration. Similarly, amember interfaceis an interface whose decla-
ration is directly enclosed in another class or interface declaration. The scope
(86.3) of amember class or interface is specified in §8.1.6.

If the class declares a member type with a certain name, then the declaration
of that type is said to hide any and all accessible declarations of member types
with the same name in superclasses and superinterfaces of the class.

Within aclass C, adeclaration d of a member type named n shadows the dec-
larations of any other types named n that are in scope at the point where d occurs.

If a member class or interface declared with simple name C is directly
enclosed within the declaration of a class with fully qualified name N, then the
member class or interface has the fully qualified name N. C. A class inherits from
its direct superclass and direct superinterfaces al the non-private member types of
the superclass and superinterfaces that are both accessible to code in the class and
not hidden by a declaration in the class.

A class may inherit two or more type declarations with the same name, either
from two interfaces or from its superclass and an interface. A compile-time error
occurs on any attempt to refer to any ambiguously inherited class or interface by
its smple name

8.5
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If the same type declaration is inherited from an interface by multiple paths,
the class or interface is considered to be inherited only once. It may be referred to
by its simple name without ambiguity.

85.1 Modifiers

The access modifiers public, protected, and private are discussed in §6.6.
A compile-time error occurs if a member type declaration has more than one of
the access modifiers pubTic, protected, and private.

Member type declarations may have annotation modifers just like any type or
member declaration.

8.5.2 Static Member Type Declarations

The static keyword may modify the declaration of a member type C within the
body of anon-inner class T. Its effect isto declare that Cis not an inner class. Just
as a static method of T has no current instance of Tin its body, C also has no cur-
rent instance of T, nor doesit have any lexically enclosing instances.

It is acompile-time error if astatic class contains a usage of anon-static
member of an enclosing class.

Member interfaces are always implicitly static. It is permitted but not
required for the declaration of a member interface to explicitly list the static
modifier.

8.6 Instancelnitializers

Aninstanceinitializer declared in aclassis executed when an instance of the class
is created (815.9), as specified in §8.8.7.1.

Instancel nitializer:
Block

It is compile-time error if an instance initializer of a named class can throw a
checked exception unless that exception or one of its supertypes is explicitly
declared in the throws clause of each constructor of its class and the class has at
least one explicitly declared constructor. An instance initializer in an anonymous
class (815.9.5) can throw any exceptions.

The rules above distinguish between instance initializers in named and anony-
mous classes. This distinction is deliberate. A given anonymous class is only
instantiated at a single point in aprogram. It is therefore possible to directly prop-
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agate information about what exceptions might be raised by an anonymous class
instance initializer to the surrounding expression. Named classes, on the other
hand, can be instantiated in many places. Therefore the only way to propagate
information about what exceptions might be raised by an instance initiaizer of a
named class is through the throws clauses of its constructors. It follows that a
more liberal rule can be used in the case of anonymous classes. Similar comments
apply to instance variable initializers.

It is a compile-time error if an instance initializer cannot complete normally
(814.21). If areturn statement (814.17) appears anywhere within an instance ini-
tializer, then a compile-time error occurs.

Use of instance variables whose declarations appear textualy after the useis
sometimes restricted, even though these instance variables are in scope. See
88.3.2.3 for the precise rules governing forward reference to instance variables.

Instance initializers are permitted to refer to the current object this (815.8.3),
to any type variables (84.4) in scope and to use the keyword super (815.11.2,
§15.12).

8.7 StaticInitializers

Any static initializers declared in a class are executed when the classis initialized
and, together with any field initializers (88.3.2) for class variables, may be used to
initialize the class variables of the class (§12.4).

Saticlnitializer:
static Block

It isacompile-time error for astatic initializer to be able to complete abruptly
(814.1, 815.6) with a checked exception (811.2). It is a compile-time error if a
static initializer cannot complete normally (814.21).

The gatic initializers and class variable initiaizers are executed in textua
order.

Use of class variables whose declarations appear textually after the use is
sometimes restricted, even though these class variables are in scope. See 88.3.2.3
for the precise rules governing forward reference to class variables.

If a return statement (814.17) appears anywhere within a static initializer,
then a compile-time error occurs.

If the keyword this (815.8.3) or any type variable (84.4) defined outside the
initializer or the keyword super (815.11, 815.12) appears anywhere within a
static initializer, then a compile-time error occurs.

8.7
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8.8 Constructor Declarations

A congtructor is used in the creation of an object that is an instance of a class:

ConstructorDeclaration:
ConstructorModifiersyy Constructor Declarator
Throwsy,: Constructor Body

ConstructorDeclarator:
TypeParameter s, SmpleTypeName ( FormalParameterListqy )

The SmpleTypeName in the ConstructorDeclarator must be the simple name of
the class that contains the constructor declaration; otherwise a compile-time error
occurs. In al other respects, the constructor declaration looks just like a method
declaration that has no result type.

Hereisasimple example:
class Point {
int x, y;
Point(int x, int y) { this.x = x; this.y = y; }

}

Constructors are invoked by class instance creation expressions (815.9), by
the conversions and concatenations caused by the string concatenation operator +
(815.18.1), and by explicit constructor invocations from other constructors
(88.8.7). Constructors are never invoked by method invocation expressions
(815.12).

Access to constructors is governed by access modifiers (86.6).

This is useful, for example, in preventing instantiation by declaring an inac-
cessible constructor (§8.8.10).

Constructor declarations are not members. They are never inherited and there-
fore are not subject to hiding or overriding.

8.8.1 Formal Parametersand Formal Type Parameter

The formal parameters and formal type parameters of a constructor are identical
in structure and behavior to the formal parameters of a method (88.4.1).
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8.8.2 Constructor Signature

It is acompile-time error to declare two constructors with override-equivalent
(88.4.2) signaturesin aclass. It isacompile-time error to declare two constructors
whose signature has the same erasure (84.6) in aclass.

8.8.3 Constructor Modifiers

ConstructorModifiers:
Constructor Modifier
ConstructorModifiers ConstructorModifier

ConstructorModifier: one of
Annotation public protected private

The access modifiers public, protected, and private are discussed in
86.6. A compile-time error occurs if the same modifier appears more than oncein
a constructor declaration, or if a constructor declaration has more than one of the
access modifierspublic, protected, and private.

If no access modifier is specified for the constructor of a normal class, the
constructor has default access. If no access modifier is specified for the construc-
tor of an enum type, the constructor is private. It is a compile-time error if the
constructor of an enum type (88.9) is declared pubTic or protected.

If an annotation a on a constructor correspondsto an annotationtype 7, and T
has a (meta-)annotation m that corresponds to annotation.Target, then m must
have an element whose value is annotation.ETementType.CONSTRUCTOR, or a
compile-time error occurs. Annotations are further discussed in §9.7.

Unlike methods, a constructor cannot be abstract, static, final, native,
strictfp, or synchronized. A constructor is not inherited, so thereisno need to
declare it final and an abstract constructor could never be implemented. A
constructor is always invoked with respect to an object, so it makes no sense for a
constructor to be static. Thereis no practical need for a constructor to be syn-
chronized, because it would lock the object under construction, which is nor-
mally not made available to other threads until all constructors for the object have
completed their work. The lack of native constructors is an arbitrary language
design choice that makesiit easy for an implementation of the Javavirtual machine
to verify that superclass constructors are always properly invoked during object
creation.

Note that a ConstructorModifier cannot be declared strictfp. This differ-
ence in the definitions for ConstructorModifier and MethodModifier (88.4.3) isan
intentional language design choice; it effectively ensures that a constructor is FP-
strict (815.4) if and only if its classis FP-strict.

8.8.3
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8.8.4 Generic Constructors

It is possible for a constructor to be declared generic, independently of whether
the class the constructor is declared in isitself generic. A constructor is generic if
it declares one or more type variables (84.4). These type variables are known as
the formal type parameters of the constructor. The form of the formal type param-
eter list is identical to a type parameter list of a generic class or interface, as
described in §8.1.2.

The scope of a constructor’s type parameter is the entire declaration of the
constructor, including the type parameter section itself. Therefore, type parame-
ters can appear as parts of their own bounds, or as bounds of other type parameters
declared in the same section.

Type parameters of generic constructor need not be provided explicitly when
ageneric constructor isinvoked. When they are not provided, they are inferred as
specified in §15.12.2.7.

8.8.5 Constructor Throws

The throws clause for a constructor is identical in structure and behavior to the
throws clause for amethod (88.4.6).

8.8.6 The Typeof a Constructor

Thetype of aconstructor consists of its signature and the exception types given its
throws clause.

8.8.7 Constructor Body

The first statement of a constructor body may be an explicit invocation of another
constructor of the same class or of the direct superclass (§8.8.7.1).

ConstructorBody:
{ ExplicitConstructorInvocationg BlockStatementsyy }

It is a compile-time error for a constructor to directly or indirectly invoke
itself through a series of one or more explicit constructor invocations involving
this. If the constructor is a constructor for an enum type (88.9), it is a compile-
time error for it to invoke the superclass constructor explicitly.

If a constructor body does not begin with an explicit constructor invocation
and the constructor being declared is not part of the primordial classObject, then
the constructor body isimplicitly assumed by the compiler to begin with a super-
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class constructor invocation “super();”, an invocation of the constructor of its
direct superclass that takes no arguments.

Except for the possibility of explicit constructor invocations, the body of a
constructor is like the body of a method (88.4.7). A return statement (8§14.17)
may be used in the body of a constructor if it does not include an expression.

In the example:

class Point {

int x, y;

Point(int x, int y) { this.x = x; this.y = y; }
}
class ColoredPoint extends Point {

static final int WHITE = @, BLACK = 1;

int color;

ColoredPoint(int x, int y) {
this(x, y, WHITE);

}

ColoredPoint(int x, int y, int color) {
super(x, y);
this.color = color;

}

}

thefirst constructor of CoToredPoint invokes the second, providing an additional
argument; the second constructor of ColoredPoint invokes the constructor of its
superclass Po1int, passing along the coordinates.

§12.5 and §15.9 describe the creation and initialization of new class instances.

8.8.7.1 Explicit Constructor Invocations

ExplicitConstructor I nvocation:
NonWIdTypeArgumentsg: this (- ArgumentListoy ) ;
NonWIdTypeArgumentsyy super (- ArgumentListoy ) ;
Primary. NonWIdTypeArgumentsyy super (- ArgumentListoy ) ;

NonWIdTypeArguments:
< ReferenceTypeL.ist >

ReferenceTypel.ist:
ReferenceType
ReferenceTypel.ist , ReferenceType

8.8.7
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Explicit constructor invocation statements can be divided into two kinds;

 Alternate constructor invocations begin with the keyword this (possibly
prefaced with explicit type arguments). They are used to invoke an alternate
constructor of the same class.

» SQuperclass constructor invocations begin with either the keyword super (pos-
sibly prefaced with explicit type arguments) or a Primary expression. They
are used to invoke a constructor of the direct superclass. Superclass construc-
tor invocations may be further subdivided:

o Unqualified superclass constructor invocations begin with the keyword
super (possibly prefaced with explicit type arguments).

o Qualified superclass constructor invocations begin with a Primary expres-
sion . They alow a subclass constructor to explicitly specify the newly cre-
ated object’'s immediately enclosing instance with respect to the direct
superclass (88.1.3). This may be necessary when the superclass is an inner
class.

Here is an example of a qualified superclass constructor invocation:
class Outer {
class Inner{}

}

class ChildOfInner extends Outer.Inner {
ChiTdOfInner() {(new Outer()).super();}
}

An explicit constructor invocation statement in a constructor body may not
refer to any instance variables or instance methods declared in this class or any
superclass, or use this or super in any expression; otherwise, a compile-time
error occurs.

For example, if the first constructor of ColoredPoint in the example above
were changed to:

ColoredPoint(int x, int y) {

this(x, y, color);

}
then a compile-time error would occur, because an instance variable cannot be
used within a superclass constructor invocation.

An explicit constructor invocation statement can throw an exception type E iff

either:
» Some subexpression of the constructor invocation’s parameter list can throw
E; or
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» Eisdeclared in the throws clause of the constructor that is invoked.

If an anonymous class instance creation expression appears within an explicit
constructor invocation statement, then the anonymous class may not refer to any
of the enclosing instances of the class whose constructor is being invoked.

For example:

class Top {

int Xx;
class Dummy {
Dummy(Object o) {}

}
class Inside extends Dummy {
Inside() {
super(new Object() { int r = x; }); // eror
}
Inside(final int y) {
super(new Object() { int r = vy; }); // correct
}
}

}
Let Cbethe class being instantiated, let S be the direct superclass of C, and let 7 be
the instance being created. The evaluation of an explicit constructor invocation
proceeds as follows:

* Firgt, if the constructor invocation statement is a superclass constructor invo-
cation, then the immediately enclosing instance of 7 with respect to S (if any)
must be determined. Whether or not 7 has an immediately enclosing instance
with respect to S is determined by the superclass constructor invocation asfol-
lows:

o If Sisnot aninner class, or if the declaration of S occursin a static context,
no immediately enclosing instance of 7 with respect to S exists. A compile-
time error occurs if the superclass constructor invocation is a qualified
superclass constructor invocation.

o Otherwise:

o If the superclass constructor invocation is qualified, then the Primary
expression p immediately preceding . super" is evaluated. If the primary
expression evaluates to null, a Nul1PointerException is raised, and
the superclass constructor invocation completes abruptly. Otherwise, the
result of this evaluation is the immediately enclosing instance of 7 with
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respect to S. Let 0 betheimmediately lexically enclosing classof S; itisa
compile-time error if the type of p isnot 0 or asubclass of 0.

o Otherwise;

o If Sisalocal class (814.3), then let 0 be theinnermost lexically enclos-
ing class of S. Let n be an integer such that 0 isthe nth lexically enclos-
ing class of C. The immediately enclosing instance of 7 with respect to
Sisthe nth lexically enclosing instance of this.

o Otherwise, S isaninner member class (88.5). It is a compile-time error
if Sisnotamember of alexically enclosing class, or of a superclass or
superinterface thereof. Let 0 be the innermost lexically enclosing class
of which S is a member, and let n be an integer such that 0 is the nth
lexically enclosing class of C. The immediately enclosing instance of 7
with respect to S isthe nth lexically enclosing instance of this.

» Second, the arguments to the constructor are evaluated, |eft-to-right, asin an
ordinary method invocation.

* Next, the constructor isinvoked.

» Finaly, if the constructor invocation statement is a superclass constructor
invocation and the constructor invocation statement completes normally, then
all instance variable initializers of € and all instance initializers of C are exe-
cuted. If an instance initializer or instance variable initializer I textually pre-
cedes another instance initializer or instance variable initializer J, then I is
executed before J. This action is performed regardless of whether the super-
class constructor invocation actually appears as an explicit constructor invoca
tion statement or is provided automatically. An alternate constructor
invocation does not perform this additional implicit action.

8.8.8 Constructor Overloading

Overloading of constructors is identical in behavior to overloading of methods.
The overloading is resolved at compile time by each class instance creation
expression (§15.9).
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8.8.9 Default Constructor

If a class contains no constructor declarations, then a default constructor that
takes no parameters is automatically provided:

« If the class being declared is the primordia class Object, then the default
constructor has an empty body.

» Otherwise, the default constructor takes no parameters and simply invokes the
superclass constructor with no arguments.

A compile-time error occurs if a default constructor is provided by the com-
piler but the superclass does not have an accessible constructor that takes no argu-
ments.

A default constructor has no throws clause.

It follows that if the nullary constructor of the superclass hasathrows clause,
then a compile-time error will occur.

In an enum type (88.9), the default constructor isimplicitly private. Other-
wise, if the class is declared public, then the default constructor is implicitly
given the access modifier pub1ic (86.6); if the classis declared protected, then
the default constructor is implicitly given the access modifier protected (86.6);
if the class is declared private, then the default constructor is implicitly given
the access modifier private (86.6); otherwise, the default constructor has the
default access implied by no access modifier.

Thus, the example:

public class Point {

int x, y;

}
is equivalent to the declaration:

public class Point {

int x, y;
public Point() { super(Q); }

}
where the default constructor is pub1ic because the class Point ispublic.

Therule that the default constructor of a class has the same access modifier as
the classitself is simple and intuitive. Note, however, that this does not imply that
the constructor is accessible whenever the classis accessible. Consider

package pl;

public class Outer {
protected class Inner{}
}

8.8.9
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package p2;

class SonOfOuter extends pl.Outer {
void foo() {
new Inner(); // compile-time access error
}

}

The constructor for Inner is protected. However, the constructor is protected rela-
tiveto Inner, while Inner is protected relative to Outer. So, Inner isaccessible
in Son0OfOuter, sinceit isasubclass of Outer. Inner’s constructor is not accessi-
ble in Son0OfOuter, because the class SonOfOuter is not a subclass of Inner!
Hence, even though Inner isaccessible, its default constructor is not.

8.8.10 Preventing Instantiation of a Class

A class can be designed to prevent code outside the class declaration from creat-
ing instances of the class by declaring at least one constructor, to prevent the cre-
ation of an implicit constructor, and declaring all constructors to be private. A
public class can likewise prevent the creation of instances outside its package by
declaring at least one constructor, to prevent creation of adefault constructor with
pub1ic access, and declaring no constructor that ispublic.

Thus, in the example:

class ClassOnly {

private ClassOnly() { }
static String just = "only the lonely";
}

the class C1assOn1y cannot be instantiated, while in the example:
package just;

public class PackageOnly {

PackageOnly() { }
String[] justDesserts = { "cheesecake", "ice cream" };

the class PackageOnly can be instantiated only within the package just, in
which it is declared.
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89 Enums

An enum declaration has the form:

EnumDeclaration:
ClassModifierspt enum I dentifier Interfacesy,: EnumBody

EnumBody:
{ EnumConstantsyp ,opt EnumBodyDeclarationsyp }

The body of an enum type may contain enum constants. An enum constant defines
an instance of the enum type. An enum type has no instances other than those
defined by its enum constants.

DiscussioN

It is a compile-time error to attempt to explicitly instantiate an enum type (815.9.1). The
final clone method in Enum ensures that enum constants can never be cloned, and the
special treatment by the serialization mechanism ensures that duplicate instances are
never created as a result of deserialization. Reflective instantiation of enum types is prohib-
ited. Together, these four things ensure that no instances of an enum type exist beyond
those defined by the enum constants.

Because there is only one instance of each enum constant, it is permissible to use the
== operator in place of the equals method when comparing two object references if it is
known that at least one of them refers to an enum constant. (The equals method in Enum
is a final method that merely invokes super.equals on its argument and returns the
result, thus performing an identity comparison.)

EnumConstants:
EnumConstant
EnumConstants , EnumConstant

EnumConstant:
Annotations Identifier Argumentsy,; ClassBodyopt

Arguments:
( ArgumentListop )

EnumBodyDeclarations:
; ClassBodyDeclarationsgpt

8.9
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An enum constant may be preceded by annotation (89.7) modifiers. If an
annotation a on an enum constant corresponds to an annotation type 7, and T has
a (meta-)annotation m that corresponds to annotation.Target, then m must have
an element whose value is annotation.ElementType.FIELD, or acompile-time
error occurs.

An enum constant may be followed by arguments, which are passed to the
constructor of the enum type when the constant is created during class initializa-
tion as described later in this section. The constructor to be invoked is chosen
using the normal overloading rules (815.12.2). If the arguments are omitted, an
empty argument list is assumed. If the enum type has no constructor declarations,
a parameterless default constructor is provided (which matches the implicit empty
argument list). This default constructor isprivate.

The optional class body of an enum constant implicitly defines an anonymous
class declaration (815.9.5) that extends the immediately enclosing enum type. The
class body is governed by the usual rules of anonymous classes; in particular it
cannot contain any constructors.

DiscussioN

Instance methods declared in these class bodies are may be invoked outside the enclosing
enum type only if they override accessible methods in the enclosing enum type.

Enum types (88.9) must not be declared abstract; doing so will result in a
compile-time error. It is a compile-time error for an enum type E to have an
abstract method m as a member unless E has one or more enum constants, and all
of E's enum constants have class bodies that provide concrete implementations of
m. 1t isacompile-time error for the class body of an enum constant to declare an
abstract method.

An enum type is implicitly final unless it contains at least one enum con-
stant that has a class body. In any case, it is a compile-time error to explicitly
declare an enum typeto be final.

Nested enum types are implicitly static. It is permissable to explicitly
declare a nested enum type to be static.
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DiscussIioN

This implies that it is impossible to define a local (§14.3) enum, or to define an enum in an
inner class (88.1.3).

Any constructor or member declarations within an enum declaration apply to
the enum type exactly as if they had been present in the class body of a hormal
class declaration unless explicitly stated otherwise.

The direct superclass of an enum type named E is Enum<E>. In addition to the
members it inherits from Enum<E>, for each declared enum constant with the
name n the enum type has an implicitly declared public static final field
named n of type E. Thesefields are considered to be declared in the same order as
the corresponding enum constants, before any static fields explicitly declared in
the enum type. Each such field isinitialized to the enum constant that corresponds
toit. Each such field is also considered to be annotated by the same annotations as
the corresponding enum constant. The enum constant is said to be created when
the corresponding field isinitialized.

It is acompile-time error for an enum to declare afinalizer. An instance of an
enum may never be finalized.

In addition, if £ isthe name of an enum type, then that type has the following
implicitly declared static methods:

/:‘:-.':

* Returns an array containing the constants of this enum

* type, in the order they’re declared. This method may be
* used to iterate over the constants as follows:

for(E c : E.values())
System.out.printin(c);

* @return an array containing the constants of this enum
* type, in the order they’re declared

public static E[] values(Q);
/ Yk

* Returns the enum constant of this type with the specified

* name.

* The string must match exactly an identifier used to declare
* an enum constant in this type. (Extraneous whitespace

* characters are not permitted.)

* @return the enum constant with the specified name

8.9
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* @throws ITlegalArgumentException if this enum type has no
* constant with the specified name

public static E valueOf(String name);

DiscussIoN

It follows that enum type declarations cannot contain fields that conflict with the enum con-
stants, and cannot contain methods that conflict with the automatically generated methods
(vaTues() and valueOf(String)) or methods that override the final methods in Enum:
(equals(Object), hashCode(), clone(), compareTo(Object), name(), ordi-
nal(), and getDeclaringClass()).

It isacompile-time error to reference a static field of an enum type that is not
a compile-time constant (815.28) from constructors, instance initializer blocks, or
instance variable initializer expressions of that type. It is a compile-time error for
the constructors, instance initializer blocks, or instance variable initializer expres-
sions of an enum constant e to refer to itself or to an enum constant of the same
typethat is declared to theright of e.

DiscussIioN

Without this rule, apparently reasonable code would fail at run time due to the initialization
circularity inherent in enum types. (A circularity exists in any class with a "self-typed" static
field.) Here is an example of the sort of code that would fail:
enum Color {
RED, GREEN, BLUE;
static final Map<String,Color> colorMap =
new HashMap<String,Color>(Q);
Color() {
colorMap.put(toString(), this);
}

}

Static initialization of this enum type would throw a Nul1PointerException because the
static variable colorMap is uninitialized when the constructors for the enum constants run.
The restriction above ensures that such code won't compile.
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Note that the example can easily be refactored to work properly:
enum Color {

RED, GREEN, BLUE;

static final Map<String,Color> colorMap =

new HashMap<String,Color>(Q);
static {
for (Color c : Color.values())
colorMap.put(c.toString(), c);

}

The refactored version is clearly correct, as static initialization occurs top to bottom.

DiscussioN

Here is program with a nested enum declaration that uses an enhanced for loop to iterate
over the constants in the enum:
public class Examplel {
public enum Season { WINTER, SPRING, SUMMER, FALL }

public static void main(String[] args) {
for (Season s : Season.values())
System.out.println(s);

}

Running this program produces the following output:
WINTER

SPRING
SUMMER
FALL

Here is a program illustrating the use of EnumSet to work with subranges:
import java.util.*;

public class Example2 {
enum Day { MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATUR-
DAY, SUNDAY }

public static void main(String[] args) {
System.out.print("Weekdays: ");
for (Day d : EnumSet.range(Day.MONDAY, Day.FRIDAY))
System.out.print(d + " ");
System.out.println(Q;

8.9
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Running this program produces the following output:

Weekdays: MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY
EnumSet contains a rich family of static factories, so this technique can be generalized to
work non-contiguous subsets as well as subranges. At first glance, it might appear wasteful
to generate an EnumSet for a single iteration, but they are so cheap that this is the recom-
mended idiom for iteration over a subrange. Internally, an EnumSet is represented with a
single long assuming the enum type has 64 or fewer elements.

Here is a slightly more complex enum declaration for an enum type with an explicit
instance field and an accessor for this field. Each member has a different value in the field,
and the values are passed in via a constructor. In this example, the field represents the
value, in cents, of an American coin. Note, however, that their are no restrictions on the
type or number of parameters that may be passed to an enum constructor.

public enum Coin {

PENNY (1), NICKEL(5), DIME(1@), QUARTER(25);

Coin(int value) { this.value = value; }
private final int value;

public int value() { return value; }

}

Switch statements are useful for simulating the addition of a method to an enum type from
outside the type. This example "adds" a color method to the Coin type, and prints a table of
coins, their values, and their colors.
public class CoinTest {
public static void main(String[] args) {
for (Coin c : Coin.values())
System.out.println(c + ":

"

"+ c.value() +"¢ +
color(c));

private enum CoinColor { COPPER, NICKEL, SILVER }

private static CoinColor color(Coin c) {
switch(c) {
case PENNY:
return CoinColor.COPPER;
case NICKEL:
return CoinColor.NICKEL;
case DIME: case QUARTER:
return CoinColor.SILVER;
default:

throw new AssertionError("Unknown coin: " + c);
}
}
}
Running the program prints:
PENNY: 1¢ COPPER
NICKEL: 5¢ NICKEL
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DIME: 10¢ SILVER
QUARTER: 25¢ SILVER

In the following example, a playing card class is built atop two simple enum types. Note that
each enum type would be as long as the entire example in the absence of the enum facility:
import java.util.*;
pubTlic class Card implements Comparable<Card>, java.io.Serializable

{

public enum Rank { DEUCE, THREE, FOUR, FIVE, SIX, SEVEN, EIGHT,
NINE, TEN,JACK, QUEEN, KING, ACE }

public enum Suit { CLUBS, DIAMONDS, HEARTS, SPADES }

private final Rank rank;

private final Suit suit;

private Card(Rank rank, Suit suit) {
if (rank == null || suit == null)
throw new NullPointerException(rank + ", " + suit);
this.rank = rank;
this.suit = suit;

}

public Rank rank() { return rank; }
public Suit suit() { return suit; }
public String toString() { return rank +

" of " + suit; }
// Primary sort on suit, secondary sort on rank
public int compareTo(Card c) {
int suitCompare = suit.compareTo(c.suit);
return (suitCompare != @ ? suitCompare : rank.comp-
areTo(c.rank));

}

private static final List<Card> prototypeDeck = new Arrayl-
ist<Card>(52);

static {
for (Suit suit : Suit.values())
for (Rank rank : Rank.values())
prototypeDeck.add(new Card(rank, suit));
}

// Returns a new deck
public static List<Card> newDeck() {

return new ArraylList<Card>(prototypeDeck);
}

}

Here's a little program that exercises the Card class. It takes two integer parameters on the
command line, representing the number of hands to deal and the number of cards in each
hand:
import java.util.*;
class Deal {
public static void main(String args[]) {

8.9
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Integer.parselnt(args[0]);

int cardsPerHand Integer.parselnt(args[1]);

List<Card> deck Card.newDeck();

Collections.shuffle(deck);

for (int i=0; i < numHands; i++)
System.out.println(dealHand(deck, cardsPerHand));

int numHands

}
/7': *

* Returns a new ArraylList consisting of the last n elements of
* deck, which are removed from deck. The returned 1list is
* sorted using the elements’ natural ordering.
:‘c/
public static <E extends Comparable<E>> ArraylList<E>
dealHand(List<E> deck, int n) {
int deckSize = deck.size(Q);
List<E> handView = deck.subList(deckSize - n, deckSize);
ArraylList<E> hand = new ArrayList<E>(handView);
handView.clear();
Collections.sort(hand);
return hand;

}

Running the program produces results like this:

java Deal 4 5

[FOUR of SPADES, NINE of CLUBS, NINE of SPADES, QUEEN of SPADES,
KING of SPADES]

[THREE of DIAMONDS, FIVE of HEARTS, SIX of SPADES, SEVEN of DIA-
MONDS, KING of DIAMONDS]

[FOUR of DIAMONDS, FIVE of SPADES, JACK of CLUBS, ACE of DIAMONDS,
ACE of HEARTS]

[THREE of HEARTS, FIVE of DIAMONDS, TEN of HEARTS, JACK of HEARTS,
QUEEN of HEARTS]

The next example demonstrates the use of constant-specific class bodies to attach behav-
iors to the constants. (It is anticipated that the need for this will be rare.):

import java.util.*;

public enum Operation {
PLUS {
doubTle eval(double x, double y) { return x + y; }

}!
MINUS {

doubTle eval(double x, double y) { return x - y; }
}!
TIMES {

doubTle eval(double x, double y) { return x * y; }
}!

DIVIDED_BY {
doubTle eval(double x, double y) { return x / y; }
b
// Perform the arithmetic operation represented by this constant
// abstract double eval(double x, double y);
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public static void main(String args[]) {
double x Double.parseDouble(args[0]);
double y = Double.parseDouble(args[1]);

for (Operation op : Operation.values())

System.out.println(x + + op + + Yy + = +
op.eval(x, y));
}

}

Running this program produces the following output:
java Operation 2.0 4.0
2.0 PLUS 4.0 = 6.0
2.0 MINUS 4.0 = -2.0
2.0 TIMES 4.0 = 8.0
2.0 DIVIDED_BY 4.0 = 0.5

The above pattern is suitable for moderately sophisticated programmers. It is admittedly a
bit tricky, but it is much safer than using a case statement in the base type (Operation), as
the pattern precludes the possibility of forgetting to add a behavior for a new constant
(you'd get a compile-time error).

8.9
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CHAPTER 9

| nterfaces

A N interface declaration introduces a new reference type whose members are
classes, interfaces, constants and abstract methods. This type has no implementa
tion, but otherwise unrelated classes can implement it by providing implementa-
tions for its abstract methods.

A nested interface is any interface whose declaration occurs within the body
of another class or interface. A top-level interface is an interface that is not a
nested interface.

We distinguish between two kinds of interfaces - normal interfaces and anno-
tation types.

This chapter discusses the common semantics of al interfaces—normal inter-
faces and annotation types (89.6), top-level (87.6) and nested (88.5, §9.5). Details
that are specific to particular kinds of interfaces are discussed in the sections dedi-
cated to these constructs.

Programs can use interfaces to make it unnecessary for related classes to share
a common abstract superclass or to add methodsto Object.

An interface may be declared to be a direct extension of one or more other
interfaces, meaning that it implicitly specifies al the member types, abstract
methods and constants of the interfaces it extends, except for any member types
and constants that it may hide.

A class may be declared to directly implement one or more interfaces, mean-
ing that any instance of the class implements all the abstract methods specified by
the interface or interfaces. A class necessarily implements all the interfacesthat its
direct superclasses and direct superinterfaces do. This (multiple) interface inherit-
ance allows objects to support (multiple) common behaviors without sharing any
implementation.

259



9.1

260

Interface Declarations INTERFACES

A variable whose declared type is an interface type may have as its value a
reference to any instance of a class which implements the specified interface. It is
not sufficient that the class happen to implement all the abstract methods of the
interface; the class or one of its superclasses must actually be declared to imple-
ment the interface, or else the classis hot considered to implement the interface.

9.1 Interface Declarations

An interface declaration specifies a new named reference type. There are two
kinds of interface declarations - normal interface declarations and annotation
type declarations:
InterfaceDeclaration:
Normal I nterfaceDeclaration
AnnotationTypeDeclaration

Annotation types are described further in §9.6.

NormalInterfaceDeclaration:
InterfaceModifiersyy interface Identifier TypeParametersyy
Extendsl nterfacesy, InterfaceBody

The Identifier in an interface declaration specifies the name of the interface. A
compile-time error occurs if an interface has the same simple name as any of its
enclosing classes or interfaces.

9.1.1 Interface Modifiers

An interface declaration may include interface modifiers:

InterfaceModifiers:
InterfaceModifier
InterfaceModifiers InterfaceModifier

InterfaceModifier: one of
Annotation public protected private
abstract static strictfp

The access modifier pub1ic isdiscussed in 86.6. Not all modifiers are appli-
cable to al kinds of interface declarations. The access modifiers protected and
private pertain only to member interfaces within a directly enclosing class dec-
laration (88.5) and are discussed in 88.5.1. The access modifier static pertains
only to member interfaces (88.5, 89.5). A compile-time error occurs if the same
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modifier appears more than once in an interface declaration. If an annotation a on
an interface declaration corresponds to an annotation type 7, and T has a (meta-
)annotation m that corresponds to annotation.Target, then m must have an ele-
ment whose value is annotation.ElementType.TYPE, or a compile-time error
occurs. Annotation modifiers are described further in 89.7.

9.1.1.1 abstract Interfaces

Every interface is implicitly abstract. This modifier is obsolete and should not
be used in new programs.

9.1.1.2 strictfp Interfaces

The effect of the strictfp modifier isto make all float or double expressions
within the interface declaration be explicitly FP-strict (§815.4).

This implies that all nested types declared in the interface are implicitly
strictfp.

9.1.2 GenericInterfacesand Type Parameters

An interfaceis generic if it declares one or more type variables (84.4). These type
variables are known as the type parameters of the interface. The type parameter
section follows the interface name and is delimited by angle brackets. It defines
one or more type variables that act as parameters. A generic interface declaration
defines a set of types, one for each possible invocation of the type parameter sec-
tion. All parameterized types share the same interface at runtime.

The scope of an interface's type parameter is the entire declaration of the
interface including the type parameter section itself. Therefore, type parameters
can appear as parts of their own bounds, or as bounds of other type parameters
declared in the same section.

It is a compile-time error to refer to a type parameter of an interface | any-
where in the declaration of afield or type member of I.

9.1.3 Superinterfacesand Subinterfaces

If an extends clause is provided, then the interface being declared extends each
of the other named interfaces and therefore inherits the member types, methods,
and constants of each of the other named interfaces. These other named interfaces
are the direct superinterfaces of the interface being declared. Any class that
impTements the declared interface is also considered to implement all the inter-
faces that thisinterface extends.

9.13
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Extendsl nterfaces:
extends InterfaceType
Extendsinterfaces , InterfaceType

The following is repeated from 84.3 to make the presentation here clearer:

InterfaceType:
TypeDecl Soecifier TypeArgumentsyp

Given a (possibly generic) interface declaration for I<Fy, ..., Fp>, n=0, the
direct superinterfaces of the interface type (84.5) I<Fy, ..., Fp> are the types
given in the extends clause of the declaration of I if an extends clause is present.

Let I<Fy,...,Fp> n>0, beageneric interface declaration. The direct super-
interfaces of the parameterized interface type I<T7,...,Tp>, Where T4, 1<i<n,
isatype, are all types J<U7 theta , ..., Uk theta>, where J<Uz,...,Ux>isa
direct superinterface of I<Fq, ..., Fp>, and theta is the substitution [F7 := T1, ...,
Fn:=Tg].

Each InterfaceType in the extends clause of an interface declaration must
name an accessible interface type; otherwise a compile-time error occurs.

An interface I directly depends on atype T if T is mentioned in the extends
clause of I either asasuperinterface or as aqualifier within a superinterface name.
An interface T depends on a reference type T if any of the following conditions
hold:

» Idirectly dependson T.
 Idirectly dependson aclass C that depends (88.1.5) on T.

I directly depends on an interface J that depends on T (using this definition
recursively).

A compile-time error occursif an interface depends on itself.

While every classis an extension of class Object, there is no single interface
of which all interfaces are extensions.

The superinterface relationship is the transitive closure of the direct super-
interface relationship. An interface K is a superinterface of interface I if either of
thefollowing istrue:

e Kisadirect superinterface of I.

e There exists an interface J such that K is a superinterface of J, and J is a
superinterface of I, applying this definition recursively.

Interface I is said to be a subinterface of interface K whenever K is a superinter-
faceof I.
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9.1.4 Interface Body and Member Declarations

The body of an interface may declare members of the interface:

InterfaceBody:
{ InterfaceMember Declarationsyy }

InterfaceMember Declarations:
InterfaceMember Declaration
InterfaceMember Declarations InterfaceMember Declaration

InterfaceMember Declaration:
ConstantDeclaration
AbstractMethodDeclaration
ClassDeclaration
InterfaceDeclaration
The scope of the declaration of a member m declared in or inherited by an
interface type I isthe entire body of I, including any nested type declarations.

9.1.5 Accessto Interface Member Names

All interface members are implicitly public. They are accessible outside the
package where the interface is declared if the interface is also declared pub1ic or
protected, in accordance with the rules of §6.6.

9.2 Interface Members

The members of an interface are:
* Those members declared in the interface.
» Those members inherited from direct superinterfaces.

» If an interface has no direct superinterfaces, then the interface implicitly
declares a public abstract member method m with signature s, return type r,
and throws clause t corresponding to each public instance method m with
signature s, returntype r, and throws clause t declared in Object, unlessa
method with the same signature, same return type, and a compatible throws
clause is explicitly declared by the interface. It is a compile-time error if the
interface explicitly declares such amethod min the case where mis declared to
be final inObject.

9.2

263



9.3

264

Field (Constant) Declarations INTERFACES

It followsthat is a compile-time error if the interface declares a method with a
signature that is override-equivalent (88.4.2) to a public method of Object, but
has a different return type or incompatible throws clause.

The interface inherits, from the interfaces it extends, all members of those
interfaces, except for fields, classes, and interfacesthat it hides and methods that it
overrides.

9.3 Field (Constant) Declarations

ConstantDeclaration:
ConstantModifiersyy; Type VariableDeclarators ;

ConstantModifiers:
ConstantModifier
ConstantModifier ConstantModifers

ConstantModifier: one of
Annotation public static final

Every field declaration in the body of an interface is implicitly public,
static, and final. It is permitted to redundantly specify any or all of these mod-
ifiersfor such fields.

If an annotation a on afield declaration corresponds to an annotation type T,
and T has a (meta-)annotation m that corresponds to annotation.Target, then m
must have an element whose value is annotation.ElementType.FIELD, Or a
compile-time error occurs. Annotation modifiers are described further in §9.7.

If the interface declares a field with a certain name, then the declaration of
that field is said to hide any and all accessible declarations of fields with the same
name in superinterfaces of the interface.

It is a compile-time error for the body of an interface declaration to declare
two fields with the same name.

It is possible for an interface to inherit more than one field with the same
name (88.3.3.3). Such a situation does not in itself cause a compile-time error.
However, any attempt within the body of the interface to refer to either field by its
simple name will result in a compile-time error, because such a reference is
ambiguous.
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There might be several paths by which the same field declaration might be
inherited from an interface. In such a situation, the field is considered to be inher-
ited only once, and it may be referred to by its smple name without ambiguity.

9.3.1 Initialization of Fieldsin Interfaces

Every field in the body of an interface must have an initialization expression,
which need not be a constant expression. The variable initializer is evaluated and
the assignment performed exactly once, when theinterfaceisinitialized (§812.4).
A compile-time error occurs if an initialization expression for an interface
field contains a reference by simple name to the same field or to another field
whose declaration occurs textually later in the same interface.
Thus:
interface Test {
float f = j;
int j 1;
int k k+1;

=

}

causes two compile-time errors, because j is referred to in the initialization of
before j is declared and because the initialization of k refersto k itself.

One subtlety here is that, at run time, fields that are initialized with compile-
time constant values are initialized first. This applies aso to static final fields
in classes (88.3.2.1). This means, in particular, that these fields will never be
observed to have their default initial values (84.12.5), even by devious programs.
See 812.4.2 and §13.4.9 for more discussion.

If the keyword this (815.8.3) or the keyword super (15.11.2, 15.12) occurs
in an initialization expression for afield of an interface, then unless the occurrence
iswithin the body of an anonymous class (815.9.5), a compile-time error occurs.

9.3.2 Examplesof Field Declarations

The following example illustrates some (possibly subtle) points about field decla-
rations.

9.3.2.1 Ambiguous Inherited Fields

If two fields with the same name are inherited by an interface because, for exam-
ple, two of its direct superinterfaces declare fields with that name, then a single
ambiguous member results. Any use of this ambiguous member will result in a
compile-time error.

9.3.2
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Thusin the example:
interface BaseColors {
int RED = 1, GREEN = 2, BLUE = 4;
}
interface RainbowColors extends BaseColors {
int YELLOW = 3, ORANGE = 5, INDIGO = 6, VIOLET = 7;
3

interface PrintColors extends BaseColors {
int YELLOW = 8, CYAN = 16, MAGENTA = 32;
}

interface LotsOfColors extends RainbowColors, PrintColors {
int FUCHSIA = 17, VERMILION = 43, CHARTREUSE = RED+90;
}

the interface LotsOfColors inherits two fields named YELLOW. Thisisall right as
long as the interface does not contain any reference by simple name to the field
YELLOW. (Such areference could occur within avariable initializer for afield.)

Even if interface PrintColors wereto give the value 3 to YELLOW rather than
the value 8, a reference to field YELLOW within interface LotsOfColors would
still be considered ambiguous.

9.3.2.2 Multiply Inherited Fields

If asingle field is inherited multiple times from the same interface because, for
example, both this interface and one of this interface’s direct superinterfaces
extend the interface that declares the field, then only a single member results. This
situation does not in itself cause a compile-time error.

In the example in the previous section, the fields RED, GREEN, and BLUE are
inherited by interface LotsOfColors in more than one way, through interface
RainbowColors and also through interface PrintColors, but the reference to
field RED in interface LotsOfColors is not considered ambiguous because only
one actual declaration of the field RED isinvolved.

9.4 Abstract Method Declarations

AbstractMethodDeclaration:
AbstractMethodModifiersyy TypeParameters,, ResultType
MethodDeclarator Throwsyy ;

AbstractMethodModifiers:
AbstractMethodModifier
AbstractMethodModifiers AbstractMethodModifier
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AbstractMethodModifier: one of
Annotation public abstract

The access modifier pub1ic isdiscussed in 86.6. A compile-time error occurs
if the same modifier appears more than once in an abstract method declaration.

Every method declaration in the body of an interface isimplicitly abstract,
so its body is always represented by a semicolon, not a block.

Every method declaration in the body of an interface isimplicitly public.

For compatibility with older versions of the Java platform, it is permitted but
discouraged, as a matter of style, to redundantly specify the abstract modifier
for methods declared in interfaces.

It is permitted, but strongly discouraged as a matter of style, to redundantly
specify the pub1ic modifier for interface methods.

Note that a method declared in an interface must not be declared static, or a
compile-time error occurs, because static methods cannot be abstract.

Note that a method declared in an interface must not be declared strictfp
or native or synchronized, or a compile-time error occurs, because those key-
words describe implementation properties rather than interface properties. How-
ever, amethod declared in an interface may be implemented by a method that is
declared strictfp or native or synchronized in a class that implements the
interface.

If an annotation a on a method declaration corresponds to an annotation type
T, and T has a(meta-)annotation m that correspondsto annotation.Target, then
m must have an element whose valueis annotation.ElementType.METHOD, or a
compile-time error occurs. Annotation modifiers are described further in §9.7.

It is a compile-time error for the body of an interface to declare, explicitly or
implicitly, two methods with override-equivalent signatures (88.4.2). However, an
interface may inherit several methods with such signatures (89.4.1).

Note that a method declared in an interface must not be declared final or a
compile-time error occurs. However, a method declared in an interface may be
implemented by a method that is declared final in a class that implements the
interface.

A method in an interface may be generic. The rules for formal type parame-
ters of a generic method in an interface are the same as for a generic method in a
class (88.4.4).

9.4.1 Inheritanceand Overriding

An instance method m; declared in an interface I overrides another instance
method, m>, declared in interface J iff both of the following are true:

1. Tisasubinterface of J.

94.1
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2. The signature of m7 isasubsignature (88.4.2) of the signature of m>.

If amethod declaration d; with return type R overrides or hides the declaration of
another method d» with return type R, then d; must be return-type-substitutable
(88.4.5) for d,, or a compile-time error occurs. Furthermore, if Rz is not a sub-
type of R, an unchecked warning must be issued.

Moreover, a method declaration must not have a throws clause that conflicts
(88.4.6) with that of any method that it overrides; otherwise, a compile-time error
OCCUrs.

It isacompile time error if atype declaration T has a member method m; and
there exists a method my declared in T or a supertype of T such that al of the fol-
lowing conditions hold:

» m1 and my have the same name.
» myisaccessiblefrom T.
» The signature of m7 is nhot a subsignature (88.4.2) of the signature of m).

* m1 or some method m; overrides (directly or indirectly) has the same erasure
as mp or some method m overrides (directly or indirectly).

Methods are overridden on a signature-by-signature basis. If, for example, an
interface declares two pub1ic methods with the same name, and a subinterface
overrides one of them, the subinterface still inherits the other method.

An interface inherits from its direct superinterfaces all methods of the super-
interfaces that are not overridden by a declaration in the interface.

It is possible for an interface to inherit several methods with override-equiva-
lent signatures (88.4.2). Such a situation does not in itself cause a compile-time
error. The interface is considered to inherit all the methods. However, one of the
inherited methods must must be return type substitutable for any other inherited
method; otherwise, a compile-time error occurs (The throws clauses do not cause
errorsin this case.)

There might be several paths by which the same method declaration is inher-
ited from an interface. This fact causes no difficulty and never of itself resultsin a
compile-time error.

9.4.2 Overloading

If two methods of an interface (whether both declared in the same interface, or
both inherited by an interface, or one declared and one inherited) have the same
name but different signatures that are not override-equivalent (88.4.2), then the
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method name is said to be overloaded. This fact causes no difficulty and never of
itself resultsin a compile-time error. There is no required relationship between the
return types or between the throws clauses of two methods with the same name
but different signatures that are not override-equivalent.

9.4.3 Examplesof Abstract Method Declarations

The following examples illustrate some (possibly subtle) points about abstract
method declarations.

9.4.3.1 Example: Overriding

Methods declared in interfaces are abstract and thus contain no implementation.
About all that can be accomplished by an overriding method declaration, other
than to affirm a method signature, is to refine the return type or to restrict the
exceptions that might be thrown by an implementation of the method. Here is a
variation of the example shown in (88.4.3.1):

class BufferEmpty extends Exception {
BufferEmpty() { super(Q); }
BufferEmpty(String s) { super(s); }

}

class BufferException extends Exception {
BufferException() { super(Q); }

BufferException(String s) { super(s); }
}

pubTlic interface Buffer {
char get() throws BufferEmpty, BufferException;

public interface InfiniteBuffer extends Buffer {
char get() throws BufferException;// override
}

9.4.3.2 Example: Overloading

In the example code:

interface PointInterface {
void move(int dx, int dy);

}

interface RealPointInterface extends PointInterface {
void move(float dx, float dy);
void move(double dx, double dy);

}

9.4.3
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the method name move is overloaded in interface RealPointInterface with
three different signatures, two of them declared and one inherited. Any non-
abstract class that implements interface RealPointInterface must provide
implementations of all three method signatures.

9.5 Member Type Declarations

Interfaces may contain member type declarations (88.5). A member type declara-
tionin an interface isimplicitly static and pubTic.

If amember type declared with simple name C is directly enclosed within the
declaration of an interface with fully qualified name N, then the member type has
the fully qualified name N. C.

If the interface declares a member type with a certain name, then the declara-
tion of that field is said to hide any and al accessible declarations of member
types with the same name in superinterfaces of the interface.

An interface inherits from its direct superinterfaces all the non-private mem-
ber types of the superinterfaces that are both accessible to code in the interface
and not hidden by a declaration in the interface.

An interface may inherit two or more type declarations with the same name.
A compile-time error occurs on any attempt to refer to any ambiguously inherited
class or interface by its smple name. If the same type declaration isinherited from
an interface by multiple paths, the class or interface is considered to be inherited
only once; it may be referred to by its simple name without ambiguity.

9.6 Annotation Types

An annotation type declaration is a special kind of interface declaration. To
distinguish an annotation type declaration from an ordinary interface declaration,
the keyword interface is preceded by an at sign (@).
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DiscussIioN

Note that the at sign (@) and the keyword interface are two distinct tokens; technically it is
possible to separate them with whitespace, but this is strongly discouraged as a matter of
style.

AnnotationTypeDeclaration:
InterfaceModifiersyp @ interface Identifier AnnotationTypeBody

AnnotationTypeBody:
{ AnnotationTypeElementDecl arationsyy }

AnnotationTypeElementDeclarations:
AnnotationTypeElementDeclaration
AnnotationTypeElementDecl arations AnnotationTypeElementDeclaration

AnnotationTypeElementDeclaration:
AbstractMethodModifiersyp Type Identifier () DefaultValuegy ;
ConstantDeclaration
ClassDeclaration
InterfaceDeclaration
EnumbDeclaration
AnnotationTypeDeclaration

DefaultValue:
default ElementValue

DiscussioN

The following restrictions are imposed on annotation type declarations by virtue of their
context free syntax:

» Annotation type declarations cannot be generic.

» No extends clause is permitted. (Annotation types implicitly extend annotation.Anno-
tation.)

» Methods cannot have any parameters
» Methods cannot have any type parameters

9.6
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* Method declarations cannot have a throws clause

Unless explicitly modified herein, al of the rules that apply to ordinary inter-
face declarations apply to annotation type declarations.

DiscussIioN

For example, annotation types share the same namespace as ordinary class and interface
types.

Annotation type declarations are legal wherever interface declarations are legal, and
have the same scope and accessibility.

The Identifier in an annotation type declaration specifies the name of the
annotation type. A compile-time error occurs if an annotation type has the same
simple name as any of its enclosing classes or interfaces.

If an annotation a on an annotation type declaration corresponds to an annota-
tion type 7, and T has a (meta-)annotation m that corresponds to annota-
tion.Target, then m must have either an eement whose vaue is
annotation.ElementType.ANNOTATION_TYPE, or an element whose value is
annotation.ElementType.TYPE, or acompile-time error occurs.

DiscussIoN

By convention, no AbstractMethodModifiers should be present except for annotations.

The direct superinterface of an annotation type is always annotation.Anno-
tation.
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DiscussIioN

A consequence of the fact that an annotation type cannot explicitly declare a superclass or
superinterface is that a subclass or subinterface of an annotation type is never itself an
annotation type. Similarly, annotation.Annotation is not itself an annotation type.

It isacompile-time error if the return type of a method declared in an annota-
tion type is any type other than one of the following: one of the primitive types,
String, Class and any invocation of Class, an enum type (88.9), an annotation
type, or an array (810) of one of the preceding types. It is also a compile-time
error if any method declared in an annotation type has a signature that is override-
equivalent to that of any publ1ic or protected method declared in class Object
or intheinterface annotation.Annotation.

DiscussIioN

Note that this does not conflict with the prohibition on generic methods, as wildcards elimi-
nate the need for an explicit type parameter.

Each method declaration in an annotation type declaration defines an element
of the annotation type. Annotation types can have zero or more elements. An
annotation type has no el ements other than those defined by the methods it explic-
itly declares.

DiscussioN

Thus, an annotation type declaration inherits several members from annotation.Annota-
tion, including the implicitly declared methods corresponding to the instance methods in
Object, yet these methods do not define elements of the annotation type and it is illegal to
use them in annotations.

Without this rule, we could not ensure that the elements were of the types represent-
able in annotations, or that access methods for them would be available.

9.6
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It is a compile-time error if an annotation type T contains an element of type
T, either directly or indirectly.

DiscussIioN

For example, this is illegal:
// Illegal self-reference!!

@interface SelfRef {
SelfRef value();
}

and so is this:
// ITlegal circularity!!

@interface Ping {
Pong value(Q);
}

@interface Pong {
Ping valueQ);
}

Note also that this specification precludes elements whose types are nested arrays. For
example, this annotation type declaration is illegal:
// ITlegal nested array!!

@interface Verboten {
String[][] valueQ);

An annotation type element may have a default value specified for it. Thisis
done by following its (empty) parameter list with the keyword default and the
default value of the element.

Defaults are applied dynamically at the time annotations are read; default val-
ues are not compiled into annotations. Thus, changing a default value affects
annotations even in classes that were compiled before the change was made (pre-
suming these annotations lack an explicit value for the defaulted element).

An ElementValue is used to specify a default value. It is a compile-time error
if the type of the element is not commensurate (89.7) with the default val ue speci-
fied. An ElementValue is dways FP-strict (815.4).
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DiscussIioN

The following annotation type declaration defines an annotation type with several ele-
ments:
// Normal annotation type declaration with several elements

/-,':‘k
* Describes the "request-for-enhancement" (RFE)
* that Ted to the presence of
* the annotated API element.

-.':/

pubTlic @interface RequestForEnhancement {
int idQ; // Unique ID number associated with RFE
String synopsis(); // Synopsis of RFE
String engineer(); // Name of engineer who implemented RFE
String date(Q); // Date RFE was implemented

}

The following annotation type declaration defines an annotation type with no elements,
termed a marker annotation type:
// Marker annotation type declaration

/7':7':

* Annotation with this type 1indicates that the specification of
the

* annotated API element 1is preliminary and subject to change.

s':/

public @interface Preliminary { }

By convention, the name of the sole element in a single-element annotation
typeisvalue.

DiscussioN

Linguistic support for this convention is provided by the single element annotation construct
(89.7); one must obey the convention in order to take advantage of the construct.

9.6
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DiscussIioN

The convention is illustrated in the following annotation type declaration:
// Single-element annotation type declaration

/-.':7':
* Associates a copyright notice with the annotated API element.
-.':/
public @interface Copyright {
String value(Q);
}

The following annotation type declaration defines a single-element annotation type whose
sole element has an array type:

// Single-element annotation type declaration with array-typed

// element

/-.':7':
* Associates a list of endorsers with the annotated class.
-.':/
public @interface Endorsers {
String[] value(Q);

Here is an example of complex annotation types, annotation types that contain one or more
elements whose types are also annotation types.
// Complex Annotation Type

/-.'::“:
* A person’s name. This annotation type is not designed to be used
* directly to annotate program elements, but to define elements
* of other annotation types.
-.':/
pubTlic @interface Name {
String first();
String TastQ);
}

/-.':7':
* Indicates the author of the annotated program element.
-.':/
public @interface Author {
Name value();
}

/:':*
* Indicates the reviewer of the annotated program element.
-.':/
pubTlic @interface Reviewer {
Name value(Q);
}
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The following annotation type declaration provides default values for two of its four ele-
ments:
// Annotation type declaration with defaults on some elements
public @interface RequestForEnhancement {
int idQ; // No default - must be specified in
// each annotation
String synopsis(); // No default - must be specified in
// each annotation
String engineer() default "[unassigned]";
String date() default "[unimplemented]";
3

The following annotation type declaration shows a Class annotation whose value is
restricted by a bounded wildcard.

// Annotation type declaration with bounded wildcard to

// restrict Class annotation

// The annotation type declaration below presumes the existence

// of this interface, which describes a formatter for Java

// programming language source code

public interface Formatter { ... }

// Designates a formatter to pretty-print the annotated class.
public @interface PrettyPrinter {

Class<? extends Formatter> value();
}

Note that the grammar for annotation type declarations permits other element declarations
besides method declarations. For example, one might choose to declare a nested enum for
use in conjunction with an annotation type:

// Annotation type declaration with nested enum type declaration

pubTlic @interface Quality {
enum Level { BAD, INDIFFERENT, GOOD }

Level value(Q);

9.6.1 Predefined Annotation Types

Severa annotation types are predefined in the libraries of the Java platform.
Some of these predefined annotation types have special semantics. These seman-
tics are specified in this section. This section does not provide a compl ete specifi-
cation for the predefined annotations contained here in; that is the role of the
appropriate API specifications. Only those semantics that require special behavior
on the part of the Java compiler or virtual machine are specified here.

9.6.1
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9.6.1.1 Target

The annotation type annotation.Target isintended to be used in meta-annota-
tions that indicate the kind of program element that an annotation type is applica-
ble to. Target has one element, of type annotation.ElementType[]. Itis a
compile-time error if agiven enum constant appears more than once in an annota-
tion whose corresponding type is annotation.Target. See sections §7.4.1,
88.1.1, 88.3.1, 88.4.1, 88.4.3, §8.8.3, §8.9, 89.1.1, §9.3, §9.4, 89.6 and 814.4 for
the other effects of @annotation.Target annotations.

9.6.1.2 Retention

Annotations may be present only in the source code, or they may be present in the
binary form of aclass or interface. An annotation that is present in the binary may
or may not be available at run-time viathe reflective libraries of the Java platform.

The annotation type annotation.Retention is used to choose among the
above possibilities. If an annotation a correspondsto atype T, and T has a (meta-
)annotation m that corresponds to annotation.Retention, then:

* |f mhasan lement whose valueis annotation.RetentionPolicy.SOURCE,
then a Java compiler must ensure that a is not present in the binary representa-
tion of the class or interface in which a appears.

 |f m has an element whose value is annotation.RetentionPolicy.CLASS,
or annotation.RetentionPolicy.RUNTIME a Java compiler must ensure
that a is represented in the binary representation of the class or interface in
which a appears, unless m annotates a local variable declaration. An annota-
tion on alocal variable declaration is never retained in the binary representa-
tion.

If T does not have a (meta-)annotation m that corresponds to annota-
tion.Retention, then aJavacompiler must treat T asif it does have such ameta-
annotation m with an element whose value is annotation.RetentionPol-
jcy.CLASS.

DiscussioN

If m has an element whose value is annotation.RetentionPolicy.RUNTIME, the reflective
libraries of the Java platform will make a available at run-time as well.
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9.6.1.3 Inherited

The annotation type annotation.Inherited is used to indicate that annotations
on a class C corresponding to a given annotation type are inherited by subclasses
of C.

9.6.1.4 Override

Programmers occasionally overload a method declaration when they mean to
override it.

DiscussioN

The classic example concerns the equals method. Programmers write the following:
public boolean equals(Foo that) { ... }
when they mean to write:
public boolean equals(Object that) { ... }
This is perfectly legal, but class Foo inherits the equals implementation from Object,
which can cause some very subtle bugs.

The annotation type Override supports early detection of such problems. If a
method declaration is annotated with the annotation @override, but the method
does not in fact override any method declared in a superclass, acompile-time error
will occur.

DiscussioN

Note that if a method overrides a method from a superinterface but not from a superclass,
using @Override will cause a compile-time error.

The rationale for this is that a concrete class that implements an interface will neces-
sarily override all the interface’s methods irrespective of the @Override annotation, and so
it would be confusing to have the semantics of this annotation interact with the rules for
implementing interfaces.

A by product of this rule is that it is never possible to use the @0verride annotation in
an interface declaration.
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9.6.1.5 SuppressWarnings

The annotation type SuppressWarnings Supports programmer control over
warnings otherwise issued by the Java compiler. It contains a single element that
isan array of String. If a program declaration is annotated with the annotation
@SuppressWarnings(value = {S7, ... , Sk}),then aJava compiler must
not report any warning identified by one of Sy, ... , Sk if that warning would
have been generated as a result of the annotated declaration or any of its parts.

Unchecked warnings are identified by the string "unchecked".

DiscussIoN

Recent Java compilers issue more warnings than previous ones did, and these "lint-like"
warnings are very useful. It is likely that more such warnings will be added over time. To
encourage their use, there should be some way to disable a warning in a particular part of
the program when the programmer knows that the warning is inappropriate.

DiscussIoN

Compiler vendors should document the warning names they support in conjunction with
this annotation type. They are encouraged to cooperate to ensure that the same names
work across multiple compilers.

9.6.1.6 Deprecated

A program element annotated @Deprecated is one that programmers are dis-
couraged from using, typically because it is dangerous, or because a better alter-
native exists. A Java compiler must produce a warning when a deprecated type,
method, field, or constructor is used (overridden, invoked, or referenced by name)
unless:

* Theuseiswithin an entity that itself isis annotated with the annotation @ep-
recated; or

» The declaration and use are both within the same outermost class; or
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» The use site is within an entity that is annotated to suppress the warning with
the annotation @SuppressWarnings("deprecation")

Use of the annotation @eprecated on a local variable declaration or on a
parameter declaration has no effect.

9.7 Annotations

An annotation is a modifier consisting of the name of an annotation type
(89.6) and zero or more element-value pairs, each of which associates a value with
adifferent element of the annotation type. The purpose of an annotation is simply
to associate information with the annotated program el ement.

Annotations must contain an element-value pair for every element of the cor-
responding annotation type, except for those elements with default values, or a
compile-time error occurs. Annotations may, but are not required to, contain ele-
ment-value pairs for elements with default values.

Annotations may be used as modifiers in any declaration, whether package
(87.4), class (88), interface, field (88.3, §9.3), method (88.4, §9.4), parameter,
constructor (88.8), or local variable (§14.4).

DiscussioN

Note that classes include enums (§8.9), and interfaces include annotation types (89.6)

Annotations may aso be used on enum constants. Such annotations are
placed immediately before the enum constant they annotate.

It is a compile-time error if a declaration is annotated with more than one
annotation for a given annotation type.

DiscussioN

Annotations are conventionally placed before all other modifiers, but this is not a require-
ment; they may be freely intermixed with other modifiers.

281



9.7 Annotations INTERFACES

There are three kinds of annotations. The first (normal annotation) is fully
genera. The others (marker annotation and single-element annotation) are merely
shorthands.

Annotations:
Annotation
Annotations Annotation

Annotation:
Normal Annotation
Marker Annotation
SngleElementAnnotation

A normal annotation is used to annotate a program element:

Normal Annotation:
@ TypeName ( ElementValuePairsypt )

ElementValuePairs:
ElementValuePair
ElementValuePairs , ElementValuePair

ElementValuePair:
Identifier = ElementValue

ElementValue:
Conditional Expression
Annotation
ElementValueArraylnitializer

ElementValueArraylnitializer:
{ ElementValuesgpt , opt }

ElementValues:
ElementValue
ElementValues , ElementValue

DiscussIoN

Note that the at-sign (@) is a token unto itself. Technically it is possible to put whitespace in
between the at-sign and the TypeName, but this is discouraged.
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TypeName names the annotation type corresponding to the annotation. Itisa
compile-time error if TypeName does not name an annotation type. The annota-
tion type named by an annotation must be accessible (86.6) at the point where the
annotation is used, or a compile-time error occurs.

The Identifier in an ElementValuePair must be the simple name of one of the
elements of the annotation type identified by TypeName in the containing annota-
tion. Otherwise, a compile-time error occurs. (In other words, the identifier in an
element-value pair must also be amethod namein the interface identified by Type-
Name.)

The return type of this method defines the element type of the element-value
pair. An ElementValueArraylnitializer is similar to a norma array initializer
(810.6), except that annotations are permitted in place of expressions.

An element type T is commensurate with an element value Vif and only if one
of the following conditionsis true:

e Tisanarray type E[] and either:

o V is an ElementValueArraylnitializer and each ElementValuelnitializer
(analogous to avariable initializer in an array initializer) in vis commensu-
rate with E. Or

o Visan ElementValue that is commensurate with T.

e Thetype of Visassignment compatible (85.2) with T and, furthermore:
o If Tisaprimitivetype or String, Visaconstant expression (815.28).
o Visnot null.
o if TisClass, or aninvocation of Class, and Visaclassliteral (§15.8.2).
o If Tisan enum type, and Visan enum constant.
It is a compile-time error if the element type is not commensurate with the
ElementValue.

If the element type is not an annotation type or an array type, ElementValue
must be a Conditional Expression (815.25).

DiscussioN

Note that nu11 is not a legal element value for any element type.

9.7
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If the dement typeis an array type and the corresponding ElementValue is not
an ElementValueArraylnitializer, an array value whose sole element is the value
represented by the ElementValue is associated with the element. Otherwise, the
value represented by ElementValue is associated with the element.

DiscussionN

In other words, it is permissible to omit the curly braces when a single-element array is to
be associated with an array-valued annotation type element.

Note that the array’s element type cannot be an array type, that is, nested array types
are not permitted as element types. (While the annotation syntax would permit this, the
annotation type declaration syntax would not.)

An annotation on an annotation type declaration is known as a meta-annota-
tion. An annotation type may be used to annotate its own declaration. More gener-
ally, circularities in the transitive closure of the "annotates’ relation are permitted.
For example, it is legal to annotate an annotation type declaration with another
annotation type, and to annotate the latter type's declaration with the former type.
(The pre-defined meta-annotation types contain several such circularities.)

DiscussioN

Here is an example of a normal annotation:
// Normal annotation
@RequestForEnhancement(

id = 2868724,
synopsis = "Provide time-travel functionality",
engineer = "Mr. Peabody",
date = "4/1/2004"
)
public static void travelThroughTime(Date destination) { ... }

Note that the types of the annotations in the examples in this section are the annota-
tion types defined in the examples in §9.6. Note also that the elements are in the above
annotation are in the same order as in the corresponding annotation type declaration. This
is not required, but unless specific circumstances dictate otherwise, it is a reasonable con-
vention to follow.
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The second form of annotation, marker annotation, is a shorthand designed
for use with marker annotation types.

Mar ker Annotation:
@ TypeName

It is simply a shorthand for the normal annotation:
@TypeName()

DiscussioN

Example:
// Marker annotation
@Preliminary public class TimeTravel { ... }

Note that it is legal to use marker annotations for annotation types with elements, so
long as all the elements have default values.

The third form of annotation, single-element annotation, is a shorthand
designed for use with single-element annotation types:

SngleElementAnnotation:
@ TypeName ( ElementValue)

It is shorthand for the normal annotation:

@TypeName ( value = ElementValue )

DiscussIoN

Example:
// Single-element annotation
@Copyright('"2002 Yoyodyne Propulsion Systems, Inc., All rights
reserved.")
pubTlic class OscillationOverthruster { ... }
Example with array-valued single-element annotation:
// Array-valued single-element annotation

@Endorsers({"Children", "Unscrupulous dentists"})
public class LolTlipop { ... }

9.7
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Example with single-element array-valued single-element annotation (note that the curly
braces are omitted):
// Single-element array-valued single-element annotation
@Endorsers("Epicurus")
public class Pleasure { ... }
Example with complex annotation:
// Single-element complex annotation

@Author(@Name(first = "Joe", Tast = "Hacker"))
public class BitTwiddle { ... }

Note that it is legal to use single-element annotations for annotation types with multiple ele-
ments, so long as one element is named value, and all other elements have default values.
Here is an example of an annotation that takes advantage of default values:

// Normal annotation with default values

@RequestForEnhancement (
id = 4561414,
synopsis = "Balance the federal budget"

)
pubTlic static void balanceFederalBudget() {

throw new UnsupportedOperationException("Not implemented");
}

Here is an example of an annotation with a Class element whose value is restricted by the
use of a bounded wildcard.

// Single-element annotation with Class element restricted by
bounded wildcard

// The annotation presumes the existence of this class.

class GorgeousFormatter implements Formatter { ... }
@PrettyPrinter(GorgeousFormatter.class) public class Petunia {...}

// This annotation is illegal, as String is not a subtype of Format-
ter!!
@PrettyPrinter(String.class) public class Begonia { ... }
Here is an example of an annotation using an enum type defined inside the annotation
type:
// Annotation using enum type declared inside the annotation type

@Quality(Quality.Level.GOOD)
public class Karma {

}




CHAPTER 10

Arrays

I N the Java programming language arrays are objects (84.3.1), are dynamically
created, and may be assigned to variables of type Object (84.3.2). All methods of
classObject may beinvoked on an array.

An array object contains a number of variables. The number of variables may
be zero, in which case the array is said to be empty. The variables contained in an
array have no names; instead they are referenced by array access expressions that
use nonnegative integer index values. These variables are called the components
of the array. If an array has n components, we say n is the length of the array; the
components of the array are referenced using integer indices from 0 to n-1,
inclusive.

All the components of an array have the same type, called the component type
of the array. If the component type of an array is T, then the type of the array itself
iswritten T[].

The value of an array component of type float is aways an element of the
float value set (84.2.3); similarly, the value of an array component of type double
is always an element of the double value set. It is not permitted for the value of an
array component of type float to be an element of the float-extended-exponent
value set that is not al'so an element of the float value set, nor for the value of an
array component of type double to be an element of the double-extended-expo-
nent value set that is not aso an element of the double value set.

The component type of an array may itself be an array type. The components
of such an array may contain references to subarrays. If, starting from any array
type, one considers its component type, and then (if that is also an array type) the
component type of that type, and so on, eventually one must reach a component
type that is not an array type; thisis called the element type of the origina array,
and the components at thislevel of the data structure are called the elements of the
original array.
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There are some situations in which an element of an array can be an array: if
the element typeisObject or Cloneable Or java.io.Serializable, then some
or al of the elements may be arrays, because any array object can be assigned to
any variable of these types.

10.1 Array Types

An array type iswritten as the name of an element type followed by some number
of empty pairs of square brackets []. The number of bracket pairs indicates the
depth of array nesting. An array’s length is not part of itstype.

The element type of an array may be any type, whether primitive or reference.
In particular:

« Arrays with an interface type as the component type are alowed. The ele-
ments of such an array may have as their value a null reference or instances of
any type that implements the interface.

» Arrayswith an abstract class type as the component type are allowed. The
elements of such an array may have astheir value anull reference or instances
of any subclass of the abstract classthat is not itself abstract.

Array types are used in declarations and in cast expressions (815.16).

10.2 Array Variables

A variable of array type holds a reference to an object. Declaring a variable of
array type does not create an array object or alocate any space for array compo-
nents. It creates only the variable itself, which can contain areference to an array.
However, the initializer part of a declarator (88.3) may create an array, areference
to which then becomes the initial value of the variable.

Because an array’s length is not part of itstype, asingle variable of array type
may contain references to arrays of different lengths.

Here are examples of declarations of array variables that do not create arrays:

int[] ai; // array of int
short[][] as; // array of array of short
Object[] ao, // array of Object
otherAo; // array of Object
Collection<?>[] ca; // array of Collection of unknown type
short s, // scdar short
aas[]1[]; // array of array of short
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Here are some examples of declarations of array variables that create array
objects:

Exception ae[] = new Exception[3];

Object aao[][] new Exception[2][3];

int[] factorial = { 1, 1, 2, 6, 24, 120, 720, 5040 };

Char. ac[] = { lnl’ lol’ 't', Al l’ lal, ) l’

'S'! 't'! 'r'! '-i'! 'n', 'g' };
String[] aas = { "array", "of", "String", };

The [] may appear as part of the type at the beginning of the declaration, or as
part of the declarator for a particular variable, or both, asin this example:

byte[] rowvector, colvector, matrix[];
This declaration is equivalent to:
byte rowvector[], colvector[], matrix[][];

Once an array object is created, its length never changes. To make an array vari-
able refer to an array of different length, a reference to a different array must be
assigned to the variable.

If an array variable v has type A[], where A is a reference type, then v can
hold a reference to an instance of any array type B[], provided B can be assigned
to A. Thismay result in arun-time exception on alater assignment; see 810.10 for
adiscussion.

10.3 Array Creation

An array is created by an array creation expression (815.10) or an array initializer
(810.6).

An array creation expression specifies the element type, the number of levels
of nested arrays, and the length of the array for at least one of the levels of nesting.
The array’s length is available as afinal instance variable Tength. It isacompile-
time error if the element type is not areifiable type (84.7)

An array initializer creates an array and provides initial values for all its com-
ponents.

10.4 Array Access

A component of an array is accessed by an array access expression (815.13) that
consists of an expression whose value is an array reference followed by an index-

10.4
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ing expression enclosed by [ and ], asin A[1]. All arrays are 0-origin. An array
with length n can be indexed by the integers @ to n-1.

Arrays must beindexed by int values; short, byte, or char values may also
be used as index values because they are subjected to unary numeric promotion
(8) and become int values. An attempt to access an array component with a Tong
index value results in a compile-time error.

All array accesses are checked at run time; an attempt to use an index that is
less than zero or greater than or equal to the length of the array causes an
ArrayIndexOutOfBoundsException to bethrown.

10.5 Arrays. A Simple Example

The example:
class Gauss {

public static void main(String[] args) {
int[] ia = new int[101];
for (int i = 0; i < ia.length; i++)
jali]l = 1;
int sum = 0;
for (int e : ia)
sum += e;
System.out.println(sum);
3
}

that produces the outpuit:

5050
declaresavariable ia that hastype array of int, that is, int[]. Thevariableiais
initialized to reference a newly created array object, created by an array creation
expression (815.10). The array creation expression specifies that the array should
have 101 components. The length of the array is available using the field Tength,
as shown.

The example program fills the array with the integers from 0 to 100, sums
these integers, and prints the result.

10.6 Array Initializers

An array initializer may be specified in a declaration, or as part of an array cre-
ation expression (815.10), creating an array and providing some initial values:
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Arraylnitializer:
{ Variablelnitializersyp: ,opt }

Variablel nitializers:
Variablelnitializer
Variablelnitializers , Variablelnitializer

The following is repeated from 88.3 to make the presentation here clearer:

Variablelnitializer:
Expression
Arraylnitializer

An array initializer is written as a comma-separated list of expressions,
enclosed by braces“ {” and “}”.

The length of the constructed array will equal the number of expressions.

The expressions in an array initializer are executed from left to right in the
textual order they occur in the source code. The nth variable initializer specifies
the value of the n-1st array component. Each expression must be assignment-com-
patible (85.2) with the array’s component type, or a compile-time error results. It
is a compile-time error if the component type of the array being initialized is not
reifiable (84.7).

If the component type isitself an array type, then the expression specifying a
component may itself be an array initializer; that is, array initializers may be
nested.

A trailing comma may appear after the last expression in an array initializer
and isignored.

Asan example:

class Test {

public static void main(String[] args) {
int iall[] = { {1, 2}, null };
for (int[] ea : 1ia)
for (int e: ea)
System.out.printin(e);
}
}

prints:
1
2

before causing aNul1PointerException in trying to index the second compo-
nent of the array ia, whichisanull reference.

10.6
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10.7 Array Members

The members of an array type are al of the following:

* The public final field Tength, which contains the number of components
of the array (1ength may be positive or zero).

e The public method c1one, which overrides the method of the same name in
class Object and throws no checked exceptions. The return type of the clone
method of an array type T[]isT[].

« All the membersinherited from class Object; the only method of Object that
isnot inherited isits clone method.

An array thus has the same public fields and methods as the following class:
class A<T> implements Cloneable, java.io.Serializable {
public final int Tength = X;
public T[] clone() {
try {
return (T[])super.clone(); // unchecked warning
} catch (CloneNotSupportedException e) {
throw new InternalError(e.getMessage());
}

}

Note that the cast in the example above would generate an unchecked warning
(85.1.9) if arrays were really implemented this way.

Every array implements the interfaces Cloneable and java.io.Serializ-
abTe.

That arrays are cloneable is shown by the test program:

class Test {

public static void main(String[] args) {
int ial[] = { 1, 2 };
int ia2[] = ial.clone();
System.out.print((ial == ia2) + " ");
ial[1]++;
System.out.printin(ia2[1]);

}

}

which prints:

false 2
showing that the components of the arraysreferenced by ial and ia2 are different
variables. (In some early implementations of the Java programming language this
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example failed to compile because the compiler incorrectly believed that the clone
method for an array could throw a CloneNotSupportedException.)
A clone of amultidimensional array is shallow, which isto say that it creates
only asingle new array. Subarrays are shared.
Thisis shown by the example program:
class Test {
public static void main(String[] args) throws Throwable {
int iallll ={ {1, 2}, null };
int ja[l[] = ia.clone();
System.out.print((ia == ja) + " ");
System.out.printin(ia[@] == ja[0] && ia[l] == ja[ll);
}
}

which prints:
false true

showing that the int[] array that isia[0] and the int[] array that is ja[0] are
the same array.

10.8 Class Objectsfor Arrays

Every array has an associated Class object, shared with all other arrays with the
same component type. The direct superclass of an array type is Object. Every
array type implements the interfaces Cloneable and java.io.Serializable.
Thisis shown by the following example code:
class Test {
public static void main(String[] args) {
int[] ia = new int[3];
System.out.printin(ia.getClass());
System.out.printin(ia.getClass().getSuperclass());
}
}
which prints:
class [I
class java.lang.Object

where the string “[I” is the run-time type signature for the class object “array
with component type int”.

10.8
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10.9 An Array of CharactersisNot aString

In the Java programming language, unlike C, an array of char is not a String,
and neither a String nor an array of char isterminated by '\u0000' (the NUL
character).

A String object is immutable, that is, its contents never change, while an
array of char has mutable elements. The method toCharArray in class String
returns an array of characters containing the same character sequence as a
String. The class StringBuffer implements useful methods on mutable arrays
of characters.

10.10 Array Store Exception

If an array variable v hastype A[], where A is areference type, then v can hold a
reference to an instance of any array type B[], provided B can be assigned to A.
Thus, the example:
class Point { int x, y; }

class ColoredPoint extends Point { int color; }

class Test {

public static void main(String[] args) {
ColoredPoint[] cpa = new ColoredPoint[10];
Point[] pa = cpa;
System.out.printin(pa[l] == null);
try {
pa[@] = new Point();
} catch (ArrayStoreException e) {
System.out.printin(e);

}
}
}
produces the output:
true

java.Tlang.ArrayStoreException

Here the variable pa hastype Point[] and the variable cpa has asits value aref-
erence to an object of type ColoredPoint[]. A ColoredPoint can be assigned
to aPoint; therefore, the value of cpa can be assigned to pa.

A referenceto this array pa, for example, testing whether pa[1] isnul1, will
not result in arun-time type error. Thisis because the element of the array of type
ColoredPoint[] isaColoredPoint, and every ColoredPoint can stand in for
aPoint, since Point isthe superclass of ColoredPoint.
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On the other hand, an assignment to the array pa can result in arun-time error.
At compile time, an assignment to an element of pa is checked to make sure that
the value assigned is a Point. But since pa holds a reference to an array of
ColoredPoint, the assignment is valid only if the type of the value assigned at
run-timeis, more specifically, aColoredPoint.

The Java virtual machine checks for such a situation at run-time to ensure that
the assignment is valid; if not, an ArrayStoreException is thrown. More for-
mally: an assignment to an element of an array whose type is A[], where A isa
reference type, is checked at run-time to ensure that the value assigned can be
assigned to the actual element type of the array, where the actual element type
may be any reference type that is assignable to A.

DiscussioN

If the element type of an array were not reifiable (84.7), the virtual machine could not per-
form the store check described in the preceding paragraph. This is why creation of arrays of
non-reifiable types is forbidden. One may declare variables of array types whose element
type is not reifiable, but any attempt to assign them a value will give rise to an unchecked
warning (85.1.9).

10.10
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CHAPTER 11
I

Exceptions

W HEN a program violates the semantic constraints of the Java programming
language, the Java virtual machine signals this error to the program as an excep-
tion. An example of such aviolation is an attempt to index outside the bounds of
an array. Some programming languages and their implementations react to such
errors by peremptorily terminating the program; other programming languages
allow an implementation to react in an arbitrary or unpredictable way. Neither of
these approaches is compatible with the design goals of the Java platform: to pro-
vide portability and robustness. Instead, the Java programming language specifies
that an exception will be thrown when semantic constraints are violated and will
cause a non-local transfer of control from the point where the exception occurred
to a point that can be specified by the programmer. An exception is said to be
thrown from the point where it occurred and is said to be caught at the point to
which control is transferred.

Programs can also throw exceptions explicitly, using throw statements
(814.18).

Explicit use of throw statements provides an aternative to the old-fashioned
style of handling error conditions by returning funny values, such as the integer
value -1 where a negative value would not normally be expected. Experience
shows that too often such funny values are ignored or not checked for by callers,
leading to programs that are not robust, exhibit undesirable behavior, or both.

Every exception is represented by an instance of the class Throwable or one
of its subclasses; such an object can be used to carry information from the point at
which an exception occurs to the handler that catches it. Handlers are established
by catch clauses of try statements (814.20). During the process of throwing an
exception, the Java virtual machine abruptly completes, one by one, any expres-
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sions, statements, method and constructor invocations, initializers, and field ini-
tialization expressions that have begun but not completed execution in the current
thread. This process continues until ahandler isfound that indicates that it handles
that particular exception by naming the class of the exception or a superclass of
the class of the exception. If no such handler is found, then the method
uncaughtException is invoked for the ThreadGroup that is the parent of the
current thread—thus every effort is made to avoid letting an exception go unhan-
died.

The exception mechanism of the Java platform is integrated with its synchro-
nization model (817), so that locks are released as synchronized statements
(814.19) and invocations of synchronized methods (88.4.3.6, 815.12) complete
abruptly.

This chapter describes the different causes of exceptions (811.1). It details
how exceptions are checked at compile time (811.2) and processed at run time
(811.3). A detailed example (811.4) is then followed by an explanation of the
exception hierarchy (811.5).

11.1 The Causes of Exceptions

An exception is thrown for one of three reasons:

» Anabnormal execution condition was synchronously detected by the Javavir-
tual machine. Such conditions arise because:

o evaluation of an expression violates the normal semantics of the language,
such as an integer divide by zero, as summarized in 815.6

o an error occursin loading or linking part of the program (812.2, §12.3)
o some limitation on aresource is exceeded, such as using too much memory

These exceptions are not thrown at an arbitrary point in the program, but
rather at a point where they are specified as a possible result of an expression
evaluation or statement execution.

» A throw statement (814.18) was executed.
» An asynchronous exception occurred either because:
o the (deprecated) method stop of class Thread was invoked

o aninternal error has occurred in the virtual machine (811.5.2)
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Exceptions are represented by instances of the class Throwab1e and instances
of its subclasses. These classes are, collectively, the exception classes.

11.2 Compile-Time Checking of Exceptions

A compiler for the Java programming language checks, at compile time, that a
program contains handlers for checked exceptions, by analyzing which checked
exceptions can result from execution of amethod or constructor. For each checked
exception which is a possible result, the throws clause for the method (88.4.6) or
constructor (88.8.5) must mention the class of that exception or one of the super-
classes of the class of that exception. This compile-time checking for the presence
of exception handlers is designed to reduce the number of exceptions which are
not properly handled.

The unchecked exceptions classes are the class RuntimeException and its
subclasses, and the class Error and its subclasses. All other exception classes are
checked exception classes. The Java API defines a number of exception classes,
both checked and unchecked. Additional exception classes, both checked and
unchecked, may be declared by programmers. See 811.5 for a description of the
exception class hierarchy and some of the exception classes defined by the Java
APl and Javavirtual machine.

The checked exception classes named in the throws clause are part of the
contract between the implementor and user of the method or constructor. The
throws clause of an overriding method may not specify that this method will
result in throwing any checked exception which the overridden method is not per-
mitted, by its throws clause, to throw. When interfaces are involved, more than
one method declaration may be overridden by a single overriding declaration. In
this case, the overriding declaration must have a throws clause that is compatible
with all the overridden declarations (89.4).

We say that a statement or expression can throw a checked exception type E if,
according to the rules given below, the execution of the statement or expression
can result in an exception of type E being thrown.

11.2.1 Exception Analysis of Expressions

A method invocation expression can throw an exception type E iff either:
» The method to be invoked is of the form Primary.ldentifier and the Primary
expression can throw E; or

» Some expression of the argument list can throw E; or

» Eislisted in the throws clause of the type of method that isinvoked.
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A classinstance creation expression can throw an exception type E iff either:
The expression is a qualified class instance creation expression and the quali-
fying expression can throw E; or

Some expression of the argument list can throw E; or
Eislisted in the throws clause of the type of the constructor that isinvoked; or

The class instance creation expression includes a ClassBody, and some inst-
nance initializer block or instance variable initializer expression in the Class-
Body can throw E.

For every other kind of expression, the expression can throw type E iff one of

its immediate subexpressions can throw E.

11.2.2 Exception Analysisof Statements

A throw statement can throw an exception type E iff the static type of the

throw expression is E or a subtype of E, or the thrown expression can throw E.

An explicit constructor invocation statement can throw an exception type E iff

either:

Some subexpression of the constructor invocation's parameter list can throw
E; or

E isdeclared in the throws clause of the constructor that isinvoked.
A try statement can throw an exception type E iff either:
The try block can throw E and E is not assignable to any catch parameter of

the try statement and either no finally block is present or the finally
block can complete normally; or

Some catch block of the try statement can throw E and either no finally
block is present or the finally block can complete normally; or

A finally block is present and can throw E.

Any other statement S can throw an exception type E iff an expression or

statement immediately contained in Scan throw E.
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11.2.3 Exception Checking

It is a compile-time error if a method or constructor body can throw some
exception type E when both of the following hold:

» Fisachecked exception type

* Eisnot asubtype of some type declared in the throws clause of the method or
constructor.

It is a compile-time error if a static initializer (88.7) or class variable initial-
izer within anamed class or interface 88.3.2, can throw a checked exception type.

It is compile-time error if an instance variable initializer of a named class can
throw a checked exception unless that exception or one of its supertypesis explic-
itly declared in the throws clause of each constructor of its class and the class has
at least one explicitly declared constructor. An instance variable initializer in an
anonymous class (815.9.5) can throw any exceptions.

It isacompile-time error if acatch clause catches checked exception type E£1
but there exists no checked exception type E2 such that all of the following hold:

o F2 <: E1

» The try block corresponding to the catch clause can throw E2

* No preceding catch block of the immediately enclosing try statement
catches E2 or a supertype of E2.

unless E1 isthe class Exception.

11.24 Why Errorsare Not Checked

Those unchecked exception classes which are the error classes (Error and its
subclasses) are exempted from compile-time checking because they can occur at
many points in the program and recovery from them is difficult or impossible. A
program declaring such exceptions would be cluttered, pointlessly.

11.2.5 Why Runtime Exceptions are Not Checked

The runtime exception classes (RuntimeException and its subclasses) are
exempted from compile-time checking because, in the judgment of the designers
of the Java programming language, having to declare such exceptions would not
aid significantly in establishing the correctness of programs. Many of the opera-
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tions and constructs of the Java programming language can result in runtime
exceptions. The information available to a compiler, and the level of analysis the
compiler performs, are usually not sufficient to establish that such run-time excep-
tions cannot occur, even though this may be obvious to the programmer. Requir-
ing such exception classes to be declared would simply be an irritation to
programmers.

For example, certain code might implement a circular data structure that, by
construction, can never involve null references; the programmer can then be
certain that aNu11PointerException cannot occur, but it would be difficult for a
compiler to prove it. The theorem-proving technology that is needed to establish
such global properties of data structures is beyond the scope of this specification.

11.3 Handling of an Exception

When an exception is thrown, control is transferred from the code that caused the
exception to the nearest dynamically-enclosing catch clause of a try statement
(814.20) that handles the exception.

A statement or expression is dynamically enclosed by a catch clause if it
appears within the try block of the try statement of which the catch clauseisa
part, or if the caller of the statement or expression is dynamically enclosed by the
catch clause.

The caller of astatement or expression depends on where it occurs:

 If within a method, then the caller is the method invocation expression
(815.12) that was executed to cause the method to be invoked.

» |f within a constructor or an instance initializer or the initializer for an
instance variable, then the caller is the class instance creation expression
(815.9) or the method invocation of newInstance that was executed to cause
an object to be created.

* If within a static initializer or an initializer for a static variable, then the
caler is the expression that used the class or interface so as to cause it to be
initialized.

Whether a particular catch clause handles an exception is determined by
comparing the class of the object that was thrown to the declared type of the
parameter of the catch clause. The catch clause handles the exception if the type
of its parameter is the class of the exception or a superclass of the class of the
exception. Equivalently, a catch clause will catch any exception object that is an
instanceof (815.20.2) the declared parameter type.
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The control transfer that occurs when an exception is thrown causes abrupt
completion of expressions (815.6) and statements (814.1) until a catch clause is
encountered that can handle the exception; execution then continues by executing
the block of that catch clause. The code that caused the exception is never
resumed.

If no catch clause handling an exception can be found, then the current
thread (the thread that encountered the exception) is terminated, but only after all
finally clauses have been executed and the method uncaughtException has
been invoked for the ThreadGroup that is the parent of the current thread.

In situations where it is desirable to ensure that one block of code is aways
executed after another, even if that other block of code completes abruptly, a try
statement with a finally clause (§14.20.2) may be used.

If atry or catch block in atry—finally or try—catch—finally statement
compl etes abruptly, then the finally clauseis executed during propagation of the
exception, even if no matching catch clause is ultimately found. If a finally
clause is executed because of abrupt completion of a try block and the finally
clause itself completes abruptly, then the reason for the abrupt completion of the
try block is discarded and the new reason for abrupt completion is propagated
from there.

The exact rules for abrupt completion and for the catching of exceptions are
specified in detail with the specification of each statement in 814 and for expres-
sionsin 815 (especially §15.6).

11.3.1 Exceptionsare Precise

Exceptions are precise: when the transfer of control takes place, al effects of the
statements executed and expressions evaluated before the point from which the
exception is thrown must appear to have taken place. No expressions, statements,
or parts thereof that occur after the point from which the exception is thrown may
appear to have been evaluated. If optimized code has speculatively executed some
of the expressions or statements which follow the point at which the exception
occurs, such code must be prepared to hide this speculative execution from the
user-visible state of the program.

11.3.2 Handling Asynchronous Exceptions

Most exceptions occur synchronously as a result of an action by the thread in
which they occur, and at a point in the program that is specified to possibly result
in such an exception. An asynchronous exception is, by contrast, an exception that
can potentially occur at any point in the execution of a program.
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Proper understanding of the semantics of asynchronous exceptions is neces-
sary if high-quality machine code isto be generated.
Asynchronous exceptions are rare. They occur only as aresult of:

* Aninvocation of the stop methods of class Thread or ThreadGroup
* Aninterna error (811.5.2) in the Java virtual machine

The stop methods may be invoked by one thread to affect another thread or all the
threads in a specified thread group. They are asynchronous because they may
occur at any point in the execution of the other thread or threads. An
InternalError isconsidered asynchronous.

The Java platform permits a small but bounded amount of execution to occur
before an asynchronous exception isthrown. Thisdelay is permitted to allow opti-
mized code to detect and throw these exceptions at points where it is practical to
handle them while obeying the semantics of the Java programming language.

A simple implementation might poll for asynchronous exceptions at the point
of each control transfer instruction. Since a program has afinite size, this provides
abound on the total delay in detecting an asynchronous exception. Since no asyn-
chronous exception will occur between control transfers, the code generator has
some flexibility to reorder computation between control transfers for greater per-
formance.

The paper Polling Efficiently on Stock Hardware by Marc Feeley, Proc. 1993
Conference on Functional Programming and Computer Architecture, Copen-
hagen, Denmark, pp. 179-187, is recommended as further reading.

Like all exceptions, asynchronous exceptions are precise (§11.3.1).

11.4 An Example of Exceptions

Consider the following example:
class TestException extends Exception {

TestException() { super(Q); }
TestException(String s) { super(s); }
}

class Test {
public static void main(String[] args) {
for (String arg :args) {
try {
thrower(arg);
System.out.printin("Test \"" + arg +
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"\" didn't throw an exception");
} catch (Exception e) {
System.out.printin("Test \"" + arg +
"\" threw a " + e.getClass() +

"\n with message: " + e.getMessage());
}
}
}
static int thrower(String s) throws TestException {
try {
if (s.equals("divide™)) {
int i = 0;
return i/i;
}
if (s.equals("nul1™)) {
s = null;
return s.length(Q);
}
if (s.equals("test"))
throw new TestException("Test message');
return 0;
} finally {
System.out.println("[thrower(\"" + s +
"\") done]");
}
}

}

If we execute the test program, passing it the arguments.
divide null not test
it produces the output:
[thrower("divide") done]
Test "divide" threw a class java.lang.ArithmeticException
with message: / by zero
[thrower("nul1") done]
Test "null" threw a class java.lang.NullPointerException
with message: null
[thrower("not") done]
Test "not" didn't throw an exception
[thrower("test") done]
Test "test" threw a class TestException
with message: Test message

This example declares an exception class TestException. Themain method
of class Test invokes the thrower method four times, causing exceptions to be
thrown three of the four times. The try statement in method main catches each
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exception that the thrower throws. Whether the invocation of thrower completes
normally or abruptly, a message is printed describing what happened.

The declaration of the method thrower must have a throws clause because
it can throw instances of TestException, which is a checked exception class
(811.2). A compile-time error would occur if the throws clause were omitted.

Notice that the finally clause is executed on every invocation of thrower,
whether or not an exception occurs, as shown by the “ [thrower(...) done]” out-
put that occurs for each invocation.

11.5 The Exception Hierarchy

The possible exceptions in a program are organized in a hierarchy of classes,
rooted at class Throwable (811.5), a direct subclass of Object. The classes
Exception and Error are direct subclasses of Throwable. The class Runtime-
Exception isadirect subclass of Exception.

Programs can use the pre-existing exception classes in throw statements, or
define additional exception classes, as subclasses of Throwable or of any of its
subclasses, as appropriate. To take advantage of the Java platform’s compile-time
checking for exception handlers, it istypical to define most new exception classes
as checked exception classes, specifically as subclasses of Exception that are not
subclasses of RuntimeException.

The class Exception isthe superclass of all the exceptions that ordinary pro-
grams may wish to recover from. The class RuntimeException is a subclass of
class Exception. The subclasses of RuntimeException are unchecked exception
classes. The subclasses of Exception other than RuntimeException and its sub-
classes are al checked exception classes.

The class Error and its subclasses are exceptions from which ordinary pro-
grams are not ordinarily expected to recover. See the Java API specification for a
detailed description of the exception hierarchy.

The class Error is a separate subclass of ThrowabTle, distinct from Excep-
tion in the class hierarchy, to allow programsto use the idiom:

} catch (Exception e) {
to catch all exceptions from which recovery may be possible without catching
errors from which recovery istypically not possible.
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11.5.1 Loadingand LinkageErrors

The Java virtual machine throws an object that is an instance of a subclass of
LinkageError when aloading, linkage, preparation, verification or initialization
error occurs:

e Theloading processisdescribed in 812.2.

The linking processis described in 812.3.
* The class verification processis described in 812.3.1.

The class preparation process is described in 812.3.2.
» Theclassinitialization processis described in §12.4.

11.5.2 Virtual MachineErrors

The Java virtual machine throws an object that is an instance of a subclass of the
class vVirtualMachineError when an internal error or resource limitation pre-
vents it from implementing the semantics of the Java programming language. See
The Java™ Virtual Machine Specification Second Edition for the definitive discus-
sion of these errors.
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CHAPTER 12

Execution

T HIS chapter specifies activities that occur during execution of a program. It is
organized around the life cycle of a Java virtual machine and of the classes, inter-
faces, and objects that form a program.

A Java virtual machine starts up by loading a specified class and then invok-
ing the method main in this specified class. Section §12.1 outlines the loading,
linking, and initialization steps involved in executing main, as an introduction to
the conceptsin this chapter. Further sections specify the details of loading (812.2),
linking (812.3), and initialization (812.4).

The chapter continues with a specification of the procedures for creation of
new class instances (812.5); and finalization of class instances (812.6). It con-
cludes by describing the unloading of classes (812.7) and the procedure followed
when a program exits (8§12.8).

12.1 Virtual Machine Start-Up

A Java virtual machine starts execution by invoking the method main of some
specified class, passing it a single argument, which is an array of strings. In the
examplesin this specification, thisfirst classistypically called Test.

The precise semantics of virtual machine start-up are given in chapter 5 of
The Java™ Mirtual Machine Specification, Second Edition. Here we present an
overview of the process from the viewpoint of the Java programming language.

The manner in which theinitial classis specified to the Javavirtual machineis
beyond the scope of this specification, but it is typical, in host environments that
use command lines, for the fully-qualified name of the class to be specified as a
command-line argument and for following command-line arguments to be used as
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strings to be provided as the argument to the method main. For example, in a
UNIX implementation, the command line:

java Test reboot Bob Dot Enzo
will typically start a Java virtual machine by invoking method main of class Test
(aclass in an unnamed package), passing it an array containing the four strings
"reboot", "Bob", "Dot", and "Enzo".

We now outline the steps the virtual machine may take to execute Test, asan
example of the loading, linking, and initialization processes that are described fur-
ther in later sections.

12.1.1 LoadtheClassTest

The initial attempt to execute the method main of class Test discovers that the
class Test is not loaded—that is, that the virtual machine does not currently con-
tain a binary representation for this class. The virtual machine then uses a class
loader to attempt to find such a binary representation. If this process fails, then an
error isthrown. Thisloading processis described further in 812.2.

12.1.2 Link Test: Verify, Prepare, (Optionally) Resolve

After Test isloaded, it must beinitialized beforemain can beinvoked. And Test,
like al (class or interface) types, must be linked before it is initialized. Linking
involves verification, preparation and (optionally) resolution. Linking is described
further in 812.3.

Verification checks that the loaded representation of Test is well-formed,
with a proper symbol table. Verification also checks that the code that implements
Test obeys the semantic requirements of the Java programming language and the
Javavirtual machine. If a problem is detected during verification, then an error is
thrown. Verification is described further in 812.3.1.

Preparation involves alocation of static storage and any data structures that
are used internally by the virtual machine, such as method tables. Preparation is
described further in §12.3.2.

Resolution is the process of checking symbolic references from Test to other
classes and interfaces, by loading the other classes and interfaces that are men-
tioned and checking that the references are correct.

The resolution step is optional at the time of initial linkage. An implementa-
tion may resolve symbolic references from a class or interface that is being linked
very early, even to the point of resolving all symbolic references from the classes
and interfaces that are further referenced, recursively. (This resolution may result
in errors from these further loading and linking steps.) This implementation
choice represents one extreme and is similar to the kind of “static” linkage that
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has been done for many years in simple implementations of the C language. (In
these implementations, a compiled program is typically represented as an
“a.out” file that containsa fully-linked version of the program, including com-
pletely resolved links to library routines used by the program. Copies of these
library routines are included in the “a.out” file))

An implementation may instead choose to resolve a symbolic reference only
when it is actively used; consistent use of this strategy for all symbolic references
would represent the “laziest” form of resolution.

Inthiscase, if Test had several symbolic references to another class, then the
references might be resolved one at atime, as they are used, or perhaps not at al,
if these references were never used during execution of the program.

The only requirement on when resolution is performed is that any errors
detected during resolution must be thrown at a point in the program where some
action is taken by the program that might, directly or indirectly, require linkage to
the class or interface involved in the error. Using the “static” example implemen-
tation choice described above, loading and linkage errors could occur before the
program is executed if they involved a class or interface mentioned in the class
Test or any of the further, recursively referenced, classes and interfaces. In a
system that implemented the “laziest” resolution, these errors would be thrown
only when an incorrect symbolic reference is actively used.

The resolution process is described further in §12.3.3.

12.1.3 Initialize Test: Executelnitializers

In our continuing example, the virtual machine is till trying to execute the
method main of class Test. Thisis permitted only if the class has been initialized
(812.4.1).

Initialization consists of execution of any class variable initializers and static
initializers of the class Test, in textua order. But before Test can be initialized,
its direct superclass must beinitialized, as well asthe direct superclass of itsdirect
superclass, and so on, recursively. In the simplest case, Test has Object as its
implicit direct superclass; if classObject has not yet been initiaized, then it must
be initialized before Test is initialized. Class Object has no superclass, so the
recursion terminates here.

If class Test has another class Super as its superclass, then Super must be
initialized before Test. This requires loading, verifying, and preparing Super if
this has not already been done and, depending on the implementation, may also
involve resolving the symbolic references from Super and so on, recursively.

Initialization may thus cause loading, linking, and initiaization errors, includ-
ing such errorsinvalving other types.

The initialization process is described further in §12.4.
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12.1.4 InvokeTest.main

Finaly, after completion of the initialization for class Test (during which other
conseguential loading, linking, and initializing may have occurred), the method
main of Test isinvoked.

The method main must be declared pub1ic, static, and void. It must accept
asingle argument that is an array of strings. This method can be declared as either

public static void main(String[] args)
or

public static void main(String... args)

12.2 Loading of Classesand Interfaces

Loading refersto the process of finding the binary form of aclass or interface type
with a particular name, perhaps by computing it on the fly, but more typically by
retrieving a binary representation previously computed from source code by a
compiler, and constructing, from that binary form, aClass object to represent the
class or interface.

The precise semantics of loading are given in chapter 5 of The Java™ VMirtual
Machine Specification (whenever we refer to the Java virtual machine specifica
tion in this book, we mean the second edition, as amended by JSR 924). Here we
present an overview of the process from the viewpoint of the Java programming
language.

The binary format of a class or interface is hormally the class file format
described in The Java™ Mrtual Machine Specification cited above, but other for-
mats are possible, provided they meet the requirements specified in 813.1. The
method defineClass of class ClassLoader may be used to construct Class
objects from binary representationsin the class file format.

Well-behaved class |oaders maintain these properties:

* Given the same name, agood class |oader should always return the same class
object.

* If aclassloader L1 delegates|oading of aclass C to another loader L2, then for
any type T that occurs as the direct superclass or a direct superinterface of C,
or asthetype of afield in C, or asthe type of aformal parameter of a method
or constructor in C, or as a return type of a method in C, L1 and L2 should
return the same class object.
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A malicious class loader could violate these properties. However, it could not
undermine the security of the type system, because the Java virtua machine
guards against this.

For further discussion of these issues, see The Java™ Virtual Machine Specifi-
cation and the paper Dynamic Class Loading in the Java™ Virtual Machine, by
Sheng Liang and Gilad Bracha, in Proceedings of OOPSLA '98, published as
ACM SIGPLAN Notices, Volume 33, Number 10, October 1998, pages 36-44. A
basic principle of the design of the Java programming language is that the run-
time type system cannot be subverted by code written in the language, not even by
implementations of such otherwise sensitive system classes as ClassLoader and
SecurityManager.

12.2.1 TheLoading Process

The loading process isimplemented by the class C1assLoader and its subclasses.
Different subclasses of ClassLoader may implement different loading policies.
In particular, a class loader may cache binary representations of classes and inter-
faces, prefetch them based on expected usage, or load a group of related classes
together. These activities may not be completely transparent to a running applica
tion if, for example, a newly compiled version of a class is not found because an
older version is cached by a class loader. It is the responsibility of a class loader,
however, to reflect loading errors only at points in the program they could have
arisen without prefetching or group loading.

If an error occurs during class loading, then an instance of one of the follow-
ing subclasses of class LinkageError will be thrown at any point in the program
that (directly or indirectly) uses the type:

e ClassCircularityError: A class or interface could not be loaded because
it would be its own superclass or superinterface (813.4.4).

* ClassFormatError: The binary data that purports to specify a requested
compiled class or interface is malformed.

* NoClassDefFoundError: No definition for a requested class or interface
could be found by the relevant class loader.

Because loading involves the allocation of new data structures, it may fail
with an QutOfMemoryError.
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12.3 Linking of Classes and I nterfaces

Linking is the process of taking abinary form of aclass or interface type and com-
bining it into the runtime state of the Java virtual machine, so that it can be exe-
cuted. A class or interface type is dways loaded before it islinked.

Three different activities are involved in linking: verification, preparation, and
resolution of symbolic references.The precise semantics of linking are given in
chapter 5 of The Java™ Virtual Machine Specification, Second Edition. Here we
present an overview of the process from the viewpoint of the Java programming
language.

This specification alows an implementation flexibility as to when linking
activities (and, because of recursion, loading) take place, provided that the seman-
tics of the language are respected, that a class or interface is completely verified
and prepared before it is initialized, and that errors detected during linkage are
thrown at a point in the program where some action is taken by the program that
might require linkage to the class or interface involved in the error.

For example, an implementation may choose to resolve each symbolic refer-
encein aclass or interface individually, only when it is used (lazy or late resolu-
tion), or to resolve them al at once while the class is being verified (stetic
resolution). This means that the resolution process may continue, in some imple-
mentations, after a class or interface has been initialized.

Because linking involves the allocation of new data structures, it may fail with
an OutOfMemoryError.

12.3.1 Verification of the Binary Representation

\erification ensures that the binary representation of a class or interface is struc-
turally correct. For example, it checks that every instruction has a valid operation
code; that every branch instruction branches to the start of some other instruction,
rather than into the middle of an instruction; that every method is provided with a
structurally correct signature; and that every instruction obeys the type discipline
of the Java virtual machine language.

For the specification of the verification process, see the separate volume of
this series, The Java™ VMirtual Machine Specification. and the specification of the
J2ME Connected Limited Device Configuration, version 1.1.

If an error occurs during verification, then an instance of the following sub-
class of class LinkageError will be thrown at the point in the program that
caused the class to be verified:

» VerifyError: The binary definition for aclass or interface failed to pass a set
of required checks to verify that it obeys the semantics of the Java virtua
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machine language and that it cannot violate the integrity of the Java virtual
machine. (See §13.4.2, 813.4.4, §13.4.9, and 813.4.17 for some examples.)

12.3.2 Preparation of a Classor Interface Type

Preparation involves creating the statii c fields (class variables and constants) for
aclassor interface and initializing such fields to the default values (84.12.5). This
does not require the execution of any source code; explicit initializersfor static
fields are executed as part of initialization (812.4), not preparation.

Implementations of the Java virtual machine may precompute additional data
structures at preparation time in order to make later operations on a class or inter-
face more efficient. One particularly useful data structure is a “method table” or
other data structure that allows any method to be invoked on instances of a class
without requiring a search of superclasses at invocation time.

12.3.3 Resolution of Symbolic References

The binary representation of aclass or interface references other classes and inter-
faces and their fields, methods, and constructors symbolically, using the binary
names (813.1) of the other classes and interfaces (813.1). For fields and methods,
these symbolic references include the name of the class or interface type of which
the field or method is a member, as well as the name of the field or method itself,
together with appropriate type information.

Before a symbolic reference can be used it must undergo resolution, wherein
asymboalic reference is checked to be correct and, typically, replaced with a direct
reference that can be more efficiently processed if the referenceis used repeatedly.

If an error occurs during resolution, then an error will be thrown. Most typi-
cally, this will be an instance of one of the following subclasses of the class
IncompatibleClassChangeError, but it may also be an instance of some other
subclass of IncompatibleClassChangeError or even an instance of the class
IncompatibleClassChangeError itself. This error may be thrown at any point
in the program that uses a symbolic reference to the type, directly or indirectly:

» I1legalAccessError: A symbolic reference has been encountered that
specifies a use or assignment of afield, or invocation of a method, or creation
of an instance of a class, to which the code containing the reference does not
have access because the field or method was declared private, protected,
or default access (not pub11i c), or because the class was not declared pub1ic.

This can occur, for example, if a field that is originally declared public is
changed to be private after another class that refers to the field has been
compiled (813.4.7).
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e InstantiationError: A symbolic reference has been encountered that is
used in class instance creation expression, but an instance cannot be created
because the reference turns out to refer to an interface or to an abstract
class.

This can occur, for example, if a class that is originally not abstract is
changed to be abstract after another classthat refers to the classin question
has been compiled (§13.4.1).

* NoSuchFieldError: A symbolic reference has been encountered that refers
to a specific field of a specific class or interface, but the class or interface does
not contain afield of that name.

This can occur, for example, if a field declaration was deleted from a class
after another class that refersto the field was compiled (813.4.8).

* NoSuchMethodError: A symbolic reference has been encountered that refers
to a specific method of a specific class or interface, but the class or interface
does not contain a method of that signature.

This can occur, for example, if a method declaration was deleted from a class
after another class that refers to the method was compiled (§13.4.12).

Additionally, an UnsatisfiedLinkError (a subclass of LinkageError)
may be thrown if a class declares anative method for which no implementation
can be found. The error will occur if the method is used, or earlier, depending on
what kind of resolution strategy is being used by the virtual machine (812.3).

12.4 Initialization of Classes and Interfaces

Initialization of a class consists of executing its static initializers and the initializ-
ers for static fields (class variables) declared in the class. Initiaization of an
interface consists of executing the initializers for fields (constants) declared there.

Before a class is initialized, its superclass must be initialized, but interfaces
implemented by the class are not initialized. Similarly, the superinterfaces of an
interface are not initialized before the interface isinitialized.

12.4.1 When Initialization Occurs

Initialization of a class consists of executing its static initializers and the initializ-
ers for static fields declared in the class. Initialization of an interface consists of
executing the initializers for fields declared in the interface.
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Before aclassisinitialized, its direct superclass must be initialized, but inter-
faces implemented by the class need not be initialized. Similarly, the superinter-
faces of an interface need not be initialized before the interfaceisinitialized.

A class or interface type T will be initiadlized immediately before the first
occurrence of any one of the following:

e T isaclassand an instance of Tis created.
e T isaclassand a static method declared by T isinvoked.
» A static field declared by T is assigned.

» A datic field declared by T is used and the field is not a constant variable
(84.12.4).

» T is atop-level class, and an assert statement (814.10) lexicaly nested
within T is executed.

Invocation of certain reflective methods in class Class and in package
java.lang.reflect also causes class or interface initialization. A class or inter-
face will not be initialized under any other circumstance.

The intent here isthat a class or interface type has a set of initializers that put
it in a consistent state, and that this state is the first state that is observed by other
classes. The static initializers and class variable initializers are executed in textual
order, and may not refer to class variables declared in the class whose declarations
appear textually after the use, even though these class variables are in scope
(88.3.2.3). Thisrestriction is designed to detect, at compile time, most circular or
otherwise malformed initializations.

As shown in an example in 88.3.2.3, the fact that initialization code is unre-
stricted allows examples to be constructed where the value of a class variable can
be observed when it still hasitsinitial default value, before itsinitializing expres-
sion is evaluated, but such examples are rare in practice. (Such examples can be
also constructed for instance variable initialization; see the example at the end of
§12.5). The full power of the language is available in these initializers; program-
mers must exercise some care. This power places an extra burden on code genera-
tors, but this burden would arise in any case because the language is concurrent
(812.4.3).

Before a class is initialized, its superclasses are initialized, if they have not
previously been initialized.

Thus, the test program:

class Super {

static { System.out.print("Super "); }
}
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class One {

static { System.out.print("One "); }
3
class Two extends Super {

static { System.out.print("Two "); }
}

class Test {
public static void main(String[] args) {
One o = null;
Two t = new Two();
System.out.printin((Object)o == (Object)t);
}

}
prints:

Super Two false

The class One is never initialized, because it not used actively and therefore is
never linked to. The class Two is initialized only after its superclass Super has
been initialized.

A reference to a class field causes initialization of only the class or interface
that actually declaresit, even though it might be referred to through the name of a
subclass, a subinterface, or a class that implements an interface.

The test program:

class Super { static int taxi = 1729; }

class Sub extends Super {

static { System.out.print("Sub "); }
}
class Test {

public static void main(String[] args) {
System.out.printin(Sub.taxi);
}

}
prints only:

1729
because the class Sub is never initialized; the referenceto Sub. taxi isareference
to afield actually declared in class Super and does not trigger initiaization of the
class Sub.

Initialization of an interface does not, of itself, causeinitialization of any of its
superinterfaces.
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Thus, the test program:
interface I {
int i = 1, ii = Test.out("ii", 2);
}
interface J extends I {
int j = Test.out("j", 3), jj = Test.out("jj", 4);
}
interface K extends J {
int k = Test.out("k", 5);
}
class Test {
public static void main(String[] args) {

System.out.println(J.i);
System.out.printin(K.j);
}

static int out(String s, int i) {

System.out.printin(s + "=" + 1i);
return 1i;
}
}
produces the output:

1

j=3

ji=4

3

The reference to J.1 isto afield that is a compile-time constant; therefore, it
does not cause I to be initialized. The reference to K. j is a reference to a field
actually declared in interface J that is not a compile-time constant; this causes ini-
tialization of the fields of interface J, but not those of its superinterface I, nor
those of interface K. Despite the fact that the name K is used to refer to field j of
interface J, interface K is not initialized.

12.4.2 Detailed Initialization Procedure

Because the Java programming language is multithreaded, initialization of a class
or interface requires careful synchronization, since some other thread may be try-
ing to initialize the same class or interface at the sametime. There is also the pos-
sibility that initialization of a class or interface may be requested recursively as
part of the initialization of that class or interface; for example, a variable initial-
izer in class A might invoke a method of an unrelated class B, which might in turn
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invoke a method of class A. The implementation of the Java virtual machine is
responsible for taking care of synchronization and recursive initialization by using
the following procedure. It assumes that the Class object has already been veri-
fied and prepared, and that the Class object contains state that indicates one of
four situations:

ThisClass object is verified and prepared but not initialized.

ThisClass object isbeing initialized by some particular thread T.

ThisClass object isfully initialized and ready for use.

This Class object isin an erroneous state, perhaps because initialization was
attempted and failed.

The procedure for initializing a class or interface is then as follows:

. Synchronize (814.19) on the C1ass object that represents the class or interface

to be initialized. This involves waiting until the current thread can obtain the
lock for that object (817.1).

. If initidization is in progress for the class or interface by some other thread,

then wait on this Class object (which temporarily releases the lock). When
the current thread awakens from the wai t, repeat this step.

. If initidization is in progress for the class or interface by the current thread,

then this must be a recursive request for initialization. Release the lock on the
Class object and complete normally.

. If the class or interface has already been initialized, then no further action is

required. Release the lock on the C1ass object and complete normally.

. If the Class object isin an erroneous state, then initialization is not possible.

Release the lock on the CTass object and throw aNoClassDefFoundError.

. Otherwise, record the fact that initialization of the Class object is now in

progress by the current thread and release the lock on the Class object.

. Next, if the Class object represents a class rather than an interface, and the

superclass of this class has not yet been initialized, then recursively perform
this entire procedure for the superclass. If necessary, verify and prepare the
superclass first. If the initialization of the superclass completes abruptly
because of athrown exception, then lock this Class object, label it erroneous,
notify all waiting threads, release the lock, and complete abruptly, throwing
the same exception that resulted from initializing the superclass.
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8. Next, determine whether assertions are enabled (814.10) for this class by que-
rying its defining class |loader.

9. Next, execute either the class variable initializers and static initializers of the
class, or the field initializers of the interface, in textual order, as though they
were a single block, except that final class variables and fields of interfaces
whose values are compile-time constants are initialized first (88.3.2.1, §9.3.1,
§13.4.9).

10. If the execution of the initializers completes normally, then lock this Class
object, label it fully initialized, notify all waiting threads, release the lock, and
complete this procedure normally.

11. Otherwise, the initializers must have completed abruptly by throwing some
exception E. If the classof E isnhot Error or one of its subclasses, then create
a new instance of the class ExceptionInInitializerError, with E asthe
argument, and use this object in place of E in the following step. But if anew
instance of ExceptionInInitializerError cannot be created because an
OutOfMemoryError occurs, then instead use an OutOfMemoryError objectin
place of E in the following step.

12. Lock the Class object, label it erroneous, notify all waiting threads, release
the lock, and complete this procedure abruptly with reason E or its replace-
ment as determined in the previous step.

(Dueto aflaw in some early implementations, aexception during classinitial-
ization was ignored, rather than causing an ExceptionInInitializerError as
described here.)

12.4.3 Initialization: Implicationsfor Code Generation

Code generators need to preserve the points of possible initialization of a class or
interface, inserting an invocation of the initialization procedure just described. If
thisinitialization procedure completes normally and the Class object is fully ini-
tialized and ready for use, then the invocation of the initialization procedure is no
longer necessary and it may be eliminated from the code—for example, by patch-
ing it out or otherwise regenerating the code.

Compile-time analysis may, in some cases, be able to eliminate many of the
checks that a type has been initialized from the generated code, if an initialization
order for a group of related types can be determined. Such analysis must, how-
ever, fully account for concurrency and for the fact that initialization code is unre-
stricted.
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12.5 Creation of New Class | nstances

A new class instance is explicitly created when evaluation of a class instance cre-
ation expression (815.9) causes a class to be instantiated.
A new class instance may be implicitly created in the following situations:

» Loading of aclass or interface that contains a String literal (83.10.5) may
create anew String object to represent that literal. (This might not occur if
the same String has previously been interned (83.10.5).)

» Execution of an operation that causes boxing conversion (85.1.7). Boxing
conversion may create a new object of awrapper class associated with one of
the primitive types.

» Execution of a string concatenation operator (815.18.1) that is not part of a
constant expression sometimes creates a new String object to represent the
result. String concatenation operators may also create temporary wrapper
objects for avalue of a primitive type.

Each of these situations identifies a particular constructor to be called with speci-
fied arguments (possibly none) as part of the class instance creation process.

Whenever a new class instance is created, memory space is allocated for it
with room for all the instance variables declared in the class type and al the
instance variables declared in each superclass of the class type, including al the
instance variables that may be hidden (88.3). If there is not sufficient space avail-
able to allocate memory for the object, then creation of the class instance com-
pletes abruptly with an OutOfMemoryError. Otherwise, all the instance variables
in the new object, including those declared in superclasses, are initialized to their
default values (84.12.5).

Just before areference to the newly created object is returned as the result, the
indicated constructor is processed to initialize the new object using the following
procedure:

1. Assign the arguments for the constructor to newly created parameter variables
for this constructor invocation.

2. If this constructor begins with an explicit constructor invocation of another
constructor in the same class (using this), then evaluate the arguments and
process that constructor invocation recursively using these same five steps. If
that constructor invocation completes abruptly, then this procedure completes
abruptly for the same reason; otherwise, continue with step 5.

3. This constructor does not begin with an explicit constructor invocation of
another constructor in the same class (using this). If this constructor isfor a
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class other than Object, then this constructor will begin with an explicit or
implicit invocation of a superclass constructor (using super). Evaluate the
arguments and process that superclass constructor invocation recursively
using these same five steps. If that constructor invocation completes abruptly,
then this procedure completes abruptly for the same reason. Otherwise, con-
tinue with step 4.

4. Execute the instance initializers and instance variable initializers for this
class, assigning the values of instance variable initializers to the correspond-
ing instance variables, in the left-to-right order in which they appear textually
in the source code for the class. If execution of any of these initializers results
in an exception, then no further initializers are processed and this procedure
completes abruptly with that same exception. Otherwise, continue with step 5.
(In some early implementations, the compiler incorrectly omitted the code to
initialize a field if the field initializer expression was a constant expression
whose value was equal to the default initialization value for itstype.)

5. Execute the rest of the body of this constructor. If that execution completes
abruptly, then this procedure completes abruptly for the same reason. Other-
wise, this procedure completes normally.

In the example:

class Point {
int x, y;
Point() { x=1; y=1; }

}

class ColoredPoint extends Point {
int color = OxFFOOFF;

}

class Test {
public static void main(String[] args) {
ColoredPoint cp = new ColoredPoint();
System.out.printin(cp.color);
}
}
anew instance of ColoredPoint is created. First, space is allocated for the new
ColoredPoint, to hold thefields x, y, and color. All these fields are then initial-
ized to their default values (in this case, 0 for each field). Next, the CoToredPoint
constructor with no arguments is first invoked. Since ColoredPoint declares no
constructors, a default constructor of the form:
ColoredPoint() { super(); }
is provided for it automatically by the Java compiler.

12.5
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This constructor then invokes the Point constructor with no arguments. The
Point constructor does not begin with an invocation of a constructor, so the com-
piler provides an implicit invocation of its superclass constructor of no arguments,
asthough it had been written:

Point() { super(); x=1; y=1; }

Therefore, the constructor for Object which takes no argumentsis invoked.

The class Object has no superclass, so the recursion terminates here. Next,
any instance initializers, instance variable initializers of Object are invoked.
Next, the body of the constructor of Object that takes no arguments is executed.
No such constructor is declared in Object, so the compiler supplies adefault one,
which in this special caseis:

Object( { }

This constructor executes without effect and returns.

Next, al initializers for the instance variables of class Point are executed. As
it happens, the declarations of x and y do not provide any initialization expres-
sions, so no action is required for this step of the example. Then the body of the
Point constructor is executed, setting x to 1 and y to 1.

Next, the initializers for the instance variables of class ColoredPoint are
executed. This step assigns the value @xFFOOFF to color. Findly, the rest of the
body of the ColoredPoint constructor is executed (the part after the invocation
of super); there happen to be no statements in the rest of the body, so no further
action isrequired and initialization is compl ete.

Unlike C++, the Java programming language does not specify altered rulesfor
method dispatch during the creation of a new class instance. If methods are
invoked that are overridden in subclassesin the object being initialized, then these
overriding methods are used, even before the new aobject is completely initialized.
Thus, compiling and running the example:

class Super {

Super() { printThree(Q); }
void printThree() { System.out.printin("three"); }

}
class Test extends Super {
int three = (int)Math.PI; // Thatis, 3
public static void main(String[] args) {
Test t = new Test();
t.printThree();
3
void printThree() { System.out.printin(three); }
3
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produces the output:
0
3

This shows that the invocation of printThree in the constructor for class Super
does not invoke the definition of printThree in class Super, but rather invokes
the overriding definition of printThree in class Test. This method therefore
runs before the field initializers of Test have been executed, which iswhy thefirst
value output is @, the default value to which the field three of Test isinitialized.
The later invocation of printThree in method main invokes the same definition
of printThree, but by that point the initializer for instance variable three has
been executed, and so the value 3 is printed.
See 88.8 for more details on constructor declarations.

12.6 Finalization of Class | nstances

The class Object hasaprotected method called finalize; this method can be
overridden by other classes. The particular definition of finalize that can be
invoked for an object is called the finalizer of that object. Before the storage for an
object is reclaimed by the garbage collector, the Java virtual machine will invoke
the finalizer of that object.

Finalizers provide a chance to free up resources that cannot be freed automat-
icaly by an automatic storage manager. In such situations, simply reclaiming the
memory used by an object would not guarantee that the resources it held would be
reclaimed.

The Java programming language does not specify how soon afinalizer will be
invoked, except to say that it will happen before the storage for the object is
reused. Also, the language does not specify which thread will invoke the finalizer
for any given object. It is guaranteed, however, that the thread that invokes the
finalizer will not be holding any user-visible synchronization locks when the final -
izer is invoked. If an uncaught exception is thrown during the finalization, the
exception isignored and finalization of that object terminates.

The completion of an object's constructor happens-before (§17.4.5) the execu-
tion of its finalize method (in the formal sense of happens-before).

DiscussIioN

It is important to note that many finalizer threads may be active (this is sometimes needed
on large shared memory multiprocessors), and that if a large connected data structure

12.6
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becomes garbage, all of the finalize methods for every object in that data structure could be
invoked at the same time, each finalizer invocation running in a different thread.

The finalize method declared in class Object takes no action. The fact that
class Object declares a finalize method means that the finalize method for
any class can aways invoke the finalize method for its superclass. This should
always be done, unless it is the programmer's intent to nullify the actions of the
finalizer in the superclass. (Unlike constructors, finalizers do not automatically
invoke the finalizer for the superclass; such an invocation must be coded explic-
itly.)

For efficiency, an implementation may keep track of classes that do not over-
ride the finalize method of classObject, or overrideit in atrivial way, such as.

protected void finalize() throws Throwable {
super.finalize();
}

We encourage implementations to treat such objects as having afinalizer that
is not overridden, and to finalize them more efficiently, as described in §12.6.1.

A finalizer may be invoked explicitly, just like any other method.

The package java.lang. ref describes weak references, which interact with
garbage collection and finalization. As with any API that has special interactions
with the language, implementors must be cognizant of any requirements imposed
by the java.lang.ref API. This specification does not discuss weak references
in any way. Readers are referred to the APl documentation for details.

12.6.1 Implementing Finalization

Every object can be characterized by two attributes: it may be reachable, finalizer-
reachable, or unreachable, and it may also be unfinalized, finalizable, or finalized.

A reachable object is any object that can be accessed in any potential continu-
ing computation from any live thread. Optimizing transformations of a program
can be designed that reduce the number of objects that are reachable to be less
than those which would naively be considered reachable. For example, a compiler
or code generator may choose to set a variable or parameter that will no longer be
used to nu11 to cause the storage for such an object to be potentially reclaimable
sooner.
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DiscussIioN

Another example of this occurs if the values in an object's fields are stored in registers. The
program may then access the registers instead of the object, and never access the object
again. This would imply that the object is garbage.
Note that this sort of optimization is only allowed if references are on the stack, not
stored in the heap.
For example, consider the Finalizer Guardian pattern:
class Foo {
private final Object finalizerGuardian = new Object() {
protected void finalize() throws Throwable {
/* finalize outer Foo object */
}
}
}

The finalizer guardian forces super.finalize to be called if a subclass overrides final-
ize and does not explicitly call super.finalize.

If these optimizations are allowed for references that are stored on the heap, then the
compiler can detect that the finalizerGuardian field is never read, null it out, collect the
object immediately, and call the finalizer early. This runs counter to the intent: the program-
mer probably wanted to call the Foo finalizer when the Foo instance became unreachable.
This sort of transformation is therefore not legal: the inner class object should be reachable
for as long as the outer class object is reachable.

Transformations of this sort may result in invocations of the finalize method occur-
ring earlier than might be otherwise expected. In order to allow the user to prevent this, we
enforce the notion that synchronization may keep the object alive. If an object's finalizer can
result in synchronization on that object, then that object must be alive and considered
reachable whenever a lock is held on it.

Note that this does not prevent synchronization elimination: synchronization only
keeps an object alive if a finalizer might synchronize on it. Since the finalizer occurs in
another thread, in many cases the synchronization could not be removed anyway.

A finalizer-reachable object can be reached from some finalizable object
through some chain of references, but not from any live thread. An unreachable
object cannot be reached by either means.

An unfinalized object has never had its finalizer automatically invoked; a
finalized object has had its finalizer automatically invoked. A finalizable object
has never had its finalizer automatically invoked, but the Javavirtual machine may
eventually automatically invoke its finalizer.

An object o is not finalizable until its constructor has invoked the constructor
for Object on o and that invocation has completed successfully (that is, without
throwing an exception). Every pre-finalization write to afield of an object must be
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visible to the finalization of that object. Furthermore, none of the pre-finalization
reads of fields of that object may see writes that occur after finalization of that
object isinitiated.

12.6.1.1 Interaction with the Memory Model

It must be possible for the memory model (817) to decide when it can commit
actionsthat take placein afinalizer. This section describestheinteraction of final-
ization with the memory model.

Each execution has a number of reachability decision points, labeled di. Each
action either comes-before di or comes-after di. Other than as explicitly men-
tioned, the comes-before ordering described in this section is unrelated to all other
orderings in the memory model.

If r isaread that sees a write w and r comes-before di, then w must come-
before di. If x and y are synchronization actions on the same variable or monitor
such that so(x, y) (817.4.4) and y comes-before di, then x must come-before di.

At each reachability decision point, some set of objects are marked as
unreachable, and some subset of those objects are marked as finalizable. These
reachability decision points are also the points at which references are checked,
enqueued and cleared according to the rules provided in the APl documentation
for the package java.lang.ref.

The only objectsthat are considered definitely reachable at a point di are those
that can be shown to be reachable by the application of these rules:

» Anobject B isdefinitely reachable at di from static fieldsif there existsawrite
w1 to astatic field v of a class C such that the value written by wi is arefer-
enceto B, the class C isloaded by areachable classloader and there does not
exist awrite w2 to v such that hb(w2, wi) is not true and both w1 and w2 come-
before di.

» Anobject B is definitely reachable from A at di if thereisawrite w1 to an ele-
ment v of A such that the value written by w1 isareference to B and there
does not exist awrite w2 to v such that hb(wz2, wi) is not true and both w1 and
w2 come-before di.

« If an object C is definitely reachable from an object B, and object B is defi-
nitely reachable from an object A, then C is definitely reachable from A.
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An action aiis an active use of X if and only if at least one of the following condi-
tions holds:

» areadsor writes an e ement of X

» alocks or unlocks X and there is a lock action on X that happens-after the
invocation of the finalizer for X.

* awritesareferenceto X

e aisanactive use of an object Y, and X is definitely reachable from Y

If an object X is marked as unreachable at di,
« X'must not be definitely reachable at di from static fields,

« All active uses of X in thread t that come-after di must occur in the finalizer
invocation for X or asaresult of thread t performing aread that comes-after di
of areferenceto X.

» All reads that come-after di that see a reference to X must see writes to ele-
ments of objects that were unreachable at di, or see writes that came after di.

If an object X ismarked asfinalizable at di, then
« X must be marked as unreachable at di,
 di must be the only place where X is marked as finalizable,
* actions that happen-after the finalizer invocation must come-after di

12.6.2 Finalizer Invocationsare Not Ordered

The Java programming language imposes no ordering on finalize method calls.
Finalizers may be called in any order, or even concurrently.

As an example, if a circularly linked group of unfinalized objects becomes
unreachable (or finalizer-reachable), then all the objects may become finalizable
together. Eventually, the finalizers for these objects may be invoked, in any order,
or even concurrently using multiple threads. If the automatic storage manager
later finds that the objects are unreachable, then their storage can be reclaimed.

It is straightforward to implement a class that will cause a set of finalizer-like
methods to be invoked in a specified order for a set of objects when all the objects
become unreachable. Defining such aclassis|eft as an exercise for the reader.
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12.7 Unloading of Classesand I nterfaces

An implementation of the Java programming language may unload classes. A
class or interface may be unloaded if and only if its defining class loader may be
reclaimed by the garbage collector as discussed in §12.6. Classes and interfaces
|oaded by the bootstrap loader may not be unloaded.

Hereisthe rationale for the rule given in the previous paragraph:

Class unloading is an optimization that helps reduce memory use. Obvioudly,
the semantics of a program should not depend on whether and how a system
chooses to implement an optimization such as class unloading. To do otherwise
would compromise the portability of programs. Consequently, whether a class or
interface has been unloaded or not should be transparent to a program.

However, if aclass or interface C was unloaded while its defining loader was
potentially reachable, then C might be reloaded. One could never ensure that this
would not happen. Even if the class was not referenced by any other currently
loaded class, it might be referenced by some class or interface, D, that had not yet
been loaded. When D is loaded by C's defining loader, its execution might cause
reloading of C.

Reloading may not be transparent if, for example, the class has:

« Static variables (whose state would be lost).
« Static initializers (which may have side effects).

Native methods (which may retain static state).

Furthermore the hash value of the Class object is dependent on its identity.
Thereforeit is, in general, impossible to reload a class or interface in a completely
transparent manner.

Since we can never guarantee that unloading a class or interface whose |oader
is potentially reachable will not cause reloading, and reloading is never transpar-
ent, but unloading must be transparent, it follows that one must not unload a class
or interface while its loader is potentially reachable. A similar line of reasoning
can be used to deduce that classes and interfaces loaded by the bootstrap loader
can never be unloaded.

One must also argue why it is safe to unload a class C if its defining class
loader can be reclaimed. If the defining loader can be reclaimed, then there can
never be any live references to it (this includes references that are not live, but
might be resurrected by finalizers). This, in turn, can only be true if there are can
never be any live references to any of the classes defined by that loader, including
C, either from their instances or from code.

Class unloading is an optimization that is only significant for applications that
load large numbers of classes and that stop using most of those classes after some
time. A prime example of such an application is aweb browser, but there are oth-
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ers. A characteristic of such applications is that they manage classes through
explicit use of class loaders. As aresult, the policy outlined above works well for
them.

Strictly speaking, it is not essentia that the issue of class unloading be dis-
cussed by this specification, as class unloading is merely an optimization. How-
ever, theissue is very subtle, and so it is mentioned here by way of clarification.

12.8 Program Exit

A program terminates all its activity and exits when one of two things happens:
* All the threads that are not daemon threads terminate.

» Some thread invokes the exit method of class Runtime or class System and
the exit operation is not forbidden by the security manager.

12.8
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CHAPTER 13

Binary Compatibility

Devel opment tools for the Java programming language should support auto-
matic recompilation as necessary whenever source code is available. Particular
implementations may also store the source and binary of types in a versioning
database and implement a ClassLoader that uses integrity mechanisms of the
database to prevent linkage errors by providing binary-compatible versions of
typesto clients.

Developers of packages and classes that are to be widely distributed face a
different set of problems. In the Internet, which is our favorite example of a
widely distributed system, it is often impractical or impossible to automatically
recompile the pre-existing binaries that directly or indirectly depend on atype that
is to be changed. Instead, this specification defines a set of changes that devel op-
ers are permitted to make to a package or to a class or interface type while pre-
serving (not breaking) compatibility with existing binaries.

The paper quoted above appearsin Proceedings of OOPS_A ' 95, published as
ACM SIGPLAN Notices, Volume 30, Number 10, October 1995, pages 426-438.
Within the framework of that paper, Java programming language binaries are
binary compatible under all relevant transformations that the authors identify
(with some caveats with respect to the addition of instance variables). Using their
scheme, hereis alist of some important binary compatible changes that the Java
programming language supports:
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» Reimplementing existing methods, constructors, and initializers to improve
performance.

» Changing methods or constructors to return values on inputs for which they
previously either threw exceptions that normally should not occur or failed by
going into an infinite loop or causing a deadlock.

» Adding new fields, methods, or constructors to an existing class or interface.
e Deleting private fields, methods, or constructors of aclass.

* When an entire package is updated, deleting default (package-only) access
fields, methods, or constructors of classes and interfaces in the package.

* Reordering the fields, methods, or constructors in an existing type declaration.
* Moving amethod upward in the class hierarchy.

» Reordering the list of direct superinterfaces of a class or interface.

* Inserting new class or interface types in the type hierarchy.

This chapter specifies minimum standards for binary compatibility guaranteed
by all implementations. The Java programming language guarantees compatibility
when binaries of classes and interfaces are mixed that are not known to be from
compatible sources, but whose sources have been modified in the compatible
ways described here. Note that we are discussing compatibility between releases
of an application. A discussion of compatibility among releases of the Java plat-
form is beyond the scope of this chapter.

We encourage development systems to provide facilities that alert devel opers
to the impact of changes on pre-existing binaries that cannot be recompiled.

This chapter first specifies some properties that any binary format for the Java
programming language must have (813.1). It next defines binary compatibility,
explaining what it isand what it is not (§813.2). It finally enumerates alarge set of
possible changes to packages (813.3), classes (813.4) and interfaces (813.5), spec-
ifying which of these changes are guaranteed to preserve binary compatibility and
which are not.

13.1 TheForm of aBinary

Programs must be compiled either into the c1ass file format specified by the The
Java~ Virtual Machine Specification, or into a representation that can be mapped
into that format by a class loader written in the Java programming language. Fur-
thermore, the resulting c1ass file must have certain properties. A number of these
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properties are specifically chosen to support source code transformations that pre-
serve binary compatibility.

The required properties are:

» Theclass or interface must be named by its binary name, which must meet the
following constraints:

u}

u}

The binary name of atop-level typeisits canonical name (86.7).

The binary name of a member type consists of the binary name of itsimme-
diately enclosing type, followed by $, followed by the simple name of the
member.

The binary name of alocal class (814.3) consists of the binary name of its
immediately enclosing type, followed by $, followed by a non-empty
sequence of digits, followed by the ssimple name of the local class.

The binary name of an anonymous class (815.9.5) consists of the binary
name of itsimmediately enclosing type, followed by $, followed by a non-
empty sequence of digits.

The binary name of atype variable declared by a generic class or interface
is the binary name of its immediately enclosing type, followed by $, fol-
lowed by the ssimple name of the type variable.

The binary name of a type variable declared by a generic method is the
binary name of the type declaring the method, followed by $, followed by
the descriptor of the method as defined in the Java~ Virtual Machine Speci-
fication, followed by $, followed by the simple name of the type variable.

The binary name of atype variable declared by a generic constructor is the
binary name of the type declaring the constructor, followed by $, followed
by the descriptor of the constructor as defined in the Java~ Virtual Machine
Specification, followed by $, followed by the simple name of the type vari-
able.

» A reference to another class or interface type must be symboalic, using the
binary name of the type.

» Given a legal expression denoting a field access in a class C, referencing a
non-constant (813.4.9) field named f declared in a (possibly distinct) class or
interface D, we define the qualifying type of the field reference as follows:

u}

If the expression is of the form Primary.f then:

131
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o If the compile-time type of Primary is an intersection type (84.9) V1 & ...
& Vn, then the qualifying type of the referenceis V1.

o Otherwise, the compile-time type of Primary is the qualifying type of the
reference.

o If the expression is of the form super. f then the superclass of Cisthe qual-
ifying type of the reference.

o If the expression is of the form X.super.f then the superclass of X is the
qualifying type of the reference.

o If thereferenceis of the form X.f, where X denotes a class or interface, then
the class or interface denoted by X is the qualifying type of the reference

o If the expression is referenced by a simple name, then if 7 is a member of
the current class or interface, C, then let T be C. Otherwise, let T be the
innermost lexically enclosing class of which fisamember. T isthe quali-
fying type of the reference.

The reference to £ must be compiled into a symbolic reference to the erasure
(84.6) of the qualifying type of the reference, plus the ssimple name of the
field, f. Thereference must aso include asymbolic reference to the erasure of
the declared type of the field so that the verifier can check that the typeis as
expected.

References to fields that are constant variables (84.12.4) are resolved at com-
pile time to the constant value that is denoted. No reference to such a constant
field should be present in the code in abinary file (except in the class or inter-
face containing the constant field, which will have code to initialize it), and
such constant fields must always appear to have been initialized; the default
initial value for the type of such afield must never be observed. See §13.4.8
for adiscussion.

Given a method invocation expression in a class or interface C referencing a
method named m declared in a (possibly distinct) class or interface D, we
define the qualifying type of the method invocation as follows:

If Dis Object then the qualifying type of the expression is Object. Other-
wise:

o If the expression is of the form Primary.m then:

o If the compile-time type of Primary is an intersection type (84.9) V1 & ...
& Vn, then the qualifying type of the method invocation is V1.
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o Otherwise, the compile-time type of Primary is the qualifying type of the
method invocation.

o If the expression is of the form super.m then the superclass of Cisthe qual-
ifying type of the method invocation.

o If the expression is of the form X.super.m then the superclass of X is the
qualifying type of the method invocation.

o If thereferenceis of the form X.m, where X denotes a class or interface, then
the class or interface denoted by X isthe qualifying type of the method invo-
cation

o If the method is referenced by a simple name, then if mis a member of the
current class or interface, C, let T be C. Otherwise, let T be the innermost
lexically enclosing class of which misamember. T isthe qualifying type of
the method invocation.

A reference to a method must be resolved at compile time to asymbolic refer-
ence to the erasure (84.6) of the qualifying type of theinvocation, plusthe era-
sure of the signature of the method (88.4.2). A reference to a method must
also include either a symbolic reference to the erasure of the return type of the
denoted method or an indication that the denoted method is declared void and
does not return avalue. The signature of a method must include al of the fol-
lowing:

o The simple name of the method
o The number of parameters to the method
o A symbolic reference to the type of each parameter
 Given aclass instance creation expression (815.9) or a constructor invocation
statement (88.8.7.1) in a class or interface C referencing a constructor m

declared in a (possibly distinct) class or interface D, we define the qualifying
type of the constructor invocation as follows:

o If the expression is of the form new D(...) or X.new I(...), then the qualifying
type of the invocation is D.

o If the expression is of the form new D(..){...} or X.new D(...){...}, then the
qualifying type of the expression is the compile-time type of the expression.

o If the expression is of the form super(...) or Primary.super(...) then the
qualifying type of the expression is the direct superclass of C.
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o If the expression is of the form this(...), then the qualifying type of the
expressionis C.

A reference to a constructor must be resolved at compile time to a symbolic
reference to the erasure (84.6) of the qualifying type of the invocation, plus
the signature of the constructor (88.8.2). The signature of a constructor must
include both:

o The number of parameters to the constructor
o A symbolic reference to the type of each parameter
In addition the constructor of a non-private inner member class must be com-

piled such that it has as its first parameter, an additional implicit parameter
representing the immediately enclosing instance (88.1.3).

Any constructs introduced by the compiler that do not have a corresponding
construct in the source code must be marked as synthetic, except for default
constructors and the class initialization method.

A binary representation for a class or interface must also contain all of the follow-

ing:

Ifitisaclassand isnot class Object, then a symbolic reference to the erasure
of the direct superclass of this class

A symboalic reference to the erasure of each direct superinterface, if any

A specification of each field declared in the class or interface, given as the
simple name of the field and a symbolic reference to the erasure of the type of
thefield

If it is a class, then the erased signature of each constructor, as described
above

For each method declared in the class or interface, its erased signature and
return type, as described above

The code needed to implement the class or interface:
o For an interface, code for the field initializers

o For aclass, code for the field initializers, the instance and static initializers,
and the implementation of each method or constructor

Every type must contain sufficient information to recover its canonical name
(86.7).
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» Every member type must have sufficient information to recover its source
level access modifier.

» Every nested class must have a symbolic reference to its immediately enclos-
ing class.

» Every class that contains a nested class must contain symbolic references to
all of its member classes, and to all local and anonymous classes that appear
in its methods, constructors and static or instance initializers.

The following sections discuss changes that may be made to class and inter-
face type declarations without breaking compatibility with pre-existing binaries.
Under the trandlation requirements given above, the Java virtual machine and its
class file format support these changes. Any other valid binary format, such asa
compressed or encrypted representation that is mapped back into class files by a
class loader under the above requirements will necessarily support these changes
aswell.

13.2 What Binary Compatibility Isand Is Not

A change to atypeis binary compatible with (equivalently, does not break binary
compatibility with) preexisting binaries if preexisting binaries that previously
linked without error will continue to link without error.

Binaries are compiled to rely on the accessible members and constructors of
other classes and interfaces. To preserve binary compatibility, a class or interface
should treat its accessible members and constructors, their existence and behavior,
asacontract with its users.

The Java programming language is designed to prevent additions to contracts
and accidental name collisions from breaking binary compatibility; specifically:

» Addition of more methods overloading a particular method name does not
break compatibility with preexisting binaries. The method signature that the
preexisting binary will use for method lookup is chosen by the method over-
load resolution algorithm at compile time (815.12.2). (If the language had
been designed so that the particular method to be executed was chosen at run
time, then such an ambiguity might be detected at run time. Such arule would
imply that adding an additional overloaded method so as to make ambiguity
possible at a cal site could break compatibility with an unknown number of
preexisting binaries. See §13.4.23 for more discussion.)

Binary compatibility is not the same as source compatibility. In particular, the
example in §13.4.6 shows that a set of compatible binaries can be produced from

13.2
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sources that will not compile all together. This example istypical: a new declara-
tion is added, changing the meaning of a name in an unchanged part of the source
code, while the preexisting binary for that unchanged part of the source code
retains the fully-qualified, previous meaning of the name. Producing a consistent
set of source code requires providing a qualified name or field access expression
corresponding to the previous meaning.

13.3 Evolution of Packages

A new top-level class or interface type may be added to a package without break-
ing compatibility with pre-existing binaries, provided the new type does not reuse
aname previously given to an unrelated type. If a new type reuses a name previ-
ously given to an unrelated type, then a conflict may result, since binaries for both
types could not be loaded by the same class |oader.

Changesin top-level class and interface types that are not pub1ic and that are
not a superclass or superinterface, respectively, of apublic type, affect only types
within the package in which they are declared. Such types may be deleted or oth-
erwise changed, even if incompatibilities are otherwise described here, provided
that the affected binaries of that package are updated together.

13.4 Evolution of Classes

This section describes the effects of changes to the declaration of a class and its
members and constructors on pre-existing binaries.

13.4.1 abstract Classes

If aclass that was not abstract is changed to be declared abstract, then pre-
existing binaries that attempt to create new instances of that class will throw either
an InstantiationError at link time, or (if a reflective method is used) an
InstantiationException a run time; such a change is therefore not recom-
mended for widely distributed classes.

Changing a class that was declared abstract to no longer be declared
abstract does not break compatibility with pre-existing binaries.

13.4.2 final Classes

If a class that was not declared final is changed to be declared final, then a
VerifyError is thrown if a binary of a pre-existing subclass of this class is
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loaded, because final classes can have no subclasses; such a change is not rec-
ommended for widely distributed classes.

Changing a class that was declared final to no longer be declared final
does not break compatibility with pre-existing binaries.

13.4.3 public Classes

Changing a class that was not declared pub1ic to be declared pub1ic does not
break compatibility with pre-existing binaries.

If a class that was declared public is changed to not be declared public,
then an I11egalAccessError is thrown if a pre-existing binary is linked that
needs but no longer has access to the class type; such a change is not recom-
mended for widely distributed classes.

13.4.4 Superclasses and Superinterfaces

A ClassCircularityError isthrown at load time if a class would be a super-
class of itself. Changes to the class hierarchy that could result in such acircularity
when newly compiled binaries are loaded with pre-existing binaries are not rec-
ommended for widely distributed classes.

Changing the direct superclass or the set of direct superinterfaces of a class
type will not break compatibility with pre-existing binaries, provided that the total
set of superclasses or superinterfaces, respectively, of the class type loses no
members.

If achange to the direct superclass or the set of direct superinterfaces results
in any class or interface no longer being a superclass or superinterface, respec-
tively, then link-time errors may result if pre-existing binaries are loaded with the
binary of the modified class. Such changes are not recommended for widely dis-
tributed classes.

For example, suppose that the following test program:

class Hyper { char h = 'h'; }
class Super extends Hyper { char s = 's'; }
class Test extends Super {
public static void printH(Hyper h) {
System.out.printincCh.h);
}

public static void main(String[] args) {
printH(new Super());

13.4.4
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is compiled and executed, producing the outpuit:

h
Suppose that a new version of class Super isthen compiled:
class Super { char s = 's'; }

Thisversion of class Super isnot asubclass of Hyper. If we then run the existing
binaries of Hyper and Test with the new version of Super, then aVerifyError
is thrown at link time. The verifier objects because the result of new Super()
cannot be passed as an argument in place of a formal parameter of type Hyper,
because Super is not a subclass of Hyper.

It is instructive to consider what might happen without the verification step:
the program might run and print:

S
This demonstrates that without the verifier the type system could be defeated by
linking inconsistent binary files, even though each was produced by a correct Java
compiler.

The lesson is that an implementation that lacks a verifier or failsto useit will
not maintain type safety and is, therefore, not a valid implementation.

13.4.5 ClassFormal Type Parameters

Renaming atype variable (84.4) declared as aformal type parameter of aclass has
no effect with respect to pre-existing binaries. Adding or removing atype parame-
ter does not, in itself, have any implications for binary compatibility.

DiscussioN

Note that if such type variables are used in the type of a field or method, that may have the
normal implications of changing the aforementioned type.

Changing thefirst bound of atype parameter will change the erasure (84.6) of
any member that usesthat type variable in its own type, and this may effect binary
compatibility. Changing any other bound has no effect on binary compatibility.

13.4.6 ClassBody and Member Declarations

No incompatibility with pre-existing binaries is caused by adding an instance
(respectively static) member that has the same name, accessibility, (for fields)
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or same name, accessibility, signature, and return type (for methods) as an
instance (respectively static) member of a superclass or subclass. No error
occurs even if the set of classes being linked would encounter a compile-time
error.

Deleting a class member or constructor that is not declared private may
cause alinkage error if the member or constructor is used by apre-existing binary.

If the program:

class Hyper {

void hello() { System.out.printin("hello from Hyper™); }
}

class Super extends Hyper {
void hello() { System.out.printin("hello from Super"); }
}

class Test {

public static void main(String[] args) {
new Super().hello(Q);
}

}

is compiled and executed, it produces the output:

hello from Super
Suppose that a new version of class Super is produced:

class Super extends Hyper { }
then recompiling Super and executing this new binary with the original binaries
for Test and Hyper produces the output:

hello from Hyper
as expected.

The super keyword can be used to access a method declared in a superclass,
bypassing any methods declared in the current class. The expression:

super. Identifier
isresolved, at compile time, to amethod M in the superclass S. If the method M is
an instance method, then the method MR invoked at run time is the method with
the same signature as M that is a member of the direct superclass of the class con-
taining the expression involving super. Thus, if the program:

class Hyper {
void hello() { System.out.printin("hello from Hyper"); }
}

class Super extends Hyper { }

class Test extends Super {
public static void main(String[] args) {
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new Test().hello();
}

void hello() {

super.hello(Q);
}

}

is compiled and executed, it produces the output:
hello from Hyper

Suppose that a new version of class Super is produced:
class Super extends Hyper {

void hello() { System.out.println("hello from Super™); }
}

If Super and Hyper are recompiled but not Test, then running the new binaries
with the existing binary of Test produces the output:
hello from Super
as you might expect. (A flaw in some early implementations caused them to print:
hello from Hyper
incorrectly.)

13.4.7 Accessto Membersand Constructors

Changing the declared access of a member or constructor to permit less access
may break compatibility with pre-existing binaries, causing a linkage error to be
thrown when these binaries are resolved. Less access is permitted if the access
modifier is changed from default access to private access, from protected
access to default or private access;, or from public access to protected,
default, or private access. Changing a member or constructor to permit less
access is therefore not recommended for widely distributed classes.

Perhaps surprisingly, the binary format is defined so that changing a member
or constructor to be more accessible does not cause a linkage error when a sub-
class (aready) defines a method to have less access.

So, for example, if the package points definesthe class Point:

package points;
pubTlic class Point {
public int x, y;
protected void print() {
System.out.printIn("(" + x + "," +y + ")");
3
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used by the Test program:
class Test extends points.Point {

protected void print() {
System.out.printin("Test");
}

public static void main(String[] args) {
Test t = new Test(Q);

t.print(Q);
}
}
then these classes compile and Test executes to produce the output:
Test

If the method print in class Point is changed to be public, and then only the
Point classis recompiled, and then executed with the previously existing binary
for Test then no linkage error occurs, even though it isimproper, at compile time,
for apub1ic method to be overridden by a protected method (as shown by the
fact that the class Test could not be recompiled using this new Point class unless
print were changed to be public.)

Allowing superclasses to change protected methods to be pub1ic without
breaking binaries of preexisting subclasses helps make binaries less fragile. The
aternative, where such a change would cause a linkage error, would create addi-
tional binary incompatibilities.

13.4.8 Field Declarations

Widely distributed programs should not expose any fields to their clients. Apart
from the binary compatibility issues discussed below, thisis generally good soft-
ware engineering practice. Adding afield to a class may break compatibility with
pre-existing binaries that are not recompiled.

Assume a reference to afield £ with qualifying type T. Assume further that £
isin fact an instance (respectively static) field declared in a superclass of T, S,
and that the type of fis X. If a new field of type X with the same name as f is
added to a subclass of S that is a superclass of T or T itself, then a linkage error
may occur. Such alinkage error will occur only if, in addition to the above, either
one of the following conditions hold:

* The new field is less accessible than the old one.

» Thenew fieldisastatic (respectively instance) field.
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In particular, no linkage error will occur in the case where a class could no
longer be recompiled because a field access previously referenced a field of a
superclass with an incompatible type. The previously compiled class with such a
reference will continue to reference the field declared in a superclass.

Thus compiling and executing the code:
class Hyper { String h = "hyper"; }
class Super extends Hyper { String s = "super"; }

class Test {
public static void main(String[] args) {
System.out.printin(new Super().h);
}

}

produces the outpuit:
hyper
Changing Super to be defined as:
class Super extends Hyper {
String s = "super";
int h = 0;
}
recompiling Hyper and Super, and executing the resulting new binaries with the
old binary of Test produces the outpult:
hyper
The field h of Hyper is output by the original binary of main. While this may
seem surprising at first, it serves to reduce the number of incompatibilities that
occur at run time. (In an ideal world, all source files that needed recompilation
would be recompiled whenever any one of them changed, eliminating such sur-
prises. But such a mass recompilation is often impractical or impossible, espe-
cialy in the Internet. And, as was previously noted, such recompilation would
sometimes require further changes to the source code.)
Asan example, if the program:

class Hyper { String h = "Hyper"; }
class Super extends Hyper { }
class Test extends Super {
public static void main(String[] args) {
String s = new Test().h;
System.out.println(s);
}
3

is compiled and executed, it produces the output:
Hyper
Suppose that a new version of class Super isthen compiled:
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class Super extends Hyper { char h = 'h'; }
If the resulting binary is used with the existing binaries for Hyper and Test, then
the output is still:

Hyper
even though compiling the source for these binaries:

class Hyper { String h = "Hyper"; }

class Super extends Hyper { char h = 'h'; }

class Test extends Super {
public static void main(String[] args) {
String s = new Test().h;
System.out.printin(s);
}
}

would result in a compile-time error, because the h in the source code for main
would now be construed as referring to the char field declared in Super, and a
char value can’t be assigned to aString.

Deleting a field from a class will break compatibility with any pre-existing
binaries that reference this field, and a NoSuchFieldError will be thrown when
such areference from a pre-existing binary islinked. Only private fields may be
safely deleted from awidely distributed class.

For purposes of binary compatibility, adding or removing afield f whose type
involves type variables (84.4) or parameterized types (84.5) is equivalent to the
addition (respectively, removal) of afield of the same name whose type is the era-
sure (84.6) of the type of f.

13.4.9 final Fieldsand Constants

If afield that was not final is changed to be final, then it can break compatibil-
ity with pre-existing binaries that attempt to assign new valuesto the field.
For example, if the program:
class Super { static char s; }
class Test extends Super {
public static void main(String[] args) {
s ='a'";
System.out.println(s);

}
}

is compiled and executed, it produces the output:
a
Suppose that a new version of class Super is produced:
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class Super { final static char s = 'b’; }

If Super isrecompiled but not Test, then running the new binary with the exist-
ing binary of Test resultsinaIllegalAccessError.

Deleting the keyword final or changing the value to which afield isinitial-
ized does not break compatibility with existing binaries.

If afield is aconstant variable (84.12.4), then deleting the keyword final or
changing its value will not break compatibility with pre-existing binaries by caus-
ing them not to run, but they will not see any new value for the usage of the field
unless they are recompiled. This is true even if the usage itself is not a compile-
time constant expression (815.28)

If the example:

class Flags { final static boolean debug = true; }

class Test {

public static void main(String[] args) {
if (Flags.debug)
System.out.printin("debug is true");

}

is compiled and executed, it produces the output:

debug is true
Suppose that a new version of class Flags is produced:

class Flags { final static boolean debug = false; }
If Flags isrecompiled but not Test, then running the new binary with the exist-
ing binary of Test produces the output:

debug is true
because the value of debug was a compile-time constant, and could have been
used in compiling Test without making areference to the class Flags.

This result is a side-effect of the decision to support conditional compilation,
as discussed at the end of §14.21.

This behavior would not change if Flags were changed to be an interface, as
in the modified example:

interface Flags { boolean debug = true; }

class Test {
public static void main(String[] args) {
if (Flags.debug)
System.out.printin("debug is true");

}

(One reason for requiring inlining of constants is that switch statements require
constants on each case, and no two such constant values may be the same. The
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compiler checks for duplicate constant values in a switch statement at compile
time; the class file format does not do symbolic linkage of case values.)

The best way to avoid problems with “inconstant constants’ in widely-distrib-
uted code is to declare as compile time constants only values which truly are
unlikely ever to change. Other than for true mathematical constants, we recom-
mend that source code make very sparing use of class variables that are declared
static and final. If the read-only nature of final isrequired, a better choiceis
to declare a private static variable and a suitable accessor method to get its
value. Thus we recommend:

private static int N;

public static int getN() { return N; }
rather than:

public static final int N = ...;

Thereis no problem with:;

public static int N = ...;
if N need not be read-only. We also recommend, as a general rule, that only truly
constant values be declared in interfaces. We note, but do not recommend, that if a
field of primitive type of an interface may change, its value may be expressed idi-
omaticaly asin:

interface Flags {

boolean debug = new Boolean(true).booleanValue();

}

insuring that this value is not a constant. Similar idioms exist for the other primi-
tive types.

One other thing to note is that static final fields that have constant values
(whether of primitive or String type) must never appear to have the default initial
value for their type (84.12.5). This means that all such fields appear to be initial-
ized first during classinitialization (88.3.2.1, §9.3.1, §12.4.2).

13.4.10 static Fidlds

If afield that is not declared private was not declared static and is changed to
be declared static, or vice versa, then a linkage time error, specifically an
IncompatibleClassChangeError, will result if thefield isused by apreexisting
binary which expected a field of the other kind. Such changes are not recom-
mended in code that has been widely distributed.
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13.4.11 transient Fields

Adding or deleting a transient modifier of afield does not break compatibility
with pre-existing binaries.

13.4.12 Method and Constructor Declarations

Adding amethod or constructor declaration to a class will not break compatibility
with any pre-existing binaries, in the case where atype could no longer be recom-
piled because an invocation previously referenced a method or constructor of a
superclass with an incompatible type. The previously compiled class with such a
reference will continue to reference the method or constructor declared in a super-
class.

Assume areference to a method m with qualifying type 7. Assume further that
misin fact an instance (respectively static) method declared in a superclass of T,
S. If anew method of type X with the same signature and return type as m is added
to a subclass of S that is a superclass of T or T itself, then a linkage error may
occur. Such alinkage error will occur only if, in addition to the above, either one
of the following conditions hold:

» The new method is less accessible than the old one.
» The new method isa static (respectively instance) method.

Deleting a method or constructor from a class may break compatibility with
any pre-existing binary that referenced this method or constructor; a NoSuch-
MethodError may bethrown when such areference from a pre-existing binary is
linked. Such an error will occur only if no method with a matching signature and
return typeis declared in a superclass.

If the source code for a class contains no declared constructors, the Java com-
piler automatically supplies a constructor with no parameters. Adding one or more
constructor declarations to the source code of such aclasswill prevent this default
constructor from being supplied automatically, effectively deleting a constructor,
unless one of the new constructors aso has no parameters, thus replacing the
default constructor. The automatically supplied constructor with no parametersis
given the same access modifier as the class of its declaration, so any replacement
should have as much or more access if compatibility with pre-existing binariesis
to be preserved.

13.4.13 Method and Constructor Formal Type Parameters

Renaming a type variable (84.4) declared as a formal type parameter of a method
or constructor has no effect with respect to pre-existing binaries. Adding or
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removing a type parameter does not, in itself, have any implications for binary
compatibility.

DiscussIioN

Note that if such type variables are used in the type of the method or constructor, that may
have the normal implications of changing the aforementioned type.

Changing the first bound of atype parameter may change the erasure (84.6) of
any member that uses that type variable in its own type, and this may effect binary
compatibility. Specifically:

« If the type parameter is used as the type of afield, the effect is asiif the field
was removed and afield with the same name, whose type isthe new erasure of
the type variable, was added.

* If the type variable is used as the type of any formal parameter of a method,
but not as the return type, the effect is as if that method were removed, and
replaced with a new method that is identical except for the types of the afore-
mentioned formal parameters, which now have the new erasure of the type
variable as their type.

« If the type variable is used as areturn type of a method, but not as the type of
any formal parameter of the method, the effect is as if that method were
removed, and replaced with a new method that is identical except for the
return type, which is now the new erasure of the type variable.

« If the type variable is used as a return type of a method and as the type of
some formal paramters of the method, the effect is as if that method were
removed, and replaced with a new method that is identical except for the
return type, which is now the new erasure of the type variable, and except for
the types of the aforementioned formal parameters, which now have the new
erasure of the type variable as their type.

Changing any other bound has no effect on binary compatibility.

351



13.4.14 Method and Constructor Parameters BINARY COMPATIBILITY

352

13.4.14 Method and Constructor Parameters

Changing the name of a formal parameter of a method or constructor does not
impact pre-existing binaries. Changing the name of a method, the type of aformal
parameter to a method or constructor, or adding a parameter to or deleting a
parameter from amethod or constructor declaration creates a method or construc-
tor with a new signature, and has the combined effect of deleting the method or
constructor with the old signature and adding a method or constructor with the
new signature (see §13.4.12).

For purposes of binary compatibility, adding or removing a method or con-
structor m whose signature involves type variables (84.4) or parameterized types
(84.5) is equivalent to the addition (respectively, removal) of an otherwise equiva-
lent method whose signature is the erasure (84.6) of the signature of m.

13.4.15 Method Result Type

Changing the result type of a method, replacing aresult type with void, or replac-
ing void with aresult type has the combined effect of deleting the old method and
adding a new method with the new result type or newly void result (see
§13.4.12).

For purposes of binary compatibility, adding or removing a method or con-
structor mwhose return type involves type variables (84.4) or parameterized types
(84.5) is equivalent to the addition (respectively, removal) of the an otherwise
equivalent method whose return type is the erasure (84.6) of the return type of m.

13.4.16 abstract Methods

Changing a method that is declared abstract to no longer be declared abstract
does not break compatibility with pre-existing binaries.

Changing a method that is not declared abstract to be declared abstract
will break compatibility with pre-existing binaries that previously invoked the
method, causing an AbstractMethodError.

If the example program:

class Super { void out() { System.out.printin("Out"); } }
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class Test extends Super {

public static void main(String[] args) {
Test t = new Test();
System.out.printin("Way ");

t.outQ);
}
}
is compiled and executed, it produces the outpult:
wWay
Out

Suppose that a new version of class Super is produced:
abstract class Super {
abstract void out(Q);

}

If Super isrecompiled but not Test, then running the new binary with the exist-
ing binary of Test resultsin aAbstractMethodError, because class Test hasno
implementation of the method out, and is thereforeis (or should be) abstract.

13.4.17 final Methods

Changing an instance method that is not final to be final may break compati-
bility with existing binaries that depend on the ability to override the method.
If the test program:
class Super { void out() { System.out.printin("out™); } }
class Test extends Super {
public static void main(String[] args) {
Test t = new Test(Q);

t.out();
}
void out() { super.out(Q); }
}
is compiled and executed, it produces the output:
out

Suppose that a new version of class Super is produced:

class Super { final void out() { System.out.printin("!"); } }
If Super is recompiled but not Test, then running the new binary with the exist-
ing binary of Test resultsin aVerifyError because the class Test improperly
tries to override the instance method out.

Changing a class (static) method that is not final to be final does not
break compatibility with existing binaries, because the method could not have
been overridden.

353



13.4.18 native Methods BINARY COMPATIBILITY

354

Removing the final modifier from a method does not break compatibility
with pre-existing binaries.

13.4.18 native Methods

Adding or deleting a native modifier of a method does not break compatibility
with pre-existing binaries.

The impact of changes to types on preexisting native methods that are not
recompiled is beyond the scope of this specification and should be provided with
the description of an implementation. Implementations are encouraged, but not
required, to implement native methodsin away that limits such impact.

13.4.19 static Methods

If a method that is not declared private was declared static (that is, a class
method) and is changed to not be declared statiic (that is, to an instance method),
or vice versa, then compatibility with pre-existing binaries may be broken, result-
ing in alinkage time error, namely an IncompatibleClassChangeError, if these
methods are used by the pre-existing binaries. Such changes are not recommended
in code that has been widely distributed.

13.4.20 synchronized Methods

Adding or deleting asynchronized modifier of amethod does not break compat-
ibility with existing binaries.

13.4.21 Method and Constructor Throws

Changes to the throws clause of methods or constructors do not break compati-
bility with existing binaries; these clauses are checked only at compile time.

13.4.22 Method and Constructor Body

Changes to the body of a method or constructor do not break compatibility with
pre-existing binaries.

We note that a compiler cannot expand a method inline at compile time.
The keyword final on a method does not mean that the method can be safely
inlined; it means only that the method cannot be overridden. It is still possible that
anew version of that method will be provided at link time. Furthermore, the struc-
ture of the original program must be preserved for purposes of reflection.
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In general we suggest that implementations use late-bound (run-time) code
generation and optimization.

13.4.23 Method and Constructor Overloading

Adding new methods or constructors that overload existing methods or construc-
tors does not break compatibility with pre-existing binaries. The signature to be
used for each invocation was determined when these existing binaries were com-
piled; therefore newly added methods or constructors will not be used, even if
their signatures are both applicable and more specific than the signature originally
chosen.

While adding a new overloaded method or constructor may cause a compile-
time error the next time a class or interface is compiled because there is no
method or constructor that is most specific (815.12.2.5), no such error occurs
when a program is executed, because no overload resolution is done at execution
time.

If the example program:

class Super {

static void out(float f) { System.out.println("float"); }
}

class Test {
public static void main(String[] args) {
Super.out(2);
}

}

is compiled and executed, it produces the output:
float

Suppose that a new version of class Super is produced:
class Super {

static void out(float f) { System.out.printin("float"); }
static void out(int i) { System.out.println("int"); }

}
If Super isrecompiled but not Test, then running the new binary with the exist-
ing binary of Test still produces the output:
float
However, if Test isthen recompiled, using this new Super, the output is then:
int
as might have been naively expected in the previous case.
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13.4.24 Method Overriding

If an instance method is added to a subclass and it overrides a method in a super-
class, then the subclass method will be found by method invocations in pre-exist-
ing binaries, and these binaries are not impacted. If a class method is added to a
class, then this method will not be found unless the qualifying type of the refer-
ence is the subclass type.

13.4.25 Static Initializers

Adding, deleting, or changing a static initializer (88.7) of a class does not impact
pre-existing binaries.

13.4.26 Evolution of Enums

Adding or reordering constants from an enum type will not break compatibility
with pre-existing binaries.

If a precompiled binary attempts to access an enum constant that no longer
exigts, the client will fail at runtime with aNoSuchFieldError. Therefore such a
change is not recommended for widely distributed enums.

In al other respects, the binary compatibility rules for enums are identical to
those for classes.

13.5 Evolution of Interfaces

This section describes the impact of changes to the declaration of an interface and
its members on pre-existing binaries.

13.5.1 public Interfaces

Changing an interface that is not declared pub1i c to be declared pub11i c does not
break compatibility with pre-existing binaries.

If an interface that is declared pub1ic is changed to not be declared public,
then an I11egalAccessError is thrown if a pre-existing binary is linked that
needs but no longer has access to the interface type, so such a change is not rec-
ommended for widely distributed interfaces.
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13.5.2 Superinterfaces

Changes to the interface hierarchy cause errors in the same way that changes to
the class hierarchy do, as described in §13.4.4. In particular, changes that result in
any previous superinterface of a class no longer being a superinterface can break
compatibility with pre-existing binaries, resulting in aVerifyError.

13.5.3 Thelnterface Members

Adding a method to an interface does not break compatibility with pre-existing
binaries. A field added to a superinterface of ¢ may hide afield inherited from a
superclass of C. If the original reference was to an instance field, an Incompati-
bleClassChangeError will result. If the original reference was an assignment,
an I1legalAccessError will result.

Deleting a member from an interface may cause linkage errorsin pre-existing
binaries.

If the example program:

interface I { void hello(Q); }

class Test implements I {
public static void main(String[] args) {

I anI = new Test();
anI.hello(Q);
}
pubTic void hello() { System.out.println("hello"); }
}

is compiled and executed, it produces the output:

hello
Suppose that a new version of interface I is compiled:

interface I { }
If I isrecompiled but not Test, then running the new binary with the existing
binary for Test will result in aNoSuchMethodError. (In some early implementa-
tions this program still executed; the fact that the method he1710 no longer exists
in interface I was not correctly detected.)

13.5.4 Interface Formal Type Parameters

The effects of changes to the formal type parameters of an interface are the same
as those of analogous changes to the formal type parameters of aclass.
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13.5.5 Field Declarations

The considerations for changing field declarations in interfaces are the same as
those for static final fieldsin classes, as described in §13.4.8 and §13.4.9.

13.5.6 Abstract Method Declar ations

The considerations for changing abstract method declarations in interfaces are the
same as those for abstract methods in classes, as described in §13.4.14,
§13.4.15, §13.4.21, and §13.4.23.

13.5.7 Evolution of Annotation Types

Annotation types behave exactly like any other interface. Adding or removing
an element from an annotation type is anal ogous to adding or removing a method.
There are important considerations governing other changes to annotation types,
but these have no effect on the linkage of binaries by the Java virtual machine.
Rather, such changes effect the behavior of reflective APIs that manipul ate anno-
tations. The documentation of these APIs specifes their behavior when various
changes are made to the underlying annotation types.

Adding or removing annotations has no effect on the correct linkage of the
binary representations of programs in the Java programming language.



CHAPTER 1 |

Blocks and Statements

T HE sequence of execution of a program is controlled by statements, which are
executed for their effect and do not have values.

Some statements contain other statements as part of their structure; such other
statements are substatements of the statement. We say that statement S
immediately contains statement U if thereis no statement T different from S and U
such that S contains T and T contains U. In the same manner, some statements
contain expressions (815) as part of their structure.

The first section of this chapter discusses the distinction between normal and
abrupt completion of statements (814.1). Most of the remaining sections explain
the various kinds of statements, describing in detail both their normal behavior
and any specia treatment of abrupt completion.

Blocks are explained first (814.2), followed by local class declarations (§14.3)
and local variable declaration statements (814.4).

Next a grammatical maneuver that sidesteps the familiar “dangling else”
problem (814.5) is explained.

The last section (814.21) of this chapter addresses the requirement that every
statement be reachable in a certain technical sense.
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14.1 Normal and Abrupt Completion of Statements

If al the steps are carried out as described, with no indication of abrupt com-
pletion, the statement is said to complete normally. However, certain events may
prevent a statement from completing normally:

e The break (814.15), continue (814.16), and return (814.17) statements
cause a transfer of control that may prevent normal completion of statements
that contain them.

» Evaluation of certain expressions may throw exceptions from the Java virtua
machine; these expressions are summarized in §15.6. An explicit throw
(814.18) statement also resultsin an exception. An exception causes atransfer
of control that may prevent normal completion of statements.

If such an event occurs, then execution of one or more statements may be ter-
minated before all steps of their normal mode of execution have completed; such
statements are said to complete abruptly.

An abrupt completion aways has an associated reason, which is one of the
following:

* A break with no label

* A break with agiven label

* A continue with no label

* A continue with agiven label
* A return with no value

e A return with agiven value

» A throw with a given value, including exceptions thrown by the Java virtual
machine

The terms “complete normally” and “complete abruptly” also apply to the
evaluation of expressions (815.6). The only reason an expression can complete
abruptly is that an exception is thrown, because of either a throw with a given
value (8§14.18) or arun-time exception or error (811, §15.6).
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If a statement evaluates an expression, abrupt completion of the expression
aways causes the immediate abrupt completion of the statement, with the same
reason. All succeeding steps in the normal mode of execution are not performed.

Unless otherwise specified in this chapter, abrupt completion of a substate-
ment causes the immediate abrupt completion of the statement itself, with the
same reason, and all succeeding steps in the norma mode of execution of the
statement are not performed.

Unless otherwise specified, a statement completes normally if al expressions
it evaluates and all substatements it executes complete normally.

14.2 Blocks

A block is a sequence of statements, local class declarations and local variable
declaration statements within braces.

Block:
{ BlockSatementsyy }

BlockSatements:
BlockSatement
BlockStatements BlockStatement

BlockStatement:
Local VariableDeclarationSatement
ClassDeclaration
Satement

A block is executed by executing each of the local variable declaration state-
ments and other statements in order from first to last (left to right). If al of these
block statements complete normally, then the block completes normally. If any of
these block statements complete abruptly for any reason, then the block completes
abruptly for the same reason.

14.3 Local Class Declarations

A local classis anested class (88) that is not a member of any class and that has a
name. All local classes are inner classes (88.1.3). Every loca class declaration

14.3
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statement is immediately contained by a block. Local class declaration statements
may be intermixed freely with other kinds of statementsin the block.

The scope of alocal classimmediately enclosed by ablock (814.2) isthe rest
of theimmediately enclosing block, including its own class declaration. The scope
of a loca class immediately enclosed by in a switch block statement group
(814.11)is the rest of the immediately enclosing switch block statement group,
including its own class declaration.

The name of a local class C may not be redeclared as a local class of the
directly enclosing method, constructor, or initializer block within the scope of C,
or a compile-time error occurs. However, a local class declaration may be shad-
owed (86.3.1) anywhere inside a class declaration nested within the local class
declaration’s scope. A local class does not have acanonical name, nor doesit have
afully qualified name.

It is a compile-time error if aloca class declaration contains any one of the
following access modifiers: public, protected, private, or static.

Here is an example that illustrates several aspects of the rules given above:

class Global {

class Cyclic {}

void foo() {
new Cyclic(); // createaGlobal.Cyclic
class Cyclic extends Cyclic{}; // circular definition
{

class Local{};

{
class Local{}; // compile-time error

class Local{}; // compile-time error
class AnotherLocal {
void bar() {
class Local {}; // ok
}
}

class Local{}; // ok, notin scope of prior Local
}

The first statement of method foo creates an instance of the member class Glo-
bal.Cycl1ic rather than an instance of the loca class Cyc1i ¢, because the local
class declaration is not yet in scope.

The fact that the scope of alocal class encompasses its own declaration (not
only its body) means that the definition of the local class Cyc1ic isindeed cyclic
because it extends itself rather than Global.Cyc1ic. Consequently, the declara-
tion of the local class Cyc1ic will berejected at compile time.
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Since local class names cannot be redeclared within the same method (or con-
structor or initiaizer, as the case may be), the second and third declarations of
Local result in compile-time errors. However, Local can be redeclared in the
context of another, more deeply nested, class such as AnotherLocal.

The fourth and last declaration of Local is legal, since it occurs outside the
scope of any prior declaration of Local.

14.4 Local Variable Declaration Statements

A local variable declaration statement declares one or more local variable names.

Local VariableDeclarationStatement:
Local VariableDeclaration ;

LocalVariableDeclaration:
VariableModifiers Type VariableDeclarators

The following are repeated from 88.3 to make the presentation here clearer:

VariableDeclarators:
VariableDeclarator
VariableDeclarators , VariableDeclarator

VariableDeclarator:
VariableDeclaratorld
VariableDeclaratorld = Variablelnitializer

VariableDeclarator|d:
I dentifier
VariableDeclaratorld [ ]

Variablelnitializer:
Expression
Arraylnitializer

Every loca variable declaration statement is immediately contained by a
block. Local variable declaration statements may be intermixed freely with other
kinds of statementsin the block.

A local variable declaration can also appear in the header of a for statement
(814.14). Inthis caseit is executed in the same manner asif it were part of alocal
variable declaration statement.

144

363



14.4.1 Local Variable Declarators and Types BLOCKSAND STATEMENTS

364

14.4.1 Local Variable Declaratorsand Types

Each declarator in alocal variable declaration declares one local variable, whose
name isthe Identifier that appearsin the declarator.

If the optional keyword final appears at the start of the declarator, the vari-
able being declared isafinal variable(§4.12.4).

If an annotation a on alocal variable declaration corresponds to an annotation
type T, and T has a (meta-)annotation m that corresponds to annotation.Target,
then m must have an element whose value is annotation.Element-
Type.LOCAL_VARIABLE, or acompile-time error occurs. Annotation modifiers are
described further in (89.7).

The type of the variable is denoted by the Type that appears in the local vari-
able declaration, followed by any bracket pairs that follow the Identifier in the
declarator.

Thus, the local variable declaration:

int a, b[], c[1[];
is equivalent to the series of declarations:

int a;

int[] b;

int[1[] c;

Brackets are allowed in declarators as a nod to the tradition of C and C++. The
general rule, however, also means that the local variable declaration:

float[1[1 f[1[1, g[1[1[1, h[1;// Yechh!
is equivalent to the series of declarations:

float[I[1[1[]1 f;

float[J[1[I[1[] 9;

float[I[1[1 h;

We do not recommend such “mixed notation” for array declarations.

A local variable of type float aways contains a value that is an element of
the float value set (84.2.3); similarly, alocal variable of type double aways con-
tains a value that is an element of the double value set. It is not permitted for a
local variable of type float to contain an element of the float-extended-exponent
value set that is not also an e ement of the float value set, nor for alocal variable of
type doub1e to contain an element of the doubl e-extended-exponent value set that
is not also an element of the double value set.

14.4.2 Scope of Local Variable Declarations

The scope of alocal variable declaration in ablock (814.4.2) is the rest of the
block in which the declaration appears, starting with itsown initializer (814.4) and
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including any further declaratorsto the right in the local variable declaration state-
ment.

The name of alocal variable v may not be redeclared asalocal variable of the
directly enclosing method, constructor or initializer block within the scope of v, or
acompile-time error occurs. The name of alocal variable v may not be redeclared
as an exception parameter of a catch clause in a try statement of the directly
enclosing method, constructor or initializer block within the scope of v, or acom-
pile-time error occurs. However, a local variable of a method or initializer block
may be shadowed (86.3.1) anywhere inside a class declaration nested within the
scope of the local variable.

A local variable cannot be referred to using a qualified name (86.6), only a
simple name.

The example:

class Test {

static int x;

public static void main(String[] args) {
int X = X;

}

}

causes a compile-time error because the initialization of x is within the scope of
the declaration of x as alocal variable, and the local x does not yet have a value
and cannot be used.

The following program does compile:

class Test {

static int x;
public static void main(String[] args) {
int x = (x=2)%*2;
System.out.printin(x);
}
}

because the local variable x is definitely assigned (816) beforeit is used. It prints:
4
Here is another example:
class Test {

public static void main(String[] args) {
System.out.print("2+1=");
int two = 2, three = two + 1;
System.out.printin(three);
}
}

which compiles correctly and produces the output:
2+1=3
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Theinitializer for three can correctly refer to the variable two declared in an ear-
lier declarator, and the method invocation in the next line can correctly refer to the
variable three declared earlier in the block.

The scope of alocal variable declared in a for statement isthe rest of the for
statement, including its own initializer.

If a declaration of an identifier as a local variable of the same method, con-
structor, or initializer block appears within the scope of a parameter or local vari-
able of the same name, a compile-time error occurs.

Thus the following example does not compile:

class Test {

public static void main(String[] args) {
int 1;
for (int i =0; 1 < 10; i++)
System.out.println(i);

}

This restriction helps to detect some otherwise very obscure bugs. A similar
restriction on shadowing of members by local variables was judged impractical,
because the addition of amember in a superclass could cause subclasses to haveto
rename local variables. Related considerations make restrictions on shadowing of
local variables by members of nested classes, or on shadowing of local variables
by local variables declared within nested classes unattractive as well. Hence, the
following example compiles without error:

class Test {

public static void main(String[] args) {
int 1,
class Local {

{
for (int i = 0; i < 10; i++)
System.out.printin(i);

3

new Local();

}

On the other hand, local variables with the same name may be declared in two
separate blocks or for statements neither of which contains the other. Thus:
class Test {

public static void main(String[] args) {
for (int i = 0; i < 10; i++)
System.out.print(i + " ");
for (int i =10; i > 0; i--)
System.out.print(i + " ");
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System.out.println();
}
}
compiles without error and, when executed, produces the output:
012345678910987654321

14.4.3 Shadowing of Names by L ocal Variables

If aname declared asalocal variable is already declared as afield name, then that
outer declaration is shadowed (86.3.1) throughout the scope of the local variable.
Similarly, if anameis already declared as a variable or parameter name, then that
outer declaration is shadowed throughout the scope of the local variable (provided
that the shadowing does not cause a compile-time error under the rules of
§14.4.2). The shadowed name can sometimes be accessed using an appropriately
qualified name.

For example, the keyword this can be used to access a shadowed field x,
using the form this.x. Indeed, this idiom typically appears in constructors
(88.8):

class Pair {

Object first, second;

pubTlic Pair(Object first, Object second) {
this.first = first;
this.second = second;

}

}

In this example, the constructor takes parameters having the same names as the
fields to be initialized. This is simpler than having to invent different names for
the parameters and is not too confusing in this stylized context. In general, how-
ever, it is considered poor style to have local variables with the same names as
fields.

14.4.4 Execution of Local Variable Declarations

A locd variable declaration statement is an executable statement. Every timeit is
executed, the declarators are processed in order from left to right. If a declarator
has an initialization expression, the expression is evaluated and its value is
assigned to the variable. If a declarator does not have an initialization expression,
then a Java compiler must prove, using exactly the algorithm given in 816, that
every reference to the variable is necessarily preceded by execution of an assign-
ment to the variable. If thisis not the case, then a compile-time error occurs.
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Each initialization (except the first) is executed only if the evaluation of the
preceding initialization expression completes normally. Execution of the local
variable declaration completes normally only if evaluation of the last initialization
expression completes normally; if the local variable declaration contains no ini-
tialization expressions, then executing it always completes normally.

145 Statements

There are many kinds of statements in the Java programming language. Most cor-
respond to statements in the C and C++ languages, but some are unique.

Asin C and C++, the i f statement of the Java programming language suffers
from the so-called “dangling el1se problem,” illustrated by this misleadingly for-
matted example:

if (door.isOpen())
if (resident.isVisible())
resident.greet("Hello!");
else door.bell.ringQ); // A “dangling else”

The problem is that both the outer i f statement and the inner i f statement might
conceivably own the e1se clause. In this example, one might surmise that the pro-
grammer intended the e1se clause to belong to the outer if statement. The Java
programming language, like C and C++ and many programming languages before
them, arbitrarily decree that an else clause belongs to the innermost 1 f to which
it might possibly belong. Thisruleis captured by the following grammar:

Satement:
SatementWithout TrailingSubstatement
Label edSatement
IfThenSatement
|fThenElseStatement
WhileSatement
For Satement

SatementWithoutTrailingSubstatement:
Block
EmptyStatement
ExpressionSatement
AssertSatement
SwitchStatement
DoSatement
BreakSatement
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ContinueStatement
ReturnSatement
SynchronizedStatement
ThrowStatement
TryStatement

SatementNoShortlf:
Satement\WithoutTrailingSubstatement
LabeledSatementNoShortl f
IfThenElseSatementNoShortl f
WhileSatementNoShort!f
For SatementNoShort! f

The following are repeated from §14.9 to make the presentation here clearer:

IfThenSatement:
if ( Expression ) Satement

IfThenElseStatement:
if ( Expression ) SatementNoShortlf else Statement

IfThenElseSatementNoShortlf:
if ( Expression ) SatementNoShortlf else SatementNoShortlf

Statements are thus grammatically divided into two categories. those that
might end in an 1 f statement that has no el1se clause (a“short 1 f statement”) and
those that definitely do not. Only statements that definitely do not end in a short
if statement may appear as an immediate substatement before the keyword else
in an if statement that does have an el1se clause.

Thissimplerule prevents the “dangling e1se” problem. The execution behav-
ior of a statement with the “no short if” restriction is identical to the execution
behavior of the same kind of statement without the “no short i f” restriction; the
distinction is drawn purely to resolve the syntactic difficulty.

14.5
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14.6 The Empty Statement

An empty statement does nothing.
EmptyStatement:

Execution of an empty statement always completes normally.

14.7 Labeled Statements

Statements may have label prefixes.

LabeledSatement:
Identifier : Satement

Label edSatementNoShor tif:
Identifier : SatementNoShortlf

The Identifier is declared to be the label of the immediately contained Statement.

Unlike C and C++, the Java programming language has no goto statement;
identifier statement labels are used with break (814.15) or continue (814.16)
statements appearing anywhere within the label ed statement.

Let 7 be alabel, and let m be the immediately enclosing method, constructor,
instance initializer or dtatic initiaizer. It is a compile-time error if 7 shadows
(86.3.1) the declaration of another label immediately enclosed in m.

There is no restriction against using the same identifier as a label and as the
name of a package, class, interface, method, field, parameter, or local variable.
Use of an identifier to label a statement does not obscure (86.3.2) a package, class,
interface, method, field, parameter, or local variable with the same name. Use of
an identifier as a class, interface, method, field, local variable or as the parameter
of an exception handler (814.20) does not obscure a statement label with the same
name.
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A labeled statement is executed by executing the immediately contained
Satement. If the statement is labeled by an Identifier and the contained Statement
completes abruptly because of a break with the same Identifier, then the labeled
statement completes normally. In all other cases of abrupt completion of the
Satement, the labeled statement completes abruptly for the same reason.

14.8 Expression Statements

Certain kinds of expressions may be used as statements by following them with
semicolons:

ExpressionSatement:
SatementExpression ;

SatementExpression:
Assignment
PrelncrementExpression
PreDecrementExpression
Postl ncrementExpression
PostDecrementExpression
Methodl nvocation
ClasslnstanceCreationExpression

An expression statement is executed by evaluating the expression; if the
expression has a value, the value is discarded. Execution of the expression state-
ment completes normally if and only if evaluation of the expression completes
normally.

Unlike C and C++, the Java programming language allows only certain forms
of expressions to be used as expression statements. Note that the Java program-
ming language does not allow a “cast to void”’—void isnot a type—so the tradi-
tional C trick of writing an expression statement such as:

(void) ... ;// incorrect!
does not work. On the other hand, the language allows all the most useful kinds of
expressions in expressions statements, and it does not require a method invocation
used as an expression statement to invoke avoid method, so such atrick isamost
never needed. If atrick is needed, either an assignment statement (815.26) or a
local variable declaration statement (814.4) can be used instead.

14.8
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149 Theif Statement

The if statement allows conditional execution of a statement or a conditional
choice of two statements, executing one or the other but not both.

IfThenSatement:
if ( Expression ) Satement

IfThenElseStatement:
if ( Expresson ) SatementNoShortlf else Statement

IfThenElseSatementNoShortlf:
if ( Expression ) SatementNoShortlf else SatementNoShortlf

The Expression must have type boolean or Boolean, or a compile-time error
occurs.

14.9.1 The-if-then Statement

An if—then statement is executed by first evaluating the Expression. If the result
is of type Boolean, it is subject to unboxing conversion (85.1.8). If evaluation of
the Expression or the subsequent unboxing conversion (if any) completes abruptly
for some reason, the i f—then statement completes abruptly for the same reason.
Otherwise, execution continues by making a choice based on the resulting value:

* If the value is true, then the contained Satement is executed; the i f—then
statement completes normally if and only if execution of the Statement com-
pletes normally.

» |f the value is false, no further action is taken and the if—then statement
completes normally.

14.9.2 The-if-then-else Statement

An if—then—eTse statement is executed by first evaluating the Expression. If the
result is of type BooTean, it is subject to unboxing conversion (85.1.8). If evalua-
tion of the Expression or the subsequent unboxing conversion (if any) completes
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abruptly for some reason, then the if—then—else statement completes abruptly
for the same reason. Otherwise, execution continues by making a choice based on
the resulting value:

* If the value is true, then the first contained Statement (the one before the
else keyword) is executed; the i f—then—e1se statement completes normally
if and only if execution of that statement compl etes normally.

« If the value is false, then the second contained Satement (the one after the
else keyword) is executed; the i f—then—e1se statement completes normally
if and only if execution of that statement completes normally.

14.10 Theassert Statement

An assertion is a statement containing a boolean expression. An assertion is either
enabled or disabled. If the assertion is enabled, evaluation of the assertion causes
evaluation of the boolean expression and an error is reported if the expression
evaluates to false. If the assertion is disabled, evaluation of the assertion has no
effect whatsoever.

AssertStatement:
assert Expressionl;
assert Expressionl: Expression2;

It isacompile-time error if Expressionl does not have type boolean or Boolean.
In the second form of the assert statement, it is a compile-time error if
Expression2 isvoid (815.1).

Assertions may be enabled or disabled on a per-class basis. At the time aclass
isinitialized (812.4.2), prior to the execution of any field initializersfor class vari-
ables (88.3.2.1) and static initializers (88.7), the class's class loader determines
whether assertions are enabled or disabled as described below. Once a class has
been initialized, its assertion status (enabled or disabled) does not change.

DiscussIoN

There is one case that demands special treatment. Recall that the assertion status of a
class is set at the time it is initialized. It is possible, though generally not desirable, to exe-
cute methods or constructors prior to initialization. This can happen when a class hierarchy
contains a circularity in its static initialization, as in the following example:
public class Foo {
public static void main(String[] args) {

14.10
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Baz.testAsserts();
// Will execute after Baz is initialized.

}
}
class Bar {
static {
Baz.testAsserts();
// Will execute before Baz 1is initialized!
}
}

class Baz extends Bar {
static void testAsserts(){
boolean enabled = false;
assert enabled = true;
System.out.println("Asserts " +
(enabled ? "enabled" : "disabled"));

}

Invoking Baz.testAsserts() causes Baz to get initialized. Before this can happen, Bar
must get initialized. Bar’s static initializer again invokes Baz.testAsserts(). Because ini-
tialization of Baz is already in progress by the current thread, the second invocation exe-
cutes immediately, though Baz is not initialized (JLS 12.4.2).

If an assert statement executes before its classis initialized, as in the above
example, the execution must behave as if assertions were enabled in the class.

DiscussioN

In other words, if the program above is executed without enabling assertions, it must print:
Asserts enabled
Asserts disabled

An assert statement isenabled if and only if the top-level class (88) that lex-
ically contains it enables assertions. Whether or not a top-level class enables
assertions is determined by its defining class loader before the classis initialized
(812.4.2), and cannot be changed thereafter.

An assert statement causes the enclosing top level class (if it exists) to be
initialized, if it has not already been initialized (812.4.1).
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DiscussIioN

Note that an assertion that is enclosed by a top-level interface does not cause initialization.

Usually, the top level class enclosing an assertion will already be initialized. However, if
the assertion is located within a static nested class, it may be that the initialization has not-
taken place.

A disabled assert statement does nothing. In particular neither Expressionl
nor Expression2 (if it is present) are evaluated. Execution of a disabled assert
statement always completes normally.

An enabled assert statement is executed by first evaluating Expressionl. If
the result is of type Boolean, it is subject to unboxing conversion (85.1.8). If eval-
uation of Expressionl or the subsequent unboxing conversion (if any) completes
abruptly for some reason, the assert statement completes abruptly for the same
reason. Otherwise, execution continues by making a choice based on the value of
Expressionl :

* If the value is true, no further action is taken and the assert statement com-
pletes normally.

« If thevalueis false, the execution behavior depends on whether Expression2
is present:
o |If Expression2 is present, it is evaluated.

o If the evaluation completes abruptly for some reason, the assert state-
ment completes abruptly for the same reason.

o If the evaluation completes normally, the resulting value is converted to a
String using string conversion (§15.18.1.1).

o If the string conversion completes abruptly for some reason, the assert
statement completes abruptly for the same reason.

o If the string conversion completes normally, an AssertionError
instance whose "detail message” is the result of the string conversion is
created.

o If the instance creation completes abruptly for some reason, the
assert statement completes abruptly for the same reason.

14.10
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o If the instance creation completes normally, the assert statement
completes abruptly by throwing the newly created AssertionError
object.

o If Expression2 is not present, an AssertionError instance with no "detail
message” is created.

o If the instance creation completes abruptly for some reason, the assert
statement completes abruptly for the same reason.

o If the instance creation completes normally, the assert statement com-
pletes abruptly by throwing the newly created AssertionError object.

DiscussIoN

For example, after unmarshalling all of the arguments from a data buffer, a programmer
might assert that the number of bytes of data remaining in the buffer is zero. By verifying
that the boolean expression is indeed true, the system corroborates the programmer’s
knowledge of the program and increases one’s confidence that the program is free of bugs.

Typically, assertion-checking is enabled during program development and testing, and
disabled for deployment, to improve performance.

Because assertions may be disabled, programs must not assume that the expressions
contained in assertions will be evaluated. Thus, these boolean expressions should gener-
ally be free of side effects:

Evaluating such a boolean expression should not affect any state that is visible after
the evaluation is complete. It is not illegal for a boolean expression contained in an asser-
tion to have a side effect, but it is generally inappropriate, as it could cause program behav-
ior to vary depending on whether assertions were enabled or disabled.

Along similar lines, assertions should not be used for argument-checking in public
methods. Argument-checking is typically part of the contract of a method, and this contract
must be upheld whether assertions are enabled or disabled.

Another problem with using assertions for argument checking is that erroneous argu-
ments should result in an appropriate runtime exception (such as I11egalArgumentExcep-
tion, IndexOutOfBoundsException or NullPointerException). An assertion failure will not
throw an appropriate exception. Again, it is not illegal to use assertions for argument check-
ing on public methods, but it is generally inappropriate. It is intended that AssertionError
never be caught, but it is possible to do so, thus the rules for try statements should treat
assertions appearing in a try block similarly to the current treatment of throw statements.
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14.11 The switch Statement

The swi tch statement transfers control to one of several statements depending on
the value of an expression.

SwitchSatement:
switch ( Expression ) SwitchBlock

SwitchBlock:
{ SwitchBlockSatementGroupsy,: SwitchLabelsyy }

SwitchBlockSatementGroups:
SwitchBlockStatementGroup
SwitchBlockStatementGroups SwitchBlockSatementGroup

SwitchBlockStatementGroup:
SwitchLabels BlockStatements

SwitchLabels:
SwitchLabel
SwitchLabels SwitchLabel

SwitchLabel:
case ConstantExpression :
case EnumConstantName :
default :

EnumConstantName:
Identifier

The type of the Expression must be char, byte, short, int, Character,
Byte, Short, Integer, Or an enum type (88.9), or acompile-time error occurs.

The body of a switch statement is known as a switch block. Any statement
immediately contained by the switch block may be labeled with one or more case
or default labels. These labels are said to be associated with the switch state-
ment, as are the values of the constant expressions (§15.28) in the case labels.

All of the following must be true, or a compile-time error will result:

» Every case constant expression associated with a switch statement must be
assignable (85.2) to the type of the switch Expression.

* No switch label isnul1.
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» No two of the case constant expressions associated with a switch statement
may have the same value.

» At most one default label may be associated with the same switch state-
ment.

DiscussionN

The prohibition against using null as a switch label prevents one from writing code that can
never be executed. If the switch expression is of a reference type, such as a boxed primitive
type or an enum, a run-time error will occur if the expression evaluates to null at run-time

It follows that if the switch expression is of an enum type, the possible values of the
switch labels must all be enum constants of that type.

Compilers are encouraged (but not required) to provide a warning if a switch on an
enum-valued expression lacks a default case and lacks cases for one or more of the enum
type’s constants. (Such a statement will silently do nothing if the expression evaluates to
one of the missing constants.)

In C and C++ the body of a switch statement can be a statement and state-
ments with case labels do not have to be immediately contained by that state-
ment. Consider the simple loop:

for (i =0; i < n; ++i) foo();
where n is known to be positive. A trick known as Duff’s device can be used in C
or C++ to unroll the loop, but thisis not valid code in the Java programming lan-
guage:

int q = (n+7)/8;

switch (n%8) {

case 0: do {foo(Q); // Great C hack, Tom,
case 7: foo(); // butit'snot valid here.
case 6: foo();
case 5: foo();
case 4: foo();
case 3: foo();
case 2: foo();
case 1: foo();
} while (--q > 0);
}

Fortunately, this trick does not seem to be widely known or used. Moreover, it is
less needed nowadays; this sort of code transformation is properly in the province
of state-of-the-art optimizing compilers.
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When the switch statement is executed, first the Expression is evaluated. If
the Expression evaluates to nu11, a Nul1PointerException is thrown and the
entire switch statement completes abruptly for that reason. Otherwise, if the
result is of areference type, it is subject to unboxing conversion (85.1.8). If evalu-
ation of the Expression or the subsequent unboxing conversion (if any) compl etes
abruptly for some reason, the switch statement completes abruptly for the same
reason. Otherwise, execution continues by comparing the value of the Expression
with each case constant. Then there is a choice:

* If one of the case constants is equal to the value of the expression, then we
say that the case matches, and all statements after the matching case label in
the switch block, if any, are executed in sequence. If al these statements com-
plete normally, or if there are no statements after the matching case label,
then the entire swi tch statement completes normally.

« If no case matches but thereis adefault label, then all statements after the
matching default label in the switch block, if any, are executed in sequence.
If al these statements complete normally, or if there are no statements after
the default label, then the entire swi tch statement completes normally.

* |f no case matches and there is no default label, then no further action is
taken and the switch statement completes normally.

If any statement immediately contained by the Block body of the switch
statement compl etes abruptly, it is handled as follows:

* If execution of the Statement completes abruptly because of a break with no
label, no further action is taken and the swi tch statement completes normally.

* If execution of the Satement completes abruptly for any other reason, the
swi tch statement completes abruptly for the same reason. The case of abrupt
completion because of abreak with alabel is handled by the general rule for
labeled statements (§14.7).

As in C and C++, execution of statements in a switch block “falls through
labels”
For example, the program:
class Toomany {
static void howMany(int k) {

switch (k) {

case 1:System.out.print("one ");
case 2:System.out.print("too ");
case 3:System.out.printin("many");

}
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public static void main(String[] args) {

howMany (3) ;

howMany (2) ;

howMany (1) ;
}

}

contains aswitch block in which the code for each case falls through into the code
for the next case. As aresult, the program prints:
many

too many
one too many

If code is not to fall through case to case in this manner, then break statements
should be used, asin this example:
class Twomany {
static void howMany(int k) {
switch (k) {
case 1l:System.out.printin("one");

break; // exit the switch
case 2:System.out.printin("two");
break; // exit the switch
case 3:System.out.printin("many");
break; // not needed, but good style
}
}
public static void main(String[] args) {
howMany (1) ;
howMany (2) ;
howMany (3) ;
}
3
This program prints:
one
two
many

14.12 Thewhile Statement

Thewh1ile statement executes an Expression and a Satement repeatedly until the
value of the Expressionis false.
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WhileStatement:
while ( Expression ) Satement

WhileStatementNoShor tl f:
while ( Expression ) SatementNoShortlf

The Expression must have type boolean or Boolean, or a compile-time error
OCCUrs.

A while statement is executed by first evaluating the Expression. If the result
is of type BooTlean, it is subject to unboxing conversion (85.1.8). If evaluation of
the Expression or the subsequent unboxing conversion (if any) completes abruptly
for some reason, the while statement completes abruptly for the same reason.
Otherwise, execution continues by making a choice based on the resulting value:

 |f thevalueis true, then the contained Statement is executed. Then thereisa
choice:

o If execution of the Statement completes normally, then the entire while
statement is executed again, beginning by re-evaluating the Expression.

o If execution of the Statement completes abruptly, see 814.12.1 below.
* If the (possibly unboxed) value of the Expression is false, no further action
istaken and the whi1e statement completes normally.

If the (possibly unboxed) value of the Expression is false thefirst timeit is eval-
uated, then the Satement is not executed.

14.12.1 Abrupt Completion

Abrupt completion of the contained Statement is handled in the following manner:

« If execution of the Satement completes abruptly because of abreak with no
label, no further action istaken and the whi 1e statement completes normally.

o If execution of the Statement completes abruptly because of a continue
with no label, then the entire whiTe statement is executed again.

o If execution of the Statement completes abruptly because of a continue
with label L, then there is a choice:

o If thewhile statement has label L, then the entirewhi1e statement is exe-
cuted again.

o If the while statement does not have label L, the while statement com-
pletes abruptly because of a continue with label L.
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o If execution of the Satement completes abruptly for any other reason, the
while statement completes abruptly for the same reason. Note that the case
of abrupt completion because of abreak with alabel ishandled by the gen-
eral rule for labeled statements (8§14.7).

14.13 Thedo Statement

The do statement executes a Statement and an Expression repeatedly until the
value of the Expressionis false.

DoSatement:
do Statement while ( Expression ) ;

The Expression must have type boolean or Boolean, or a compile-time error

ocCurs.
A do statement is executed by first executing the Statement. Then there is a

choice;

« If execution of the Statement completes normally, then the Expression is eval-
uated. If the result is of type Boolean, it is subject to unboxing conversion
(85.1.8). If evaluation of the Expression or the subsequent unboxing conver-
sion (if any) completes abruptly for some reason, the do statement completes
abruptly for the same reason. Otherwise, there is a choice based on the result-
ing value:

o If thevalueis true, then the entire do statement is executed again.

o If the value is false, no further action is taken and the do statement com-
pletes normally.

* If execution of the Statement completes abruptly, see §14.13.1 below.

Executing a do statement always executes the contained Statement at least once.
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14.13.1 Abrupt Completion

Abrupt completion of the contained Statement is handled in the following manner:

« If execution of the Satement completes abruptly because of abreak with no
label, then no further action is taken and the do statement completes normally.

« If execution of the Satement completes abruptly because of a continue with
no label, then the Expression is evaluated. Then there is a choice based on the
resulting value:

o If thevalueis true, then the entire do statement is executed again.

o If the value is false, no further action is taken and the do statement com-
pletes normally.

* If execution of the Satement completes abruptly because of a continue with
|abel L, then thereis achoice:

o If the do statement has label L, then the Expression is evaluated. Then there
isachoice:

o If the value of the Expression is true, then the entire do statement is exe-
cuted again.

o If the value of the Expression is false, no further action is taken and the
do statement completes normally.

o If the do statement does not have label L, the do statement completes
abruptly because of a continue with label L.

« If execution of the Satement completes abruptly for any other reason, the do
statement completes abruptly for the same reason. The case of abrupt comple-
tion because of abreak with alabel is handled by the general rule (814.7).

14.13.2 Example of do statement

The following code is one possible implementation of the toHexString method
of class Integer:
public static String toHexString(int i) {

StringBuffer buf = new StringBuffer(8);

do {
buf.append(Character.forDigit(i & OxF, 16));
i >>>= 4;

} while (i !'= 0);

return buf.reverse().toString(Q;
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Because at least one digit must be generated, the do statement is an appropriate
control structure.

14.14 The for Statement

For Statement:
Basi cFor Satement
EnhancedFor Satement

The for statement has two forms:
e Thebasic for statement.

* The enhanced for statement

14.14.1 Thebasic for Statement

The basic for statement executes some initialization code, then executes an
Expression, a Satement, and some update code repeatedly until the value of the
Expressionis false.

Basi cFor Statement:
for ( Forlnityy ; Expressiony, ; ForUpdateyy ) Statement
For SatementNoShortlf:

for ( Forlnityy ; EXpressiongy ; ForUpdategy )
SatementNoShortl f

Forinit:
SatementExpressionList
Local VariableDeclaration

ForUpdate:
SatementExpressionList

SatementExpressionList:
SatementExpression
SatementExpressionList , StatementExpression

The Expression must have type boolean or Boolean, or a compile-time error
occurs.
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14.14.1.1 Initialization of for statement
A for statement is executed by first executing the ForInit code:

« If the Forlnit code is a list of statement expressions (814.8), the expressions
are evaluated in sequence from left to right; their values, if any, are discarded.
If evaluation of any expression completes abruptly for some reason, the for
statement completes abruptly for the same reason; any Forlnit statement
expressions to the right of the one that completed abruptly are not evaluated.

If the ForInit codeis aloca variable declaration, it is executed as if it were a
local variable declaration statement (814.4) appearing in a block. The scope of a
local variable declared in the Forlnit part of a basic for statement (§14.14)
includes al of the following:

* Itsown initializer
» Any further declarators to the right in the Forlnit part of the for statement
» The Expression and ForUpdate parts of the for statement
* The contained Satement
If execution of the local variable declaration completes abruptly for any rea-
son, the for statement completes abruptly for the same reason.

* If the ForInit part is not present, no action is taken.

14.14.1.2 Iteration of for statement
Next, a for iteration step is performed, as follows:

* If the Expression is present, it is evaluated. If the result is of type Boolean, it
is subject to unboxing conversion (85.1.8). If evaluation of the Expression or
the subsequent unboxing conversion (if any) completes abruptly, the for
statement completes abruptly for the same reason. Otherwise, there is then a
choice based on the presence or absence of the Expression and the resulting
valueif the Expression is present:

o If the Expression is not present, or it is present and the value resulting from
its evaluation (including any possible unboxing) is true, then the contained
Satement is executed. Then thereis achoice:

o If execution of the Statement completes normally, then the following two
steps are performed in sequence:
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o Firgt, if the ForUpdate part is present, the expressions are evaluated in
sequence from |eft to right; their values, if any, are discarded. If evalua-
tion of any expression completes abruptly for some reason, the for
statement completes abruptly for the same reason; any ForUpdate state-
ment expressions to the right of the one that completed abruptly are not
evaluated. If the ForUpdate part is not present, no action is taken.

o Second, another for iteration step is performed.
o If execution of the Statement completes abruptly, see 814.14.1.3 below.

o If the Expression is present and the value resulting from its evaluation
(including any possible unboxing) is false, no further action is taken and
the for statement completes normally.

If the (possibly unboxed) value of the Expression is false thefirst timeit is
evaluated, then the Statement is not executed.

If the Expression is not present, then the only way a for statement can com-
plete normally is by use of abreak statement.

14.14.1.3 Abrupt Completion of for statement
Abrupt completion of the contained Statement is handled in the following manner:

* If execution of the Statement completes abruptly because of a break with no
label, no further action is taken and the for statement completes normally.

* If execution of the Statement compl etes abruptly because of a continue with
no label, then the following two steps are performed in sequence:

o Firdt, if the ForUpdate part is present, the expressions are evaluated in
sequence from left to right; their values, if any, are discarded. If the
ForUpdate part is not present, no action is taken.

o Second, another for iteration step is performed.

* If execution of the Statement compl etes abruptly because of a continue with
label L, then thereisachoice:

o If the for statement haslabdl L, then the following two steps are performed
in sequence:

o Firdt, if the ForUpdate part is present, the expressions are evaluated in
sequence from left to right; their values, if any, are discarded. If the
ForUpdate is not present, no action is taken.

o Second, another for iteration step is performed.
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o If the for statement does not have label L, the for statement completes
abruptly because of a continue with label L.

* If execution of the Statement compl etes abruptly for any other reason, the for
statement completes abruptly for the same reason. Note that the case of abrupt
completion because of abreak with alabel ishandled by the general rule for
labeled statements (§14.7).

14.14.2 Theenhanced for statement

The enhanced for statement has the form:

EnhancedFor Statement:
for ( VariableModifiersyp; Type Identifier: Expression) Statement

The Expression must either have type Iterable or elseit must be of an array
type (810.1), or a compile-time error occurs.

The scope of a local variable declared in the FormalParameter part of an
enhanced for statement (814.14) is the contained Satement

The meaning of the enhanced for statement is given by trandation into a
basic for statement.

If the type of Expression isasubtype of Iterable, thenlet | bethetype of the
expression Expression.iterator (). The enhanced for statement is equivalent to
abasic for statement of the form:

for (I #i = Expression.iterator(); #i.hasNext(); ) {
VariableModifiersypt Type Identifier = #i.nextQ;
Satement

}

Where #i is a compiler-generated identifier that is distinct from any other identifi-
ers (compiler-generated or otherwise) that are in scope (86.3) at the point where
the enhanced for statement occurs.

Otherwise, the Expression necessarily hasan array type, T[]. LetLy ... Ly
be the (possibly empty) sequence of labels immediately preceding the enhanced
for statement. Then the meaning of the enhanced for statement is given by the
following basic for statement:

T[] a = Expression;

L1: Lp: ... Lpy:

for (int 7 = 0; 7 < a.length; 7++) {
VariableModifiersop Type Identifier = a[7];
Satement
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Where a and 7 are compiler-generated identifiers that are distinct from any other
identifiers (compiler-generated or otherwise) that are in scope at the point where
the enhanced for statement occurs.

DiscussIoN

The following example, which calculates the sum of an integer array, shows how enhanced
for works for arrays:
int sum(int[] a) {
int sum = 0;
for (int i : a)
sum += 1i;
return sum;

}

Here is an example that combines the enhanced for statement with auto-unboxing to trans-
late a histogram into a frequency table:
Map<String, Integer> histogram = ...;
double total = 0;
for (int i : histogram.values())
total += i;
for (Map.Entry<String, Integer> e : histogram.entrySet())
System.out.printin(e.getkey() + "" + e.getValue() / total);

14.15 Thebreak Statement

A break statement transfers control out of an enclosing statement.

BreakStatement:
break ldentifieryy ;

A break statement with no label attempts to transfer control to the innermost
enclosing switch, while, do, or for statement of the immediately enclosing
method or initializer block; this statement, which is called the break target, then
immediately completes normally.

To be precise, abreak statement with no label always completes abruptly, the
reason being abreak with no label. If no switch, while, do, or for statement in
the immediately enclosing method, constructor or initializer encloses the break
statement, a compile-time error occurs.

A break statement with label Identifier attempts to transfer control to the
enclosing labeled statement (814.7) that has the same Identifier as its label; this
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statement, which is called the break target, then immediately completes normally.
In this case, the break target need not be awhile, do, for, or switch statement.
A break statement must refer to alabel within the immediately enclosing method
or initializer block. There are no non-local jumps.

To be precise, a break statement with label Identifier aways completes
abruptly, the reason being a break with label Identifier. If no labeled statement
with Identifier as its label encloses the break statement, a compile-time error
OCCUrs.

It can be seen, then, that abreak statement always completes abruptly.

The preceding descriptions say “attempts to transfer control” rather than just
“transfers control” because if there are any try statements (814.20) within the
break target whose try blocks contain the break statement, then any finally
clauses of those try statements are executed, in order, innermost to outermost,
before control is transferred to the break target. Abrupt completion of a finally
clause can disrupt the transfer of control initiated by abreak statement.

In the following example, a mathematical graph is represented by an array of
arrays. A graph consists of a set of nodes and a set of edges; each edgeisan arrow
that points from some node to some other node, or from a node to itself. In this
example it is assumed that there are no redundant edges; that is, for any two nodes
P and Q, where Q may be the same as P, there is at most one edge from P to Q.
Nodes are represented by integers, and there is an edge from node 7 to node
edges[7][j] for every 7 and j for which the array reference edges[7]1[7]
does not throw an IndexOutO0fBoundsException

The task of the method ToseEdges, given integers 7 and 7, is to construct a
new graph by copying a given graph but omitting the edge from node 7 to node 7,
if any, and the edge from node j to node 17, if any:

class Graph {

int edges[1[];
public Graph(int[1[] edges) { this.edges = edges;

public Graph loseEdges(int i, int j) {
int n = edges.length;
int[][] newedges = new int[n][];
for (int k = 0; k < n; ++k) {

edgelist: {
int z;
search: {
if (k == 1) {

for (z = 0; z < edges[k].length; ++2z)
if (edges[k][z] == j)
break search;
} else if (k == j) {

14.15
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for (z = 0; z < edges[k].Tlength; ++2z)
if (edges[k][z] == 1)
break search;

}

// No edge to be deleted; share thislist.
newedges[k] = edges[k];

break edgelist;

} //search

// Copy thelist, omitting the edge at position z.
int m = edges[k].length - 1;
int ne[] = new int[m];
System.arraycopy(edges[k], @0, ne, 0, z);
System.arraycopy(edges[k], z+1l, ne, z, m-z);
newedges[k] = ne;

} //edgelist

}

return new Graph(newedges);

}

Note the use of two statement labels, edge1ist and search, and the use of break
statements. This allows the code that copies alist, omitting one edge, to be shared
between two separate tests, the test for an edge from node 7 to node 7, and the test
for an edge from node j to node 7.

14.16 The continue Statement

A continue statement may occur only in awhile, do, or for statement; state-
ments of these three kinds are called iteration statements. Control passes to the
loop-continuation point of an iteration statement.

ContinueStatement:
continue ldentifieryy ;

A continue statement with no label attempts to transfer control to the inner-
most enclosing while, do, or for statement of the immediately enclosing method
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or initializer block; this statement, which is called the continue target, then imme-
diately ends the current iteration and begins a new one.

To be precise, such a continue statement always completes abruptly, the rea-
son being a continue with no label. If no while, do, or for statement of the
immediately enclosing method or initializer block encloses the continue state-
ment, a compile-time error occurs.

A continue statement with label Identifier attempts to transfer contral to the
enclosing labeled statement (814.7) that has the same Identifier as its label; that
statement, which is called the continue target, then immediately ends the current
iteration and begins a new one. The continue target must be awhile, do, or for
statement or a compile-time error occurs. A continue Statement must refer to a
label within the immediately enclosing method or initializer block. There are no
non-local jumps.

More precisely, a continue statement with label Identifier always completes
abruptly, the reason being a continue with label Identifier. If no labeled state-
ment with Identifier asits label contains the continue statement, a compile-time
error occurs.

It can be seen, then, that a continue statement always completes abruptly.

See the descriptions of the while statement (814.12), do statement (814.13),
and for statement (814.14) for a discussion of the handling of abrupt termination
because of continue.

The preceding descriptions say “attempts to transfer control” rather than just
“transfers control” because if there are any try statements (814.20) within the
continue target whose try blocks contain the continue statement, then any
finally clauses of those try statements are executed, in order, innermost to out-
ermost, before control istransferred to the continue target. Abrupt completion of a
finally clause can disrupt the transfer of control initiated by a continue state-
ment.

In the Graph example in the preceding section, one of the break statementsis
used to finish execution of the entire body of the outermost for loop. This break
can bereplaced by a continue if the for loop itself is labeled:

class Graph {

public Graph loseEdges(int i, int j) {
int n = edges.length;
int[][] newedges = new int[n][];
edgelists: for (int k = 0; k < n; ++k) {
int z;
search: {
if (k == 1) {

} else if (k == §) {

14.16
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}
newedges[k] = edges[k];
continue edgelists;

} // search

} // edgelists

return new Graph(newedges);
}
}

Which to use, if either, islargely a matter of programming style.

14.17 The return Statement

A return statement returns control to the invoker of a method (88.4, §15.12) or
constructor (88.8, §15.9).

ReturnSatement:
return Expressiong ;

A return statement with no Expression must be contained in the body of a
method that is declared, using the keyword vo1id, not to return any value (88.4), or
in the body of a constructor (88.8). A compile-time error occursif areturn state-
ment appears within an instance initializer or a static initializer (88.7). A return
statement with no Expression attempts to transfer control to the invoker of the
method or constructor that containsit.

To be precise, a return statement with no Expression always completes
abruptly, the reason being a return with no value.

A return statement with an Expression must be contained in a method decla-
ration that is declared to return a value (88.4) or a compile-time error occurs. The
Expression must denote a variable or value of some type T, or a compile-time
error occurs. The type T must be assignable (85.2) to the declared result type of
the method, or a compile-time error occurs.

A return statement with an Expression attempts to transfer control to the
invoker of the method that contains it; the value of the Expression becomes the
value of the method invocation. More precisely, execution of such areturn state-
ment first evaluates the Expression. If the evaluation of the Expression completes
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abruptly for some reason, then the return statement completes abruptly for that
reason. If evaluation of the Expression completes normally, producing a value v,
then the return statement completes abruptly, the reason being a return with
value v. If the expression is of type float and is not FP-strict (§815.4), then the
value may be an element of either the float value set or the float-extended-expo-
nent value set (84.2.3). If the expression is of type double and is not FP-strict,
then the value may be an element of either the double value set or the double-
extended-exponent value set.

It can be seen, then, that a return statement always completes abruptly.

The preceding descriptions say “attempts to transfer control” rather than just
“transfers control” because if there are any try statements (814.20) within the
method or constructor whose try blocks contain the return statement, then any
finally clauses of those try statements will be executed, in order, innermost to
outermost, before control is transferred to the invoker of the method or construc-
tor. Abrupt completion of a finally clause can disrupt the transfer of control ini-
tiated by a return statement.

14.18 The throw Statement

A throw statement causes an exception (811) to be thrown. Theresult isan imme-
diate transfer of control (811.3) that may exit multiple statements and multiple
constructor, instance initializer, static initializer and field initializer evaluations,
and method invocations until a try statement (814.20) is found that catches the
thrown value. If no such try statement is found, then execution of the thread
(817) that executed the throw is terminated (811.3) after invocation of the
uncaughtException method for the thread group to which the thread belongs.

ThrowStatement:
throw Expression ;

A throw statement can throw an exception type E iff the static type of the
throw expression is E or asubtype of E, or the thrown expression can throw E.

The Expression in athrow statement must denote a variable or value of aref-
erence type which is assignable (85.2) to the type Throwable, or a compile-time
error occurs. Moreover, at least one of the following three conditions must be true,
or acompile-time error occurs.

» The exception is not a checked exception (811.2)—specifically, one of thefol-
lowing situationsis true:

o Thetype of the Expression is the class RuntimeException or asubclass of
RuntimeException.

14.18

393



14.18 Thethrow Statement BLOCKSAND STATEMENTS

394

o Thetype of the Expression isthe classError or asubclass of Error.

 The throw statement is contained in the try block of a try statement
(814.20) and the type of the Expression is assignable (85.2) to the type of the
parameter of at least one catch clause of the try statement. (In this case we
say the thrown value is caught by the try statement.)

» The throw statement is contained in a method or constructor declaration and
the type of the Expression is assignable (85.2) to at least one type listed in the
throws clause (88.4.6, 88.8.5) of the declaration.

A throw statement first evaluates the Expression. If the evaluation of the
Expression completes abruptly for some reason, then the throw completes
abruptly for that reason. If evaluation of the Expression completes normally, pro-
ducing anon-nul1 value v, then the throw statement completes abruptly, the rea-
son being a throw with value v. If evaluation of the Expression completes
normally, producing a nu11 value, then an instance v’ of class Nul1PointerEx-
ception is created and thrown instead of nul1. The throw statement then com-
pletes abruptly, the reason being a throw with value v'.

It can be seen, then, that a throw statement always compl etes abruptly.

If there are any enclosing try statements (814.20) whose try blocks contain
the throw statement, then any finally clauses of those try statements are exe-
cuted as control is transferred outward, until the thrown value is caught. Note that
abrupt completion of a finally clause can disrupt the transfer of control initiated
by a throw statement.

If athrow statement is contained in a method declaration, but its value is not
caught by some try statement that contains it, then the invocation of the method
completes abruptly because of the throw.

If athrow statement is contained in a constructor declaration, but its value is
not caught by some try statement that containsit, then the class instance creation
expression that invoked the constructor will complete abruptly because of the
throw.

If athrow statement is contained in a static initializer (88.7), then a compile-
time check ensures that either its value is always an unchecked exception or its
value is always caught by some try statement that contains it. If at run-time,
despite this check, the value is not caught by some try statement that contains the
throw statement, then the value is rethrown if it is an instance of class Error or
one of its subclasses; otherwise, it iswrapped in an ExceptionInInitializer-
Error object, which isthen thrown (§12.4.2).

If athrow statement is contained in an instance initializer (88.6), then a com-
pile-time check ensures that either its value is always an unchecked exception or
itsvalue is aways caught by some try statement that containsit, or the type of the
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thrown exception (or one of its superclasses) occurs in the throws clause of every
constructor of the class.

By convention, user-declared throwable types should usually be declared to
be subclasses of class Exception, which is a subclass of class Throwable
(811.5).

14.19 The synchronized Statement

A synchronized statement acquires a mutual-exclusion lock (817.1) on behalf of
the executing thread, executes a block, then releases the lock. While the executing
thread owns the lock, no other thread may acquire the lock.

SynchronizedStatement:
synchronized ( Expression ) Block

The type of Expression must be a reference type, or a compile-time error occurs.

A synchronized statement is executed by first evaluating the Expression.

If evaluation of the Expression completes abruptly for some reason, then the
synchronized statement completes abruptly for the same reason.

Otherwise, if the value of the Expressionisnul1, aNul1PointerException
isthrown.

Otherwise, let the non-nu11 value of the Expression be v. The executing
thread locks the lock associated with v. Then the Block is executed. If execution of
the Block completes normally, then the lock is unlocked and the synchronized
statement completes normally. If execution of the Block completes abruptly for
any reason, then the lock is unlocked and the synchronized statement then com-
pletes abruptly for the same reason.

Acquiring the lock associated with an object does not of itself prevent other
threads from accessing fields of the object or invoking unsynchronized methods
on the object. Other threads can aso use synchronized methods or the
synchronized statement in a conventional manner to achieve mutual exclusion.

The locks acquired by synchronized statements are the same as the locks
that are acquired implicitly by synchronized methods; see 88.4.3.6. A single
thread may hold alock more than once.

The example:

class Test {

public static void main(String[] args) {
Test t = new Test(Q);

14.19
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synchronized(t) {
synchronized(t) {
System.out.printin("made it!");

}
}
}
}
prints:
made it!

This example would deadlock if a single thread were not permitted to lock alock
more than once.

14.20 The try statement

A try statement executes a block. If avalue is thrown and the try statement has
one or more catch clauses that can catch it, then control will be transferred to the
first such catch clause. If the try statement has a finally clause, then another
block of code is executed, no matter whether the try block completes normally or
abruptly, and no matter whether a catch clauseisfirst given control.

TryStatement:
try Block Catches
try Block Catchesyy Finally

Catches:
CatchClause
Catches CatchClause

CatchClause:
catch ( FormalParameter ) Block

Finally:
finally Block
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The following is repeated from §8.4.1 to make the presentation here clearer:

Formal Parameter:
VariableModifiers Type VariableDeclaratorld

The following is repeated from 88.3 to make the presentation here clearer:

VariableDeclarator|d:
Identifier
VariableDeclaratorld [ ]

The Block immediately after the keyword try is called the try block of the
try statement. The Block immediately after the keyword finally is caled the
finally block of the try statement.

A try statement may have catch clauses (also called exception handlers).
A catch clause must have exactly one parameter (which is called an exception
parameter); the declared type of the exception parameter must be the class
Throwable or a subclass (not just a subtype) of Throwable, or a compile-time
error occurs.In particular, it is a compile-time error if the declared type of the
exception parameter is atype variable (84.4). The scope of the parameter variable
isthe Block of the catch clause.

An exception parameter of a catch clause must not have the same name as a
local variable or parameter of the method or initializer block immediately enclos-
ing the catch clause, or a compile-time error occurs.

The scope of a parameter of an exception handler that is declared in a catch
clause of a try statement (814.20) is the entire block associated with the catch.
Within the Block of the catch clause, the name of the parameter may not be rede-
clared as alocal variable of the directly enclosing method or initializer block, nor
may it be redeclared as an exception parameter of a catch clausein atry statement
of the directly enclosing method or initializer block, or a compile-time error
occurs. However, an exception parameter may be shadowed (86.3.1) anywhere
inside a class declaration nested within the Block of the catch clause.

A try statement can throw an exception type E iff either:

» The try block can throw E and E is not assignable to any catch parameter of
the try statement and either no finally block is present or the finally
block can complete normally; or

» Some catch block of the try statement can throw E and either no finally
block is present or the finally block can complete normally; or

* A finally block is present and can throw E.

14.20
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It is a compile-time error if an exception parameter that is declared final is
assigned to within the body of the catch clause.

It isacompile-time error if acatch clause catches checked exception type E£1
but there exists no checked exception type E2 such that all of the following hold:

o F2 <: E1
» The try block corresponding to the catch clause can throw E2

* No preceding catch block of the immediately enclosing try statement
catches E2 or a supertype of E2.

unless E1 isthe class Exception.

Exception parameters cannot be referred to using qualified names (86.6), only
by simple names.

Exception handlers are considered in left-to-right order: the earliest possible
catch clause accepts the exception, receiving as its actual argument the thrown
exception object.

A finally clause ensures that the finally block is executed after the try
block and any catch block that might be executed, no matter how control leaves
the try block or catch block.

Handling of the finally block is rather complex, so the two cases of a try
statement with and without a final1y block are described separately.

14.20.1 Execution of try-catch

A try statement without a finally block is executed by first executing the try
block. Then thereis achoice:

« If execution of the try block completes normally, then no further action is
taken and the try statement completes normally.

* If execution of the try block completes abruptly because of a throw of a
value v, then there isachoice:

o If the run-time type of V is assignable (85.2) to the Parameter of any catch
clause of the try statement, then the first (leftmost) such catch clause is
selected. The value V is assigned to the parameter of the selected catch
clause, and the Block of that catch clause is executed. If that block com-
pletes normally, then the try statement completes normally; if that block
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completes abruptly for any reason, then the try statement completes
abruptly for the same reason.

o If the run-time type of V is not assignable to the parameter of any catch
clause of the try statement, then the try statement completes abruptly
because of a throw of the value V.

« If execution of the try block completes abruptly for any other reason, then
the try statement completes abruptly for the same reason.

In the example:
class BlewIt extends Exception {
BlewIt() { }
BlewIt(String s) { super(s); }
}
class Test {

static void blowUp() throws BlewIt { throw new BlewIt(); }
public static void main(String[] args) {
try {
blowUpQ) ;
} catch (RuntimeException r) {
System.out.printIn("RuntimeException:" + r);
} catch (BlewIt b) {
System.out.printin("BlewIt");
}

}
the exception B1ewIt isthrown by the method b1owUp. The try—catch statement
in the body of main hastwo catch clauses. The run-time type of the exception is
BlewIt which is not assignable to a variable of type RuntimeException, but is
assignableto avariable of type BlewIt, so the output of the exampleis:

BlewIt

14.20.2 Execution of try-catch-finally

A try statement with a finally block is executed by first executing the try
block. Then there is achoice:
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« If execution of the try block completes normally, then the finally block is
executed, and then there is a choice:

u}

]

If the fina11y block completes normally, then the try statement compl etes
normally.

If the finally block completes abruptly for reason S, then the try state-
ment completes abruptly for reason S.

« If execution of the try block completes abruptly because of a throw of a
value V, then thereis a choice:

u}

]

If the run-time type of V is assignable to the parameter of any catch clause
of the try statement, then the first (leftmost) such catch clauseis selected.
The value V is assigned to the parameter of the selected catch clause, and
the Block of that catch clause is executed. Then thereis a choice:

o If the catch block completes normally, then the finally block is exe-
cuted. Then thereisachoice:

o If the finally block completes normally, then the try statement com-
pletes normally.

o If the finally block completes abruptly for any reason, then the try
statement compl etes abruptly for the same reason.

o If the catch block completes abruptly for reason R, then the finally
block is executed. Then thereisachoice:

o If the finally block completes normally, then the try statement com-
pletes abruptly for reason R.

o If the finally block completes abruptly for reason S, then the try
statement compl etes abruptly for reason S (and reason R is discarded).

If the run-time type of V is not assignable to the parameter of any catch
clause of the try statement, then the finally block is executed. Then there
isachoice:

o If the finally block completes normally, then the try statement com-
pletes abruptly because of a throw of the value V.

o If the finally block completes abruptly for reason S, then the try state-
ment completes abruptly for reason S (and the throw of value V is dis-
carded and forgotten).

* If execution of the try block completes abruptly for any other reason R, then
the finally block is executed. Then thereis achoice:
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o If the finally block completes normally, then the try statement completes
abruptly for reason R.

o If the finally block completes abruptly for reason S, then the try state-
ment completes abruptly for reason S (and reason R is discarded).

The example:
class BlewIt extends Exception {
BlewIt() { }
BlewIt(String s) { super(s); }
}
class Test {
static void blowUp() throws BlewIt {
throw new NulTPointerException();

}
public static void main(String[] args) {
try {
blowUp(Q) ;
} catch (BlewIt b) {
System.out.printin("BlewIt");
} finally {
System.out.printin("Uncaught Exception");
}
}
}
produces the output:

Uncaught Exception

java.Tlang.NulTPointerException
at Test.blowUp(Test.java:7)
at Test.main(Test.java:11)

The NuT1PointerException (which is a kind of RuntimeException) that is
thrown by method b1owUp is not caught by the try statement in main, because a
Nul1PointerException is not assignable to a variable of type BlewIt. This
causes the finally clause to execute, after which the thread executing main,
which is the only thread of the test program, terminates because of an uncaught
exception, which typically results in printing the exception name and a simple
backtrace. However, a backtrace is not required by this specification.
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DiscussIioN

The problem with mandating a backtrace is that an exception can be created at one point in
the program and thrown at a later one. It is prohibitively expensive to store a stack trace in
an exception unless it is actually thrown (in which case the trace may be generated while
unwinding the stack). Hence we do not mandate a back trace in every exception.

14.21 Unreachable Statements

It is a compile-time error if a statement cannot be executed because it is unreach-
able. Every Java compiler must carry out the conservative flow analysis specified
here to make sure all statements are reachable.

This section is devoted to a precise explanation of the word “reachable” The
ideais that there must be some possible execution path from the beginning of the
constructor, method, instance initializer or static initializer that contains the state-
ment to the statement itself. The analysis takes into account the structure of state-
ments. Except for the special treatment of while, do, and for statements whose
condition expression has the constant value true, the values of expressions are
not taken into account in the flow analysis.

For example, a Java compiler will accept the code:

{

int n = 5;
while (n > 7) k = 2;

}
even though the value of n is known at compile time and in principle it can be
known at compile time that the assignment to k can never be executed.

A Java compiler must operate according to the rules laid out in this section.

The rulesin this section define two technical terms:

» whether a statement is reachable

» whether a statement can complete normally

The definitions here alow a statement to complete normally only if it isreachable.
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To shorten the description of the rules, the customary abbreviation “iff” is
used to mean “if and only if.”
Therules are asfollows:

» The block that is the body of a constructor, method, instance initializer or
static initializer is reachable.

* An empty block that is not a switch block can complete normally iff it is
reachable. A nonempty block that is not a switch block can complete nor-
mally iff the last statement in it can complete normally. The first statement in
anonempty block that is not a switch block is reachableiff the block isreach-
able. Every other statement S in anonempty block that is not aswitch block is
reachable iff the statement preceding S can complete normally.

» A local class declaration statement can complete normally iff it is reachable.

» A local variable declaration statement can complete normally iff it is reach-
able.

» An empty statement can complete normally iff it is reachable.

» A labeled statement can complete normally if at least one of the following is
true:

o The contained statement can complete normally.

o Thereisareachable break statement that exits the labeled statement.

The contained statement is reachable iff the labeled statement is reachable.
* An expression statement can complete normally iff it is reachable.

» The if statement, whether or not it has an el1se part, is handled in an unusual
manner. For this reason, it is discussed separately at the end of this section.

* Anassert statement can complete normally iff it is reachable.

» A switch statement can complete normally iff at least one of the following is
true:

o Thelast statement in the switch block can complete normally.

o The switch block isempty or contains only switch labels.

o Thereisat least one switch label after the last switch block statement group.
o The switch block does not contain adefault label.

o Thereisareachable break statement that exits the switch statement.

« A switch block is reachable iff its switch statement is reachable.
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» A statement in a switch block is reachable iff its switch statement is reach-

able and at least one of the following istrue:
o It bearsacase or default labdl.

o There is a statement preceding it in the switch block and that preceding
statement can complete normally.

A whiTe statement can complete normally iff at least one of the following is
true:

o ThewhiTe statement is reachable and the condition expression is not a con-
stant expression with value true.

o Thereisareachable break statement that exits the while statement.

The contained statement is reachable iff thewhile statement is reachable and
the condition expression is not a constant expression whose valueis false.

A do statement can complete normally iff at least one of the following istrue:

o The contained statement can complete normally and the condition expres-
sion is not a constant expression with value true.

o The do statement contains a reachable continue statement with no label,
and the do statement is the innermost while, do, or for statement that con-
tains that continue statement, and the condition expression is not a con-
stant expression with value true.

o The do statement contains a reachable continue statement with a labdl L,
and the do statement has label L, and the condition expression is not a con-
stant expression with value true.

o Thereisareachable break statement that exits the do statement.
The contained statement is reachable iff the do statement is reachable.

A basic for statement can complete normally iff at least one of the following
istrue:

o The for statement is reachable, thereis a condition expression, and the con-
dition expression is not a constant expression with value true.

o Thereisareachable break statement that exits the for statement.

The contained statement is reachable iff the for statement is reachable and
the condition expression is not a constant expression whose valueis false.

« An enhanced for statement can complete normally iff it is reachable.
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* A break, continue, return, or throw statement cannot complete normally.

* A synchronized statement can complete normally iff the contained state-
ment can complete normally. The contained statement is reachable iff the
synchronized statement is reachable.

* A try statement can complete normaly iff both of the following are true:

o The try block can complete normally or any catch block can complete
normally.

o If the try statement hasa finally block, then the finally block can com-
plete normally.

» The try block isreachableiff the try statement is reachable.
* A catch block c isreachable iff both of the following are true:

o Some expression or throw statement in the try block is reachable and can
throw an exception whose type is assignabl e to the parameter of the catch
clause C. (An expression is considered reachable iff the innermost statement
containing it is reachable.)

o Thereisno earlier catch block A in the try statement such that the type of
C’'sparameter is the same as or a subclass of the type of A’'s parameter.

« If afinally block is present, it is reachable iff the try statement is reach-
able.

One might expect the i f statement to be handled in the following manner, but
these are not the rules that the Java programming language actually uses:
* HYPOTHETICAL: An if-then statement can complete normally iff at least
one of thefollowing is true:

o The if—then statement is reachable and the condition expression is not a
constant expression whose value is true.

o The then—statement can complete normally.

* The then—statement is reachable iff the i f—then statement is reachable and
the condition expression is not a constant expression whose valueis false.

 HYPOTHETICAL: An if—then—else statement can complete normaly iff
the then—statement can complete normally or the e1se—statement can com-
plete normally. The then-statement is reachable iff the i f—then—else state-
ment is reachable and the condition expression is not a constant expression
whosevalueis false. The else statement isreachable iff the i f—then—else
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statement is reachable and the condition expression is not a constant expres-
sion whose valueis true.

This approach would be consistent with the treatment of other control struc-
tures. However, in order to allow the if statement to be used conveniently for
“conditional compilation” purposes, the actua rules differ.

The actual rulesfor the if statement are as follows:

» ACTUAL: An if—then statement can complete normally iff it is reachable.
The then—statement is reachable iff the i f—then statement is reachable.

* ACTUAL: Anif—then—else statement can complete normally iff the then—
statement can complete normally or the else—statement can complete nor-
mally. The then-statement is reachable iff the if—then—else statement is
reachable. The else-statement is reachable iff the i f—then—else statement
isreachable.

As an example, the following statement results in a compile-time error:

while (false) { x=3; }
because the statement x=3 ; is not reachable; but the superficially similar case:

if (false) { x=3; }
does not result in a compile-time error. An optimizing compiler may realize that
the statement x=3; will never be executed and may choose to omit the code for
that statement from the generated class file, but the statement x=3; is not
regarded as “unreachable” in the technical sense specified here.

The rationale for this differing treatment is to allow programmers to define
“flag variables’ such as:

static final boolean DEBUG = false;
and then write code such as:

if (DEBUG) { x=3; }

Theideaisthat it should be possible to change the value of DEBUG from false to
true or from true to false and then compile the code correctly with no other
changes to the program text.

This ability to “conditionally compile” has a significant impact on, and rela-
tionship to, binary compatibility (813). If a set of classes that use such a “flag”
variable are compiled and conditional code is omitted, it does not suffice later to
distribute just a new version of the class or interface that contains the definition of
the flag. A change to the value of aflag is, therefore, not binary compatible with
preexisting binaries (813.4.9). (There are other reasons for such incompatibility as
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well, such as the use of constants in case labels in switch statements;, see
§13.4.9)
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CHAPTER 15

Expressions

M UCH of the work in a program is done by evaluating expressions, either for
their side effects, such as assignments to variables, or for their values, which can
be used as arguments or operands in larger expressions, or to affect the execution
seguence in statements, or both.

This chapter specifies the meanings of expressions and the rules for their eval-
uation.

15.1 Evaluation, Denotation, and Result

When an expression in a program is evaluated (executed), the result denotes one
of three things:

» A variable (84.12) (in C, thiswould be called an lvalue)
* Avaue(84.2, 84.3)
» Nothing (the expression is said to be void)

Evaluation of an expression can also produce side effects, because expres-
sions may contain embedded assignments, increment operators, decrement opera-
tors, and method invocations.

An expression denotes nothing if and only if it is a method invocation
(815.12) that invokes a method that does not return a value, that is, a method
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declared void (88.4). Such an expression can be used only as an expression state-
ment (814.8), because every other context in which an expression can appear
regquires the expression to denote something. An expression statement that is a
method invocation may also invoke a method that produces a result; in this case
the value returned by the method is quietly discarded.

Value set conversion (85.1.13) is applied to the result of every expression that
produces a value.

Each expression occursin either:

» The declaration of some (class or interface) type that is being declared: in a
field initializer, in astatic initializer, in an instance initiaizer, in a constructor
declaration, in an annotation, or in the code for a method.

» An annotation of a package or of atop-level type declaration .

15.2 VariablesasValues

If an expression denotes a variable, and avalue is required for use in further eval-
uation, then the value of that variable is used. In this context, if the expression
denotes avariable or avalue, we may speak simply of the value of the expression.

If the value of avariable of type float or double isused in this manner, then
value set conversion (85.1.13) is applied to the value of the variable.

15.3 Typeof an Expression

If an expression denotes a variable or a value, then the expression has a type
known at compile time. The rules for determining the type of an expression are
explained separately below for each kind of expression.

The value of an expression is assignment compatible (85.2) with the type of
the expression, unless heap pollution (84.12.2.1) occurs. Likewise the value stored
in avariable is always compatible with the type of the variable, unless heap pollu-
tion occurs. In other words, the value of an expression whose typeis T is dways
suitable for assignment to a variable of type T.

Note that an expression whose type is a class type F that isdeclared final is
guaranteed to have a value that is either a null reference or an object whose class
is F itself, because final types have no subclasses.
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15.4 FP-strict Expressions

If the type of an expression is f1oat or double, then thereisaquestion asto what
value set (84.2.3) the value of the expression is drawn from. This is governed by
the rules of value set conversion (85.1.13); these rules in turn depend on whether
or not the expression is FP-strict.

Every compile-time constant expression (815.28) is FP-strict. If an expression
is not a compile-time constant expression, then consider all the class declarations,
interface declarations, and method declarations that contain the expression. If any
such declaration bears the strictfp modifier, then the expression is FP-strict.

If aclass, interface, or method, X, isdeclared strictfp, then X and any class,
interface, method, constructor, instance initializer, static initializer or variable ini-
tializer within X is said to be FP-strict. Note that an annotation (89.7) element
value (89.6) is always FP-strict, because it is always a compile-time constant
(815.28).

It follows that an expression is not FP-strict if and only if it is not a compile-
time constant expression and it does not appear within any declaration that hasthe
strictfp modifier.

Within an FP-strict expression, al intermediate values must be elements of
the float value set or the double value set, implying that the results of all FP-strict
expressions must be those predicted by IEEE 754 arithmetic on operands repre-
sented using single and double formats. Within an expression that is not FP-strict,
some leeway is granted for an implementation to use an extended exponent range
to represent intermediate results; the net effect, roughly speaking, isthat acalcula-
tion might produce “the correct answer” in situations where exclusive use of the
float value set or double value set might result in overflow or underflow.

155 Expressionsand Run-Time Checks

If the type of an expression is a primitive type, then the value of the expression is
of that same primitive type. But if the type of an expression is a reference type,
then the class of the referenced object, or even whether the value is areference to
an object rather than nu11, is not necessarily known at compile time. There are a
few places in the Java programming language where the actua class of a refer-
enced object affects program execution in a manner that cannot be deduced from
the type of the expression. They are as follows:

* Method invocation (815.12). The particular method used for an invocation
o.m(...) ischosen based on the methods that are part of the class or interface

155
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that is the type of o. For instance methods, the class of the object referenced
by the run-time value of o participates because a subclass may override a spe-
cific method already declared in a parent class so that this overriding method
is invoked. (The overriding method may or may not choose to further invoke
the original overridden m method.)

* The instanceof operator (815.20.2). An expression whose type is a refer-
ence type may be tested using instanceof to find out whether the class of the
object referenced by the run-time value of the expression is assignment com-
patible (85.2) with some other reference type.

» Casting (85.5, 815.16). The class of the object referenced by the run-time
value of the operand expression might not be compatible with the type speci-
fied by the cast. For reference types, this may require a run-time check that
throws an exception if the class of the referenced object, as determined at run
time, is not assignment compatible (85.2) with the target type.

» Assignment to an array component of reference type (810.10, 815.13,
§15.26.1). The type-checking rules allow the array type S[] to betreated asa
subtype of T[] if S isasubtype of T, but this requires a run-time check for
assignment to an array component, similar to the check performed for a cast.

» Exception handling (814.20). An exception is caught by a catch clause only
if the class of the thrown exception object is an instanceof the type of the
formal parameter of the catch clause.

Situations where the class of an object is not statically known may lead to run-
time type errors.

In addition, there are situations where the statically known type may not be
accurate at run-time. Such situations can arise in a program that gives rise to
unchecked warnings. Such warnings are given in response to operations that can-
not be statically guaranteed to be safe, and cannot immediately be subjected to
dynamic checking because they involve non-reifiable (84.7) types. As a result,
dynamic checks later in the course of program execution may detect inconsisten-
cies and result in run-time type errors.

A run-time type error can occur only in these situations:

* In a cadt, when the actual class of the object referenced by the value of the
operand expression is not compatible with the target type specified by the cast
operator (85.5, 815.16); in this case aClassCastException isthrown.

* Inanimplicit, compiler-generated cast introduced to ensure the validity of an
operation on a non-reifiable type.
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* In an assignment to an array component of reference type, when the actual
class of the object referenced by the value to be assigned is not compatible
with the actua run-time component type of the array (810.10, 815.13,
815.26.1); in this case an ArrayStoreException isthrown.

» When an exception is not caught by any catch handler (811.3); in this case
the thread of control that encountered the exception first invokes the method
uncaughtException for itsthread group and then terminates.

15.6 Normal and Abrupt Completion of Evaluation

Every expression has a normal mode of evaluation in which certain computational
steps are carried out. The following sections describe the normal mode of evalua-
tion for each kind of expression. If al the steps are carried out without an excep-
tion being thrown, the expression is said to complete normally.

If, however, evaluation of an expression throws an exception, then the expres-
sion is said to complete abruptly. An abrupt completion always has an associated
reason, which is always a throw with a given value.

Run-time exceptions are thrown by the predefined operators as follows:

* A class instance creation expression (815.9), array creation expression
(815.10), or string concatenation operator expression (815.18.1) throws an
OutOfMemoryError if there isinsufficient memory available.

» Anarray creation expression throws aNegativeArraySizeException if the
value of any dimension expression is less than zero (§15.10).

» A field access (815.11) throws aNulT1PointerException if the value of the
object reference expressionisnull.

* A method invocation expression (815.12) that invokes an instance method
throws aNul1PointerException if the target referenceisnull.

* An array access (815.13) throws a Nul1PointerException if the value of
the array reference expressionisnull.

* An array access (815.13) throws an ArrayIndexOutOfBoundsException if
the value of the array index expression is negative or greater than or equal to
the Tength of the array.

15.6
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A cast (815.16) throwsaClassCastException if acast isfound to be imper-
missible at run time.

* An integer division (815.17.2) or integer remainder (815.17.3) operator
throws an ArithmeticException if the value of the right-hand operand
expression is zero.

« An assignment to an array component of reference type (815.26.1), a metthod
invocation (815.12), a prefix or postfix increment (815.14.2, §15.15.1) or dec-
rement operator (815.14.3, 815.15.2) may all throw an QutOfMemoryError as
aresult of boxing conversion (85.1.7).

» An assignment to an array component of reference type (815.26.1) throws an
ArrayStoreException when the value to be assigned is not compatible with
the component type of the array.

A method invocation expression can also result in an exception being thrown if an
exception occurs that causes execution of the method body to compl ete abruptly.
A class instance creation expression can also result in an exception being thrown
if an exception occurs that causes execution of the constructor to complete
abruptly. Various linkage and virtual machine errors may also occur during the
evaluation of an expression. By their nature, such errors are difficult to predict and
difficult to handle.

If an exception occurs, then evaluation of one or more expressions may be ter-
minated before all steps of their normal mode of evaluation are complete; such
expressions are said to complete abruptly. The terms “complete normally”
and “complete abruptly” are also applied to the execution of statements (814.1).
A statement may complete abruptly for a variety of reasons, not just because an
exception is thrown.

If evaluation of an expression requires evaluation of a subexpression, abrupt
completion of the subexpression always causes the immediate abrupt completion
of the expression itself, with the same reason, and all succeeding stepsin the nor-
mal mode of evaluation are not performed.

15.7 Evaluation Order

The Java programming language guarantees that the operands of operators appear
to be evaluated in a specific evaluation order, namely, from left to right.
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It is recommended that code not rely crucially on this specification. Code is
usualy clearer when each expression contains at most one side effect, as its
outermost operation, and when code does not depend on exactly which exception
arises as a consequence of the left-to-right evaluation of expressions.

15.7.1 Evaluate L eft-Hand Operand Fir st

The left-hand operand of a binary operator appears to be fully evaluated before
any part of the right-hand operand is evaluated. For example, if the left-hand oper-
and contains an assignment to a variable and the right-hand operand contains a
reference to that same variable, then the value produced by the reference will
reflect the fact that the assignment occurred first.

Thus:

class Test {

public static void main(String[] args) {
int i = 2;
int j = (i=3) * i;
System.out.printin(j);
}
}

prints:

9
It is not permitted for it to print 6 instead of 9.

If the operator is a compound-assignment operator (815.26.2), then evaluation
of the left-hand operand includes both remembering the variable that the left-hand
operand denotes and fetching and saving that variable’'s value for use in the
implied combining operation. So, for example, the test program:

class Test {

public static void main(String[] args) {

int a = 9;
a += (a = 3); // first example
System.out.println(a);
int b = 9;
b=b+ (b=23); // second example
System.out.printin(b);
}
}
prints:
12
12

because the two assignment statements both fetch and remember the value of the
left-hand operand, which is 9, before the right-hand operand of the addition is
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evaluated, thereby setting the variable to 3. It is not permitted for either example
to produce the result 6. Note that both of these examples have unspecified behav-
ior in C, according to the ANSI/ISO standard.
If evaluation of the left-hand operand of a binary operator completes abruptly,
no part of the right-hand operand appears to have been evaluated.
Thus, the test program:
class Test {
public static void main(String[] args) {
int j = 1;
try {
int i = forgetIt() / (j = 2);
} catch (Exception e) {
System.out.printin(e);
System.out.printin("Now j = " + j);
}
}

static int forgetIt() throws Exception {
throw new Exception("I’'m outta here!");

}
}
prints:
java.lang.Exception: I'm outta here!
Now j = 1

That is, the left-hand operand forgetIt() of the operator / throws an excep-
tion before the right-hand operand is evaluated and its embedded assignment of 2
to j occurs.

15.7.2 Evaluate Operands before Operation

The Java programming language al so guarantees that every operand of an operator
(except the conditional operators &&, | |, and ? :) appears to be fully evaluated
before any part of the operation itself is performed.
If the binary operator is an integer division / (815.17.2) or integer remainder
% (815.17.3), then its execution may raise an ArithmeticException, but this
exception is thrown only after both operands of the binary operator have been
evaluated and only if these evaluations completed normally.
So, for example, the program:
class Test {
public static void main(String[] args) {
int divisor = 0;
try {
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int i = 1/ (divisor * ToseBig());
} catch (Exception e) {
System.out.printin(e);
}
}
static int loseBig() throws Exception {
throw new Exception("Shuffle off to Buffalo!");
}

}
always prints:

java.lang.Exception: Shuffle off to Buffalo!
and not:

java.lang.ArithmeticException: / by zero
since no part of the division operation, including signaling of a divide-by-zero
exception, may appear to occur before the invocation of ToseBig completes, even
though the implementation may be able to detect or infer that the division opera-
tion would certainly result in a divide-by-zero exception.

15.7.3 Evaluation Respects Parentheses and Precedence

Java programming language implementations must respect the order of evaluation
as indicated explicitly by parentheses and implicitly by operator precedence. An
implementation may not take advantage of algebraic identities such asthe associa-
tive law to rewrite expressions into a more convenient computational order unless
it can be proven that the replacement expression is equivalent in value and in its
observable side effects, even in the presence of multiple threads of execution
(using the thread execution model in 8§17), for all possible computational values
that might be involved.

In the case of floating-point calculations, this rule applies also for infinity and
not-a-number (NaN) values. For example, ! (x<y) may not be rewritten as x>=y,
because these expressions have different values if either x or y is NaN or both are
NaN.

Specifically, floating-point calculations that appear to be mathematically asso-
ciative are unlikely to be computationally associative. Such computations must
not be naively reordered.

For example, it is not correct for a Java compiler to rewrite 4.0%x*0.5 as
2.0*x; while roundoff happens not to be an issue here, there are large values of x
for which the first expression produces infinity (because of overflow) but the sec-
ond expression produces a finite result.
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So, for example, the test program:
strictfp class Test {
public static void main(String[] args) {

double d = 8e+307;
System.out.printin(4.0 * d * 0.5);
System.out.println(2.0 * d);

}

prints:
Infinity
1.6e+308

because the first expression overflows and the second does not.

In contrast, integer addition and multiplication are provably associative in the
Java programming language.

For example a+b+c, where a, b, and c are local variables (this ssimplifying
assumption avoids issues involving multiple threads and volatile variables),
will aways produce the same answer whether evaluated as (a+b)+c or a+(b+c);
if the expression b+c occurs nearby in the code, a smart compiler may be able to
use this common subexpression.

15.7.4 Argument Lists are Evaluated L eft-to-Right

In amethod or constructor invocation or class instance creation expression, argu-
ment expressions may appear within the parentheses, separated by commas. Each
argument expression appearsto be fully evaluated before any part of any argument
expression to its right.
Thus:
class Test {
public static void main(String[] args) {
String s = "going, ";
print3(s, s, s = "gone");

static void print3(String a, String b, String c) {
System.out.printin(a + b + ¢);

}
}
aways prints:
going, going, gone
because the assignment of the string "gone" to s occurs after the first two argu-
ments to print3 have been evaluated.
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If evaluation of an argument expression completes abruptly, no part of any
argument expression to its right appears to have been eval uated.
Thus, the example:
class Test {
static int id;
public static void main(String[] args) {
try {
test(id = 1, oops(), id = 3);
} catch (Exception e) {
System.out.println(e + ", id=" + id);
}

}

static int oops() throws Exception {
throw new Exception("oops");
}

static int test(int a, int b, int c) {
return a + b + c;
}

}

prints:
java.Tlang.Exception: oops, id=1
because the assignment of 3 to id is not executed.

15.7.5 Evaluation Order for Other Expressions

The order of evaluation for some expressions is not completely covered by these
general rules, because these expressions may raise exceptiona conditions at times
that must be specified. See, specifically, the detailed explanations of evaluation
order for the following kinds of expressions:

* classinstance creation expressions (815.9.4)
* array creation expressions (815.10.1)

» method invocation expressions (§15.12.4)

* array access expressions (815.13.1)

* assignments involving array components (§15.26)
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15.8 Primary Expressions

Primary expressions include most of the simplest kinds of expressions, from
which all others are constructed: literals, class literals, field accesses, method
invocations, and array accesses. A parenthesized expression is also treated syntac-
tically as aprimary expression.

Primary:
PrimaryNoNewArray
ArrayCreationExpression

PrimaryNoNewArray:
Literal
Type. class
void . class
this
ClassName. this
( Expression )
ClasslnstanceCreationExpression
FieldAccess
Methodl nvocation
ArrayAccess

15.8.1 Lexical Literals

A literal (83.10) denotes a fixed, unchanging value.
The following production from 83.10 is repeated here for convenience:

Literal:
IntegerLiteral
FloatingPointLiteral
BooleanLiteral
CharacterLiteral
SringLiteral
NullLiteral

Thetype of aliteral is determined as follows:

» The type of an integer literal that ends with L or 1 is Tong; the type of any
other integer literal isint.

» Thetype of afloating-point literal that ends with F or f is float and its value
must be an element of the float value set (84.2.3). The type of any other float-
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ing-point literal is double and its value must be an element of the double
value set.

» Thetype of aboolean literal isboolean.
* Thetype of acharacter literal is char.
» Thetype of astring literal isString.

» Thetype of the null literal nu11 isthe null type; its value is the null reference.

Evaluation of alexical literal always completes normally.

15.8.2 ClassLiterals

A class literal is an expression consisting of the name of a class, interface, array,
or primitive type, or the pseudo-type void, followed by a‘.” and the token c1ass.
The type of a class literal, C.Class, where C is the name of a class, interface or
array type, isClass<G. If pisthe name of a primitive type, let B be the type of
an expression of type p after boxing conversion (85.1.7). Then the type of
p.classisClass<B>. Thetypeof void.class isClass<Void>.

A classliteral evaluatesto the Class object for the named type (or for void) as
defined by the defining class loader of the class of the current instance.

It isacompiletime error if any of the following occur:

» The named type is atype variable (84.4) or a parameterized type (84.5) or an
array whose element type is atype variable or parameterized type.

» The named type does not denote a type that is accessible (86.6) and in scope
(86.3) at the point where the class literal appears.

15.8.3 this

The keyword this may be used only in the body of an instance method, instance
initializer or constructor, or in theinitializer of an instance variable of aclass. If it
appears anywhere else, a compile-time error occurs.

When used as a primary expression, the keyword this denotes avauethat is
a reference to the object for which the instance method was invoked (815.12), or
to the object being constructed. The type of this isthe class C within which the
keyword this occurs. At run time, the class of the actual object referred to may
be the class C or any subclass of C.

15.8.3
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In the example:
class IntVector {
int[] v;
boolean equals(IntVector other) {
if (this == other)
return true;
if (v.length != other.v.length)
return false;
for (int i = 0; i < v.length; i++)
if (v[i] != other.v[i])
return false;
return true;

}
}

the class IntVector implements a method equals, which compares two vectors.
If the other vector is the same vector object as the one for which the equals
method was invoked, then the check can skip the length and value comparisons.
The equals method implements this check by comparing the reference to the
other object to this.

The keyword this is also used in a specia explicit constructor invocation
statement, which can appear at the beginning of a constructor body (88.8.7).

15.8.4 Qualified this

Any lexically enclosing instance can be referred to by explicitly qualifying the
keyword this.

Let C bethe class denoted by ClassName. Let n be an integer such that Cisthe
nth lexically enclosing class of the class in which the qualified this expression
appears. The value of an expression of the form ClassName.this is the nth lexi-
caly enclosing instance of this (88.1.3). The type of the expressionis C. Itisa
compile-time error if the current classis not an inner class of class C or Citself.

15.8.,5 Parenthesized Expressions

A parenthesized expression is a primary expression whose type is the type of the
contained expression and whose value at run time is the value of the contained
expression. If the contained expression denotes a variable then the parenthesized
expression also denotes that variable.

The use of parentheses only effects the order of evaluation, with one fascinat-
ing exception.
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DiscussIioN

Consider the case if the smallest possible negative value of type long. This value,
9223372036854775808L, is allowed only as an operand of the unary minus operator
(83.10.1). Therefore, enclosing it in parentheses, as in -(9223372036854775808L)
causes a compile time error.

In particular, the presence or absence of parentheses around an expression
does not (except for the case noted above) affect in any way:

« the choice of value set (84.2.3) for the value of an expression of type f1oat or
doubTe.

» whether a variable is definitely assigned, definitely assigned when true, defi-
nitely assigned when false, definitely unassigned, definitely unassigned when
true, or definitely unassigned when false (816).

15.9 ClassInstance Creation Expressions

A class instance creation expression is used to create new objects that are
instances of classes.

Classl nstanceCreationExpression:

new TypeArgumentsyye ClassOrInterfaceType (- ArgumentListoy )
ClassBodyqpt

Primary. new TypeArgumentsyy | dentifier TypeArgumentsgp; (
ArgumentListyy ) ClassBodyqp

ArgumentList:
Expression
ArgumentList , Expression

A classinstance creation expression specifies a class to be instantiated, possi-
bly followed by type arguments (if the class being instantiated is generic (88.1.2)),
followed by (a possibly empty) list of actual value arguments to the constructor. It
is also possible to pass explicit type arguments to the constructor itself (if it isa

15.9
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generic constructor (88.8.4)). The type arguments to the constructor immediately
follow the keyword new. It is a compile-time error if any of the type arguments
used in a class instance creation expression are wildcard type arguments (84.5.1).
Class instance creation expressions have two forms:

» Unqualified class instance creation expressions begin with the keyword new.
An ungualified class instance creation expression may be used to create an
instance of a class, regardless of whether the classis atop-level (8§7.6), mem-
ber (88.5, 89.5), local (814.3) or anonymous class (815.9.5).

* Qualified class instance creation expressions begin with a Primary. A quali-
fied class instance creation expression enables the creation of instances of
inner member classes and their anonymous subclasses.

A classinstance creation expression can throw an exception type E iff either:
» The expression is aqualified class instance creation expression and the quali-
fying expression can throw E; or

» Some expression of the argument list can throw E; or
» Eislisted in the throws clause of the type of the constructor that isinvoked; or

» The class instance creation expression includes a ClassBody, and some inst-
nance initializer block or instance variable initializer expression in the Class-
Body can throw E.

Both unqualified and qualified class instance creation expressions may
optionally end with a class body. Such a class instance creation expression
declares an anonymous class (815.9.5) and creates an instance of it.

We say that aclassisinstantiated when an instance of the classis created by a
class instance creation expression. Class instantiation involves determining what
classisto be instantiated, what the enclosing instances (if any) of the newly cre-
ated instance are, what constructor should be invoked to create the new instance
and what arguments should be passed to that constructor.

15.9.1 Determining the Class being I nstantiated

If the class instance creation expression ends in a class body, then the class being
instantiated is an anonymous class. Then:

« If the class instance creation expression is an ungualified class instance cre-
ation expression, then let T be the ClassOrInterfaceType after the new token. It
is a compile-time error if the class or interface named by T is not accessible
(86.6) or if T isan enum type (88.9). If T denotes a class, then an anonymous
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direct subclass of the class named by Tisdeclared. Itisacompile-timeerror if
the class denoted by Tisafinal class. If T denotes an interface then an anon-
ymous direct subclass of Object that implements the interface named by Tis
declared. In either case, the body of the subclassis the ClassBody given in the
class instance creation expression. The class being instantiated is the anony-
mous subclass.

» Otherwise, the class instance creation expression is a qualified class instance
creation expression. Let T be the name of the Identifier after the new token. It
is a compile-time error if T is not the simple name (86.2) of an accessible
(86.6) non-final inner class (88.1.3) that is a member of the compile-time
type of the Primary. It is also a compile-time error if Tisambiguous (88.5) or
if T denotes an enum type. An anonymous direct subclass of the class named
by Tisdeclared. The body of the subclass is the ClassBody given in the class
instance creation expression. The class being instantiated is the anonymous
subclass.

If a class instance creation expression does not declare an anonymous class,
then:

* If the class instance creation expression is an unqualified class instance cre-
ation expression, then the ClassOrlInterfaceType must denote a class that is
accessible (86.6) and is not an enum type and not abstract, or a compile-
time error occurs. In this case, the class being instantiated is the class denoted
by ClassOr|nterfaceType.

» Otherwise, the class instance creation expression is a qualified class instance
creation expression. It is a compile-time error if Identifier is not the smple
name (86.2) of an accessible (86.6) non-abstract inner class (88.1.3) T that
isamember of the compile-time type of the Primary. It is also acompile-time
error if Identifier is ambiguous (88.5), or if Identifier denotes an enum type
(88.9). The class being instantiated is the class denoted by Identifier.

The type of the class instance creation expression is the class type being
instantiated.

15.9.2 Determining Enclosing I nstances

Let C bethe class being instantiated, and let 7 the instance being created. If Cisan
inner class then i may have an immediately enclosing instance. The immediately
enclosing instance of 7 (88.1.3) is determined as follows:

425



15.9.2 Determining Enclosing Instances EXPRESSONS

* If Cisan anonymous class, then:

o If the class instance creation expression occurs in a static context (88.1.3),
then 7 has no immediately enclosing instance.

o Otherwise, theimmediately enclosing instance of 7 isthis.

» If Cisalocd class (814.3), then let 0 be the innermost lexically enclosing
class of C. Let n be an integer such that 0 isthe nth lexically enclosing class
of the class in which the class instance creation expression appears. Then:

o If Coccursin astatic context, then 7 has no immediately enclosing instance.

o Otherwise, if the class instance creation expression occurs in a static con-
text, then a compile-time error occurs.

o Otherwise, the immediately enclosing instance of 7 is the nth lexically
enclosing instance of this (88.1.3).

» Otherwise, Cisaninner member class (88.5).

o If the class instance creation expression is an unqualified class instance cre-
ation expression, then:

o If the class instance creation expression occurs in a static context, then a
compile-time error occurs.

o Otherwise, if Cisamember of an enclosing class then let 0 be the inner-
most lexically enclosing class of which C is a member, and let n be an
integer such that 0 isthe nth lexically enclosing class of the classin which
the classinstance creation expression appears. The immediately enclosing
instance of 7 isthe nth lexically enclosing instance of this.

o Otherwise, a compile-time error occurs.

o Otherwise, the class instance creation expression is a qualified class
instance creation expression. Theimmediately enclosing instance of 7 isthe
object that isthe value of the Primary expression.

In addition, if Cisan anonymous class, and the direct superclassof C, S, isan
inner class then 7 may have an immediately enclosing instance with respect to S
which is determined as follows:
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» If Sisaloca class (814.3), then let 0 be the innermost lexically enclosing
classof S. Let n be an integer such that 0 isthe nth lexically enclosing class
of the class in which the class instance creation expression appears. Then:

o If S occurs within a static context, then 7 has no immediately enclosing
instance with respect to S.

o Otherwise, if the class instance creation expression occurs in a static con-
text, then a compile-time error occurs.

o Otherwise, the immediately enclosing instance of 7 with respect to S isthe
nth lexically enclosing instance of this.

» Otherwise, Sisaninner member class (88.5).

o If the class instance creation expression is an unqualified class instance cre-
ation expression, then:

o If the class instance creation expression occurs in a static context, then a
compile-time error occurs.

o Otherwise, if Sisamember of an enclosing class then let 0 be the inner-
most lexically enclosing class of which S is a member, and let n be an
integer such that 0 isthe nth Iexically enclosing class of the classin which
the classinstance creation expression appears. The immediately enclosing
instance of 7 with respect to S is the nth lexically enclosing instance of
this.

o Otherwise, a compile-time error occurs.

o Otherwise, the class instance creation expression is a qualified class
instance creation expression. The immediately enclosing instance of 7 with
respect to S isthe object that is the value of the Primary expression.

15.9.3 Choosing the Constructor and its Arguments

Let C bethe classtype being instantiated. To create an instance of C, 7, a construc-
tor of Cischosen at compile-time by the following rules:

* Firgt, the actual arguments to the constructor invocation are determined.

o If Cis an anonymous class, and the direct superclass of C, S, is an inner
class, then:

o If the Sisalocal classand S occursin a static context, then the arguments
in the argument list, if any, are the arguments to the constructor, in the
order they appear in the expression.
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o Otherwise, the immediately enclosing instance of 7 with respect to S is
the first argument to the constructor, followed by the arguments in the
argument list of the class instance creation expression, if any, in the order
they appear in the expression.

o Otherwise the arguments in the argument list, if any, are the arguments to
the constructor, in the order they appear in the expression.

» Once the actual arguments have been determined, they are used to select a
constructor of C, using the same rules as for method invocations (815.12). As
in method invocations, a compile-time method matching error results if there
IS no unigque most-specific constructor that is both applicable and accessible.

Note that the type of the class instance creation expression may be an anony-
mous class type, in which case the constructor being invoked is an anonymous
constructor.

15.9.4 Run-time Evaluation of Class I nstance Creation Expressions

At run time, evaluation of a classinstance creation expression is as follows.

First, if the class instance creation expression is a qualified class instance cre-
ation expression, the qualifying primary expression is evaluated. If the qualifying
expression evaluates to nul1, aNul1PointerException is raised, and the class
instance creation expression completes abruptly. If the qualifying expression com-
pletes abruptly, the class instance creation expression completes abruptly for the
same reason.

Next, space is alocated for the new class instance. If there is insufficient
space to allocate the object, evaluation of the class instance creation expression
completes abruptly by throwing an OutOfMemoryError (815.9.6).

The new object contains new instances of all the fields declared in the speci-
fied class type and all its superclasses. As each new field instance is created, it is
initialized to its default value (84.12.5).

Next, the actual arguments to the constructor are evaluated, left-to-right. If
any of the argument evaluations completes abruptly, any argument expressions to
its right are not evaluated, and the class instance creation expression completes
abruptly for the same reason.

Next, the selected constructor of the specified class type is invoked. This
results in invoking at least one constructor for each superclass of the class type.
This process can be directed by explicit constructor invocation statements (§8.8)
and is described in detail in §12.5.
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The value of a class instance creation expression is a reference to the newly
created object of the specified class. Every time the expression is evaluated, a
fresh object is created.

15.9.5 Anonymous Class Declarations

An anonymous class declaration is automatically derived from a class instance
creation expression by the compiler.

An anonymous class is never abstract (88.1.1.1). An anonymous class is
always an inner class (88.1.3); it isnever static (88.1.1, §8.5.2). An anonymous
classisawaysimplicitly final (88.1.1.2).

15.9.5.1 Anonymous Constructors

An anonymous class cannot have an explicitly declared constructor. Instead, the
compiler must automatically provide an anonymous constructor for the anony-
mous class. The form of the anonymous constructor of an anonymous class C with
direct superclass S isasfollows:

» If Sisnotaninner class, or if S isalocal classthat occursin a static context,
then the anonymous constructor has one formal parameter for each actual
argument to the class instance creation expression in which Cis declared. The
actual arguments to the class instance creation expression are used to deter-
mine a congtructor cs of S, using the same rules as for method invocations
(815.12). The type of each forma parameter of the anonymous constructor
must be identical to the corresponding formal parameter of cs.

The body of the constructor consists of an explicit constructor invocation
(88.8.7.1) of the form super(...), where the actual arguments are the formal
parameters of the constructor, in the order they were declared.

e Otherwise, the first formal parameter of the constructor of C represents the
value of theimmediately enclosing instance of 7 with respect to S. The type of
this parameter is the class type that immediately encloses the declaration of S.
The constructor has an additional formal parameter for each actual argument
to the class instance creation expression that declared the anonymous class.
The nth formal parameter e corresponds to the n-1st actual argument. The
actual arguments to the class instance creation expression are used to deter-
mine a constructor cs of S, using the same rules as for method invocations
(815.12). The type of each formal parameter of the anonymous constructor
must be identical to the corresponding formal parameter of cs. The body of
the constructor consists of an explicit constructor invocation (88.8.7.1) of the
form o.super(...), where o isthe first formal parameter of the constructor, and
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the actual arguments are the subsequent formal parameters of the constructor,
in the order they were declared.

In al cases, the throws clause of an anonymous constructor must list all the
checked exceptions thrown by the explicit superclass constructor invocation state-
ment contained within the anonymous constructor, and all checked exceptions
thrown by any instance initializers or instance variable initializers of the anony-
mous class.

Note that it is possible for the signature of the anonymous constructor to refer
to aninaccessible type (for example, if such atype occurred in the signature of the
superclass constructor c¢s). Thisdoes not, in itself, cause any errors at either com-
pile timeor run time.

15.9.6 Example: Evaluation Order and Out-of-M emory Detection

If evaluation of a class instance creation expression finds there is insufficient
memory to perform the creation operation, then an OutOfMemoryError isthrown.
This check occurs before any argument expressions are eval uated.

So, for example, the test program:

class List {

int value;

List next;

static List head = new List(0);

List(int n) { value = n; next = head; head = this; }

}

class Test {
public static void main(String[] args) {
int id = 0, oldid = 0;
try {
for (535 {
++id;
new List(oldid = id);

}
} catch (Error e) {

System.out.println(e + ", " + (oldid==id));
}

}

prints:

java.lang.OutOfMemoryError: List, false
because the out-of-memory condition is detected before the argument expression
oldid = id isevaluated.
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Compare this to the treatment of array creation expressions (§15.10), for
which the out-of-memory condition is detected after evaluation of the dimension
expressions (815.10.3).

15.10 Array Creation Expressions

An array instance creation expression is used to create new arrays (810).

ArrayCreationExpression:
new PrimitiveType DimExprs Dimsyy
new ClassOrinterfaceType DimExprs Dimsyy
new PrimitiveType Dims Arraylnitializer
new ClassOrlInterfaceType Dims Arraylnitializer

DimExprs:
DimExpr
DimExprs DimExpr

DimExpr:
[ Expression ]

Dims:;
[]
Dims [ ]

An array creation expression creates an object that is a new array whose ele-
ments are of the type specified by the PrimitiveType or ClassOrInterfaceType. Itis
a compile-time error if the ClassOrInterfaceType does not denote a reifiable type
(84.7). Otherwise, the ClassOrlInterfaceType may name any named reference
type, even an abstract classtype (88.1.1.1) or an interface type (89).

DiscussioN

The rules above imply that the element type in an array creation expression cannot be a
parameterized type, other than an unbounded wildcard.

15.10
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Thetype of the creation expression is an array type that can denoted by a copy
of the creation expression from which the new keyword and every DimExpr
expression and array initializer have been deleted.

For example, the type of the creation expression:

new double[3][3][]
is.

double[][][]

The type of each dimension expression within a DimExpr must be a type that
is convertible (85.1.8) to an integral type, or a compile-time error occurs. Each
expression undergoes unary numeric promation (8). The promoted type must be
int, or a compile-time error occurs; this means, specifically, that the type of a
dimension expression must not be Tong.

If an array initializer is provided, the newly allocated array will be initialized
with the values provided by the array initializer as described in 810.6.

15.10.1 Run-time Evaluation of Array Creation Expressions

At runtime, evaluation of an array creation expression behaves as follows. If there
are no dimension expressions, then there must be an array initializer. The value of
the array initializer is the value of the array creation expression. Otherwise:

First, the dimension expressions are evaluated, left-to-right. If any of the
expression eval uations compl etes abruptly, the expressionsto the right of it are not
evaluated.

Next, the values of the dimension expressions are checked. If the value of any
DimExpr expression is less than zero, then an NegativeArraySizeException is
thrown.

Next, spaceis allocated for the new array. If thereisinsufficient space to allo-
cate the array, evaluation of the array creation expression completes abruptly by
throwing an QutOfMemoryError.

Then, if a single DimExpr appears, a single-dimensional array is created of
the specified length, and each component of the array is initialized to its default
value (84.12.5).

If an array creation expression contains N DimExpr expressions, then it effec-
tively executes a set of nested loops of depth N —1 to create the implied arrays of
arrays.

For example, the declaration:

float[][] matrix = new float[3][3];
is equivalent in behavior to:

float[][] matrix = new float[3][];

for (int d = 0; d < matrix.length; d++)

matrix[d] = new float[3];
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and:

Age[][1[1[1[] Aquarius
is equivalent to:
Age[T[1[1[1[] Aquarius = new Age[6][1[1[]1[];
for (int d1 = 0; dl < Aquarius.length; di++) {
Aquarius[d1l] = new Age[10]1[]1[]1[];
for (int d2 = 0; d2 < Aquarius[dl].length; d2++) {
Aquarius[d1][d2] = new Age[8][][];
for (int d3 = 0; d3 < Aquarius[d1][d2].length; d3++) {
Aquarius[d1][d2][d3] = new Age[12][];
}

new Age[6][10][8][12]1[];

}
}

with d, d1, d2 and d3 replaced by names that are not already locally declared.
Thus, a single new expression actually creates one array of length 6, 6 arrays of
length 10, 6 x 10 = 60 arrays of length 8, and 6 x 10 x 8 = 480 arrays of length
12. This example leaves the fifth dimension, which would be arrays containing the
actual array elements (references to Age objects), initialized only to null refer-
ences. These arrays can befilled in later by other code, such as:

Age[] Hair = { new Age("quartz"), new Age("topaz") };

Aquarius[1][9]1[6]1[9] = Hair;

A multidimensional array need not have arrays of the same length at each
level.
Thus, atriangular matrix may be created by:
float triang[][] = new float[100][];
for (int i = 0; i < triang.length; i++)
triang[i] = new float[i+1];

15.10.2 Example: Array Creation Evaluation Order

In an array creation expression (815.10), there may be one or more dimension
expressions, each within brackets. Each dimension expression is fully evaluated
before any part of any dimension expression to itsright.
Thus:
class Test {
public static void main(String[] args) {
int i = 4;
int ial[][] = new int[i][i=3];
System.out.printin(
"[" + ia.length + "," + ia[@].length + "]");
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prints:

[4,3]
because the first dimension is calculated as 4 before the second dimension expres-
sion sets i to 3.

If evaluation of a dimension expression completes abruptly, no part of any
dimension expression to its right will appear to have been evaluated. Thus, the
example:

class Test {

public static void main(String[] args) {
int[]J[] a={ { 00, o1 }, { 10, 11 } };
int i = 99;
try {
afvalQl[i = 1]++;
} catch (Exception e) {
System.out.printin(e + ", i=" + 1i);
}

}

static int val() throws Exception {
throw new Exception("unimplemented");
}

}

prints:
java.lang.Exception: unimplemented, i=99
because the embedded assignment that sets i to 1 is never executed.

15.10.3 Example: Array Creation and Out-of-M emory Detection

If evaluation of an array creation expression finds there is insufficient memory to
perform the creation operation, then an OutOfMemoryError isthrown. This check
occurs only after evaluation of all dimension expressions has completed normally.
So, for example, the test program:
class Test {
public static void main(String[] args) {
int Ten = 0, oldlen = 0;
Object[] a = new Object[0];
try {
for (535) {
++len;
Object[] temp = new Object[oldlen = Ten];
temp[0] = a;
a = temp;
}
} catch (Error e) {
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System.out.println(e + ", " + (oldlen==1en));
}
}

}
prints:

java.Tlang.OutOfMemoryError, true
because the out-of-memory condition is detected after the dimension expression
oldlen = len isevauated.

Compare this to class instance creation expressions (815.9), which detect the
out-of-memory condition before eval uating argument expressions (815.9.6).

15.11 Field Access Expressions

A field access expression may access a field of an object or array, a reference to
which isthe value of either an expression or the special keyword super. (It isalso
possibleto refer to afield of the current instance or current class by using asimple
name; see 86.5.6.)

FieldAccess:
Primary . ldentifier
super . ldentifier
ClassName .super . ldentifier

The meaning of afield access expression is determined using the same rules
as for qualified names (86.6), but limited by the fact that an expression cannot
denote a package, class type, or interface type.

15.11.1 Field AccessUsing a Primary

The type of the Primary must be a reference type 7, or a compile-time error
occurs. The meaning of the field access expression is determined as follows:

« If the identifier names several accessible member fields of type T, then the
field access is ambiguous and a compile-time error occurs.

« If the identifier does not name an accessible member field of type T, then the
field accessis undefined and a compile-time error occurs.

» Otherwise, the identifier names a single accessible member field of type T and
the type of the field access expression is the type of the member field after
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capture conversion (85.1.10). At run time, the result of the field access expres-
sion is computed as follows:

o If thefiddisstatic:

o The Primary expression is evaluated, and the result is discarded. If evalu-
ation of the Primary expression completes abruptly, the field access
expression completes abruptly for the same reason.

o If thefield is final, then the result is the value of the specified class vari-
able in the class or interface that is the type of the Primary expression.

o If thefieldisnot final, then the result isavariable, namely, the specified
classvariablein the class that is the type of the Primary expression.

o If thefieldisnot static:

o The Primary expression is evaluated. If evaluation of the Primary expres-
sion completes abruptly, the field access expression completes abruptly
for the same reason.

o If the value of the Primary is nul11, then a Nul1PointerException is
thrown.

o If the field is final, then the result is the value of the specified instance
variable in the object referenced by the value of the Primary.

o If thefieldisnot final, then the result isavariable, namely, the specified
instance variable in the object referenced by the value of the Primary.

Note, specifically, that only the type of the Primary expression, not the class of the
actual object referred to at run time, is used in determining which field to use.
Thus, the example:

class S { int x = 0; }
class T extends S { int x = 1; }
class Test {

public static void main(String[] args) {
Tt=new TQ;

System.out.printin("t.x=" + t.x + when("t", t));

S s = new SQ;
System.out.printin("s.x=" + s.x + when("s", s));
s = t;

System.out.printin("s.x=" + s.x + when("s", s));
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static String when(String name, Object t) {

return " when " + name + " holds a "
+ t.getClass() + " at run time.";

}

produces the output:
t.x=1 when t holds a class T at run time.

s.x=0 when s holds a class S at run time.
s.Xx=0 when s holds a class T at run time.

The last line shows that, indeed, the field that is accessed does not depend on the
run-time class of the referenced object; even if s holds a reference to an object of
class T, the expression s . x refers to the x field of class S, because the type of the
expression s is S. Objects of class T contain two fields named x, one for class T
and onefor its superclass S.

Thislack of dynamic lookup for field accesses allows programs to be run effi-
ciently with straightforward implementations. The power of |ate binding and over-
riding is available, but only when instance methods are used. Consider the same
example using instance methods to access the fields:

class S { int x = 0; int z() { return x; } }

class T extends S { int x = 1; int z() { return x; } }

class Test {
public static void main(String[] args) {

Tt=new TQO;
System.out.println("t.zQOQ=" + t.z() + when("t", t));
S s = new SQ;
System.out.printin("s.z(Q)=
s =1,
System.out.printin("s.zQ=" + s.z() + when("s", s));

+ 5.z + when("s", s));

}

static String when(String name, Object t) {

return " when " + name + " holds a "
+ t.getClass() + " at run time.";

}

Now the output is:

t.z()=1 when t holds a class T at run time.

s.z()=0 when s holds a class S at run time.

s.z()=1 when s holds a class T at run time.
The last line shows that, indeed, the method that is accessed does depend on the
run-time class of referenced object; when s holds areference to an object of class
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T, the expression s .z () refersto the z method of class T, despite the fact that the
type of the expression s is S. Method z of class T overrides method z of classS.
The following example demonstrates that a null reference may be used to
access aclass (static) variable without causing an exception:
class Test {

static String mountain = "Chocorua";
static Test favorite(){

System.out.print("Mount ");
return null;

}

pubTlic static void main(String[] args) {
System.out.printin(favorite() .mountain);

}

}

It compiles, executes, and prints:

Mount Chocorua

Even though the result of favorite() isnull, aNullPointerExceptionis
not thrown. That “Mount ” is printed demonstrates that the Primary expression is
indeed fully evaluated at run time, despite the fact that only its type, not its value,
isused to determine which field to access (because the field mountain isstatic).

15.11.2 Accessing Superclass M embersusing super

The special forms using the keyword super are valid only in an instance method,
instance initializer or constructor, or in the initializer of an instance variable of a
class; these are exactly the same situations in which the keyword this may be
used (815.8.3). Theformsinvolving super may not be used anywhere in the class
Object, since Object has no superclass; if super appearsin classObject, thena
compile-time error results.

Suppose that a field access expression super. name appears within class C,
and the immediate superclass of Cisclass S. Then super. name istreated exactly
as if it had been the expression ((S)this).name; thus, it refers to the field
named name of the current object, but with the current object viewed as an
instance of the superclass. Thus it can access the field named name that is visible
in class S, even if that field is hidden by a declaration of a field named name in
classC.

The use of super isdemonstrated by the following example:

interface I { int x = 0; }

class T1 implements I { int x

class T2 extends T1 { 1int x
class T3 extends T2 {

=1; }
2; }
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int x = 3;

void test() {
System.out.printIn("x=\t\t"+x);
System.out.printIn("super.x=\t\t"+super.x);
System.out.printIn("((T2)this) .x=\t"+((T2)this).x);
System.out.println(" ((T1)this).x=\t"+((T1)this).x);
System.out.printIn("((I)this).x=\t"+((I)this).x);

}

class Test {

public static void main(String[] args) {
new T3().test();
3

which produces the output:

X= 3
super.x= 2
((M2)this) .x=2
((ML)this).x=1
((Dthis).x=0

Within class T3, the expression super. x istreated exactly asif it were:

((T2)this).x

Suppose that afield access expression T.super. name appearswithin class C,
and the immediate superclass of the class denoted by T isaclass whose fully qual-
ified name is S. Then T.super.name is treated exactly as if it had been the
expression ((S)T.this).name.

Thus the expression T.super. name can access the field named name that is
visible in the class named by S, even if that field is hidden by a declaration of a
field named name in the class named by T.

It isacompile-time error if the current classis not an inner class of class T or
Titself.
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15.12 Method Invocation Expressions

A method invocation expression is used to invoke a class or instance method.

Methodlnvocation:
MethodName ( ArgumentListqy )
Primary . NonWIdTypeArgumentsyy Identifier (- ArgumentListop )
super . NonWIdTypeArgumentsyy Identifier (- ArgumentListoy )
ClassName . super . NonWIdTypeArgumentsyp Identifier (
ArgumentListop )
TypeName . NonWIdTypeArguments Identifier ( ArgumentListoy )

The definition of ArgumentList from 815.9 is repeated here for convenience:

ArgumentList:
Expression
ArgumentList , Expression

Resolving a method name at compile time is more complicated than resolving
afield name because of the possibility of method overloading. Invoking a method
at run time is al'so more complicated than accessing afield because of the possibil-
ity of instance method overriding.

Determining the method that will be invoked by a method invocation expres-
sion involves severa steps. The following three sections describe the compile-
time processing of a method invocation; the determination of the type of the
method invocation expression is described in §15.12.3.

15.12.1 Compile-Time Step 1: Determine Classor Interfaceto Search

The first step in processing a method invocation at compile time is to figure out
the name of the method to be invoked and which class or interface to check for
definitions of methods of that name. There are several cases to consider, depend-
ing on the form that precedes the left parenthesis, as follows:

« If the form is MethodName, then there are three subcases;

o If itisasimple name, that is, just an Identifier, then the name of the method
isthe Identifier. If the Identifier appears within the scope (86.3) of avisible
method declaration with that name, then there must be an enclosing type
declaration of which that method is a member. Let T be the innermost such
type declaration. The class or interface to search is T.

o If itisaqualified name of the form TypeName . Identifier, then the name of
the method is the Identifier and the class to search is the one named by the
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TypeName. If TypeName is the name of an interface rather than aclass, then
a compile-time error occurs, because this form can invoke only static
methods and interfaces have no static methods.

o In al other cases, the qualified name has the form FieldName . Identifier;
then the name of the method is the Identifier and the class or interface to
search is the declared type T of the field named by the FieldName, if Tisa
class or interface type, or the upper bound of Tif Tisatype variable.

If the form is Primary. NonWidTypeArgumentsyy; I dentifier, then the name of
the method is the Identifier. Let T be the type of the Primary expression; then
the class or interface to be searched is T if Tisaclass or interface type, or the
upper bound of Tif Tisatype variable.

If the form is super. NonWIdTypeArgumentsyy I dentifier, then the name of
the method isthe Identifier and the class to be searched is the superclass of the
class whose declaration contains the method invocation. Let T be the type dec-
laration immediately enclosing the method invocation. It is a compile-time
error if any of the following situations occur:

o TistheclassObject.
o Tisaninterface.

If the form is ClassName. super. NonWIdTypeArgumentsy,; Identifier, then
the name of the method is the Identifier and the class to be searched is the
superclass of the class € denoted by ClassName. It is acompile-time error if C
isnot alexically enclosing class of the current class. It is acompile-time error
if Cisthe classObject. Let T be the type declaration immediately enclosing
the method invocation. It isa compile-time error if any of the following situa-
tions occur:

o TistheclassObject.
o Tisaninterface.

If the form is TypeName. NonWIdTypeArguments I dentifier, then the name of
the method is the Identifier and the class to be searched is the class € denoted
by TypeName. If TypeName is the name of an interface rather than a class,
then a compile-time error occurs, because this form can invoke only static
methods and interfaces have no static methods.

Compile-Time Sep 1: Determine Class or Interfaceto Search 15.12.1
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15.12.2 Compile-Time Step 2: Determine Method Signature

The second step searches the type determined in the previous step for member
methods. This step uses the name of the method and the types of the argument
expressions to locate methods that are both accessible and applicable, that is, dec-
larations that can be correctly invoked on the given arguments. There may be
more than one such method, in which case the most specific one is chosen. The
descriptor (signature plus return type) of the most specific method is one used at
run time to perform the method dispatch.

A method is applicable if it is either applicable by subtyping (815.12.2.2),
applicable by method invocation conversion (815.12.2.3), or it is an applicable
variable arity method (8§15.12.2.4).

The process of determining applicability begins by determining the poten-
tially applicable methods (815.12.2.1). The remainder of the process is split into
three phases.

DiscussIoN

The purpose of the division into phases is to ensure compatibility with older versions of the
Java programming language.

The first phase (815.12.2.2) performs overload resolution without permitting
boxing or unboxing conversion, or the use of variable arity method invocation. If
no applicable method is found during this phase then processing continues to the
second phase.

DiscussIioN

This guarantees that any calls that were valid in older versions of the language are not con-
sidered ambiguous as a result of the introduction of variable arity methods, implicit boxing
and/or unboxing.
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The second phase (815.12.2.3) performs overload resolution while allowing
boxing and unboxing, but still precludes the use of variable arity method invoca-
tion. If no applicable method is found during this phase then processing continues
to the third phase.

DiscussionN

This ensures that a variable arity method is never invoked if an applicable fixed arity
method exists.

The third phase (§15.12.2.4) allows overloading to be combined with variable
arity methods, boxing and unboxing.

Deciding whether a method is applicable will, in the case of generic methods
(88.4.4), require that actual type arguments be determined. Actual type arguments
may be passed explicitly or implicitly. If they are passed implicitly, they must be
inferred (815.12.2.7) from the types of the argument expressions.

If severa applicable methods have been identified during one of the three
phases of applicability testing, then the most specific oneis chosen, as specified in
section 815.12.2.5. See the following subsections for details.

15.12.2.1 Identify Potentially Applicable Methods

A member method is potentially applicable to a method invocation if and only if
al of the following are true:

* The name of the member isidentical to the name of the method in the method
invocation.

» The member is accessible (86.6) to the class or interface in which the method
invocation appears.

» The arity of the member is lesser or equal to the arity of the method invoca-
tion.

* If the member is a variable arity method with arity n, the arity of the method
invocation is greater or equal to n-1.

« If the member is a fixed arity method with arity n, the arity of the method
invocation is equal to n.



15.12.2 Compile-Time Step 2: Determine Method Signature EXPRESSONS

« If the method invocation includes explicit type parameters, and the member is
a generic method, then the number of actual type parameters is equal to the
number of formal type parameters.

DiscussIoN

The clause above implies that a non-generic method may be potentially applicable to an
invocation that supplies explicit type parameters. Indeed, it may turn out to be applicable. In
such a case, the type parameters will simply be ignored.

This rule stems from issues of compatibility and principles of substitutability. Since
interfaces or superclasses may be generified independently of their subtypes, we may
override a generic method with a non-generic one. However, the overriding (non-generic)
method must be applicable to calls to the generic method, including calls that explicitly
pass type parameters. Otherwise the subtype would not be substitutable for its generified
supertype.

Whether a member method is accessible at a method invocation depends on
the access modifier (pub1ic, none, protected, or private) in the member’'s
declaration and on where the method invocation appears.

The class or interface determined by compile-time step 1 (815.12.1) is
searched for all member methods that are potentially applicable to this method
invocation; members inherited from superclasses and superinterfaces are included
in this search.

In addition, if the method invocation has, before the left parenthesis, a Meth-
odName of the form Identifier, then the search process also examines all methods
that are (a) imported by single-static-import declarations (87.5.3) and static-
import-on-demand declarations (§7.5.4) within the compilation unit (87.3) within
which the method invocation occurs, and (b) not shadowed (86.3.1) at the place
where the method invocation appears.

I the search does not yield at least one method that is potentially applicable,
then a compile-time error occurs.
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15.12.2.2 Phase 1: Identify Matching Arity Methods Applicable by Subtyping

Let m be apotentially applicable method (815.12.2.1), let e7, ..., epbethe
actual argument expressions of the method invocation and let A; be the type of
eij, 1<i<n . Then:

 If misageneric method, thenlet F; ... F,bethetypesof theformal param-
etersof mandlet R; ... Rp p=1, betheformal type parametersof m, and let
B7 be the declared bound of R7, 1<1<p. Then:

o If the method invocation does not provide explicit type arguments then let
Up ... Upbetheactua type argumentsinferred (815.12.2.7) for thisinvo-
cation of m, using a set of initial constraints consisting of the constraints A;
<< F; for each actual argument expression e; whose type is a reference

type, 1<i<n.

o Otherwiselet Uz ... Upbetheexplicit type arguments given in the method
invocation.

Thenlet S; = Fi[R; = U1, ..., Rp = Up] 1<i<n, bethetypesinferred

for of the formal parameters of m.
* Otherwise, let S; ... S, bethetypesof theformal parameters of m.
The method m is applicable by subtyping if and only if both of the following
conditions hold:
» For 1<i<n, either:
o Ajisasubtype (84.10) of S; (A7 <: Sj)or
o Aj isconvertible to some type C; by unchecked conversion (85.1.9), and C;
<: 55.
 If misageneric method as described abovethen U7 <: Bj[R; = U7, ...,

If no method applicable by subtyping isfound, the search for applicable meth-
ods continues with phase 2 (815.12.2.3). Otherwise, the most specific method
(815.12.2.5) is chosen among the methods that are applicable by subtyping.
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15.12.2.3 Phase 2: Identify Matching Arity Methods Applicable by Method
Invocation Conversion

Let m be apotentialy applicable method (815.12.2.1), let e7, ..., enbethe
actual argument expressions of the method invocation and let A; be the type of
ej, 1<i<n. Then:

 If misageneric method, thenlet F; ... F,bethetypesof theformal param-
etersof m, andlet R; ... Rp p=1, betheformal type parameters of m, and
let B7 bethe declared bound of R7, 1<I<p. Then:

o If the method invocation does not provide explicit type arguments then let
Up ... Upbetheactua type argumentsinferred (815.12.2.7) for thisinvo-
cation of m, using a set of initial constraints consisting of the constraints A;
<< Fj, 1<i<n.

o Otherwiselet Uz ... Upbetheexplicit type arguments given in the method
invocation.

ThenletS; = Fi[R1 = U1, ..., Rp = Up] 1<i<n, bethetypesinferred
for the formal parameters of m.
» Otherwise, let S; ... S, bethetypesof theformal parameters of m.

The method m is applicable by method invocation conversion if and only if
both of the following conditions hold:

» For 1<i<n,thetypeof e;, A4, canbe converted by method invocation con-
version (85.3) to S;.

 If misageneric method as described abovethen U7 <: Bj[R; = U1, ...,

If no method applicable by method invocation conversion is found, the search
for applicable methods continues with phase 3 (815.12.2.4). Otherwise, the most
specific method (815.12.2.5) is chosen among the methods that are applicable by
method invocation conversion.

15.12.2.4 Phase 3: Identify Applicable Variable Arity Methods

Let m be a potentialy applicable method (815.12.2.1) with variable arity, let
e1, ..., ekbetheactua argument expressions of the method invocation and let
A; bethetypeof e, 1<i<k. Then:

» If misageneric method, thenlet F; ... Fp, where 1<n<k+1, bethetypes
of the formal parameters of m, where F,, = T[] for sometype T, and let R;
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. Rp p=1, be the formal type parameters of m, and let B7 be the declared
bound of R7,1<1<p . Then:

o If the method invocation does not provide explicit type arguments then let
Up ... Upbetheactua type argumentsinferred (815.12.2.7) for thisinvo-
cation of m, using a set of initial constraints consisting of the constraints A;
<< Fj, 1<i<n andtheconstraints Aj << T, n<j<k.

o Otherwise let U; ... U, be the explicit type arguments given in the
method invocation.
Thenlet S; = Fi[R1 = U1, ..., Rp = Up] 1<i<n, bethetypesinferred
for the formal parameters of m.
* Otherwise, let S; ... Sp, where n<k+ 1, bethe types of the formal parame-
tersof m.

The method mis an applicable variable-arity method if and only if all three of
the following conditions hold:

» For 1<i<n, thetypeof e, A, can be converted by method invocation con-
versionto S;.

e If k=n, then for n<i<k, the type of e;, Aj, can be converted by method
invocation conversion to the component type of S;,.

* If misageneric method as described abovethen U7 <: Bij[R; = U7, ...,

If no applicable variable arity method is found, a compile-time error occurs.
Otherwise, the most specific method (815.12.2.5) is chosen among the applicable
variable-arity methods.

15.12.2.5 Choosing the Most Specific Method

If more than one member method is both accessible and applicable to a method
invocation, it is necessary to choose one to provide the descriptor for the run-time
method dispatch. The Java programming language uses the rule that the most spe-
cific method is chosen.

The informal intuition is that one method is more specific than another if any
invocation handled by the first method could be passed on to the other one without
a compile-time type error.
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One fixed-arity member method named m is more specific than another mem-

ber method of the same name and arity if al of the following conditions hold:

» The declared types of the parameters of the first member method are 77, . .

- s Tn -
The declared types of the parameters of the other method are Uy,
, Up.

If the second method is generic then let R; ... Rp p=1, beitsformal type
parameters, let B7 be the declared bound of R7, 1<lI<p,letA; ... Apbethe
actual type arguments inferred (815.12.2.7) for this invocation under the ini-
tial constraints 7 << U4, 1<is<n andletS; = Uj[R; = A1, ..., Rp =
Apl 1<i<n;otherwiselet S; = U; 1<i<n.

Foral j fromiton, Tj <: Sj.
If the second method is a generic method as described above then A7 <:
B][R1=A1, sy Rp=Ap], lslsp

In addition, one variable arity member method named m is more specific than

another variable arity member method of the same nameif either:
* One member method has n parameters and the other has k parameters, where

n>k. The types of the parameters of the first member method are 77, .
, Tn-1 , Tnll, thetypes of the parameters of the other method are U7,

» Uk-1, Uk[]. If the second method is generic then let R7 ... Rp
p=1, be its forma type parameters, let B; be the declared bound of Ry,
1<l<p,letA; ... Apbetheactua type argumentsinferred (815.12.2.7) for
thisinvocation under theinitial constraints T; << U, 1<i<sk-1, T << Uk,
ksisnandletS; = Uj[R; = A7, ..., Rp = Ap] 1<isk; otherwiselet S;
= Ui, 1<i<k.Then:

o foral jfromitok-1 , 75 <: Sy, and,
o foral j fromkton , Tj <: Sk, and,

o If the second method is a generic method as described above then A7 <:
Bi[R1 = A1, ..., Rp = Ap], 1<l<p.

One member method has k parameters and the other has n parameters, where
n>k. The types of the parameters of the first method are U7, . . . , Uk-
1, Uk[], the types of the parameters of the other method are 77, . . .,
Th-1 » Tpl]. If the second method is genericthenlet R; ... Rp p=1, be
itsformal type parameters, let B7 be the declared bound of R7, 1<1<p ,let A7

. Ap bethe actual type arguments inferred (815.12.2.7) for this invocation
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under theinitial constraints U; << T4, 1<i<k-1, Uy << Tj,k<i<n andlet
Si = Ti[R1 = A1, ..., Rp = Ap] 1<is<n; otherwiselet S; = T;,
1<i<n. Then:

o foral jfromito k-1, Uj; <: S5, and,
o foral jfromkton , Uy <: Sy, and,

o If the second method is a generic method as described above then A7 <:
B][R1=A1, “auy Rp=ApJ, 1S|Sp

The above conditions are the only circumstances under which one method
may be more specific than another.

A method my is strictly more specific than another method my if and only if my
is more specific than my and my is not more specific than my.

A method is said to be maximally specific for a method invocation if it is
accessible and applicable and there is no other method that is applicable and
accessible that is strictly more specific.

If there is exactly one maximally specific method, then that method isin fact
the most specific method; it is necessarily more specific than any other accessible
method that is applicable. It isthen subjected to some further compile-time checks
as described in 815.12.3.

It is possible that no method is the most specific, because there are two or
more methods that are maximally specific. In this case:

« If al the maximally specific methods have override-equivalent (88.4.2) signa-
tures, then:

o If exactly one of the maximally specific methods is not declared abstract,
it isthe most specific method.

o Otherwise, if al the maximally specific methods are declared abstract,
and the signatures of all of the maximally specific methods have the same
erasure (84.6), then the most specific method is chosen arbitrarily among
the subset of the maximally specific methods that have the most specific
return type. However, the most specific method is considered to throw a
checked exception if and only if that exception or its erasure is declared in
the throws clauses of each of the maximally specific methods.

» Otherwise, we say that the method invocation is ambiguous, and a compile-
time error occurs.
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15.12.2.6 Method Result and Throws Types

The result type of the chosen method is determined as follows:

o If the method being invoked is declared with areturn type of void, then the
result isvoid.

o Otherwise, if unchecked conversion was necessary for the method to be
applicable then the result type is the erasure (84.6) of the method's declared
return type.

o Otherwise, if the method being invoked is generic, then for 1<i<n, let F;
be the formal type parameters of the method, let A; be the actual type argu-
ments inferred for the method invocation, and let R be the declared return
type of the method being invoked. The result type is obtained by applying
capture conversion (85.1.10) toR[F7 := A1, ..., Fp = AL].

o Otherwise, the result type is obtained by applying capture conversion
(85.1.10) to the type given in the method declaration.

The exception types of the throws clause of the chosen method are determined as
follows:

If unchecked conversion was necessary for the method to be applicable then
the throws clause is composed of the erasure (84.6) of the types in the
method’s declared throws clause.

Otherwise, if the method being invoked is generic, then for 1<i<n, let F; be
the formal type parameters of the method, let A; be the actual type arguments
inferred for the method invocation, and let Ej, 1<)sm be the exception
types declared in the throws clause of the method being invoked. The throws
clause consists of thetypesto Ej[F; := A1, ..., Fp i= Ap].

Otherwise, the type of the throws clause isthe type given in the method decla-
ration.

A method invocation expression can throw an exception type E iff either:
The method to be invoked is of the form Primary.ldentifier and the Primary
expression can throw E; or

Some expression of the argument list can throw E; or
Eislisted in the throws clause of the type of method that isinvoked.
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15.12.2.7 Inferring Type Arguments Based on Actual Arguments

In this section, we describe the process of inferring type arguments for method
and constructor invocations. This process is invoked as a subroutine when testing
for method (or constructor) applicability (§815.12.2.2 - §15.12.2.4).

DiscussioN

The process of type inference is inherently complex. Therefore, it is useful to give an infor-
mal overview of the process before delving into the detailed specification.

Inference begins with an initial set of constraints. Generally, the constraints require that
the statically known types of the actual arguments are acceptable given the declared formal
argument types. We discuss the meaning of “acceptable” below.

Given these initial constraints, one may derive a set of supertype and/or equality con-
straints on the formal type parameters of the method or constructor.

Next, one must try and find a solution that satisfies the constraints on the type param-
eters. As a first approximation, if a type parameter is constrained by an equality constraint,
then that constraint gives its solution. Bear in mind that the constraint may equate one type
parameter with another, and only when the entire set of constraints on all type variables is
resolved will we have a solution.

A supertype constraint T :> X implies that the solution is one of supertypes of X. Given
several such constraints on T, we can intersect the sets of supertypes implied by each of
the constraints, since the type parameter must be a member of all of them. We can then
choose the most specific type that is in the intersection.

Computing the intersection is more complicated than one might first realize. Given that
a type parameter is constrained to be a supertype of two distinct invocations of a generic
type, say List<Object> and List<String>, the naive intersection operation might yield
Object. However, a more sophisticated analysis yields a set containing List<?>. Simi-
larly, if a type parameter, T, is constrained to be a supertype of two unrelated interfaces I
and J, we might infer T must be Object, or we might obtain a tighter bound of I & J.
These issues are discussed in more detail later in this section.

We will use the following notational conventionsin this section:

» Type expressions are represented using the letters A, F, U, V and W. The letter
Aisonly used to denote the type of an actual parameter, and F is only used to
denote the type of aformal parameter.

» Type parameters are represented using the letters Sand T
« Arguments to parameterized types are represented using the letters X, .

» Generic type declarations are represented using the letters G and H.
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Inference begins with a set of initial constraints of theform A<< F, A= F, or
A>> F, where U << V indicates that type U is convertible to type V by method
invocation conversion (85.3), and U >> V indicates that type V is convertible to
type U by method invocation conversion.

DiscussionN

In a simpler world, the constraints could be of the form A <: F - simply requiring that the
actual argument types be subtypes of the formal ones. However, reality is more involved.
As discussed earlier, method applicability testing consists of up to three phases; this is
required for compatibility reasons. Each phase imposes slightly different constraints. If a
method is applicable by subtyping (8§15.12.2.2), the constraints are indeed subtyping con-
straints. If a method is applicable by method invocation conversion (§15.12.2.3), the con-
straints imply that the actual type is convertible to the formal type by method invocation
conversion. The situation is similar for the third phase (815.12.2.4), but the exact form of
the constraints differ due to the variable arity.

These constraints are then reduced to a set of simpler constraints of the forms
T:> X, T=XorT<: X, where T isatype parameter of the method. Thisreduction
is achieved by the procedure given below:

DiscussioN

It may be that the initial constraints are unsatisfiable; we say that inference is overcon-
strained. In that case, we do not necessarily derive unsatisfiable constraints on the type
parameters. Instead, we may infer actual type arguments for the invocation, but once we
substitute the actual type arguments for the formal type parameters, the applicability test
may fail because the actual argument types are not acceptable given the substituted for-
mals.

An alternative strategy would be to have type inference itself fail in such cases. Com-
pilers may choose to do so, provided the effect is equivalent to that specified here.

Given aconstraint of theformA<< F, A= F or A>> F;
* If F does not involve atype parameter T then no constraint isimplied on T;.

* Otherwise, F involves atype parameter T;.
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o If Aisthetypeof nul1, no constraint isimplied on Tj.
o Otherwisg, if the constraint has the form A <<F

o If Aisaprimitive type, then A is converted to areference type U via box-
ing conversion and this algorithm is applied recursively to the constraint
U<< F

o Otherwise, if F = Tj, then the constraint T :> Aisimplied.

o If F= U[], where the type U involves Tj, then if Aisan array type V], or
atype variable with an upper bound that is an array type V[], whereVisa
reference type, this algorithm is applied recursively to the constraint V
<<U.

DiscussioN

This follows from the covariant subtype relation among array types. The constraint A << F,
in this case means that A << U[]. A is therefore necessarily an array type V[], or a type vari-
able whose upper bound is an array type V[] - otherwise the relation A << U[] could never
hold true. It follows that V[] << UJ[]. Since array subtyping is covariant, it must be the case
that V << U.

o If F has the form G<..., Y1, U, Yk+1, -.=>, 1<k<n where U is atype
expression that involves Tj, then if A has a supertype of the form G<...,
Xk-1, Vi Xk+1, ---> Where V is a type expression, this algorithm is applied
recursively to the constraint V = U.

DiscussioN

For simplicity, assume that G takes a single type argument. If the method invocation being
examined is to be applicable, it must be the case that A is a subtype of some invocation of
G. Otherwise, A << F would never be true.

In other words, A << F, where F = G<U>, implies that A << G<V> for some V. Now,
since U is a type expression (and therefore, U is not a wildcard type argument), it must be
the case that U =V, by the non-variance of ordinary parameterized type invocations.

The formulation above merely generalizes this reasoning to generics with an arbitrary
number of type arguments.
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o If Fhastheform G<..., Y|.1, ? estends U, Yi41, ...>, where U involvesTj,
then if A has a supertype that is one of:

o G<...,, Xe-1, V, X4 1, -..>, Where V is a type expression. Then this algo-
rithm is applied recursively to the constraint V << U.

DiscussioN

Again, let's keep things as simple as possible, and consider only the case where G has a
single type argument.

A <<F in this case means A << G<? extends U>. As above, it must be the case that A
is a subtype of some invocation of G. However, A may now be a subtype of either G<V>, or
G<? extends V>, or G<? super V>. We examine these cases in turn. The first variation is
described (generalized to multiple arguments) by the sub-bullet directly above. We there-
fore have A = G<V> << G<? extends U>. The rules of subtyping for wildcards imply that V
<< U.

o G<...,, X1, ? extends V, Xi+1, ...>. Then this algorithm is applied recur-
sively to the constraint V << U.

DiscussioN

Extending the analysis above, we have A = G<? extends V> << G<? extends U>. The
rules of subtyping for wildcards again imply that V << U.

o Otherwise, no constraint isimplied on T;.

DiscussioN

Here, we have A = G<? super V> << G<? extends U>. In general, we cannot conclude
anything in this case. However, it is not necessarily an error. It may be that U will eventually
be inferred to be Object, in which case the call may indeed be valid. Therefore, we simply
refrain from placing any constraint on U.
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o If F hasthe form G<..., Y|.1, ? super U, Y1, ...>, where U involves Tj,
then if A has a supertype that is one of:

o G<..,, X1, V, Xi+1, --->. Then this algorithm is applied recursively to
the constraint V >> U.

DiscussioN

As usual, we consider only the case where G has a single type argument.

A <<F in this case means A << G<? super U>. As above, it must be the case that A is
a subtype of some invocation of G. A may now be a subtype of either G<V>, or G<?
extends V>, or G<? super V>. We examine these cases in turn. The first variation is
described (generalized to multiple arguments) by the sub-bullet directly above. We there-
fore have A = G<V> << G<? super U>. The rules of subtyping for wildcards imply that V >>
u.

o G<...,, Xk.1, ? super V, Xg+1, ...>. Then this agorithm is applied recur-
sively to the constraint V >> U.

DiscussioN

We have A = G<? super V> << G<? super U>. The rules of subtyping for lower-
bounded wildcards again imply that V >> U.

o Otherwise, no constraint isimplied on Tj.

DiscussioN

Here, we have A = G<? extends V> << G<? super U>. In general, we cannot conclude
anything in this case. However, it is not necessarily an error. It may be that U will eventually
be inferred to the nu11 type, in which case the call may indeed be valid. Therefore, we sim-
ply refrain from placing any constraint on U.
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o Otherwise, no constraint isimplied on Tj.

o Otherwise, if the constraint hastheform A= F

DiscussioN

Such a constraint is never part of the initial constraints. However, it can arise as the
algorithm recurses. We have seen this occur above, when the constraint A << F relates two
parameterized types, as in G<V> << G<U>.

o If F= Tj, then theconstraintTj = Aisimplied.

o If F = U[] wherethetype U involves T}, then if Aisan array type V[], or
atype variable with an upper bound that is an array type V[], whereVisa
reference type, this algorithm is applied recursively to the constraint V =
u.

DiscussioN

Clearly, if the array types U[] and V[] are the same, their component types must be the
same.

o If F has the form G<..., Yk.1, U, Ykt+1, ...>, 1<k<n where U is type
expression that involves Tj, then if A is of the form G<..., Xiq, V,
Xi+1,--> Where V is a type expression, this algorithm is applied recur-
sively to the constraint V = U.

o If Fhastheform G<..., Y1, ? extends U, i 1, ...>, where U involves Tj,
thenif Aisone of:

o G<..., X1, ? extends V, Xi+1, ...>. Then this algorithm is applied recur-
sively to the constraint V = U.

o Otherwise, no constraint isimplied on Tj.

o If F hasthe form G<..., Y1, ? super U, Yg+1 ,...>, where U involves Tj,
then if A isone of:
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o G<..., X1, ? super V, Xg+1, ...>. Then this algorithm is applied recur-
sively to the constraint V = U.

o Otherwise, no constraint isimplied on T;.

o Otherwise, no constraint isimplied on T;.

o Otherwisg, if the constraint hastheform A>> F

DiscussionN

Such situations arise when the algorithm recurses, due to the contravariant subtyping rules
associated with lower-bounded wildcards (those of the form G<? super X>).

It might be tempting to consider A>> F as being the same as F << A, but the problem
of inference is not symmetric. We need to remember which participant in the relation
includes a type to be inferred.

o IfF= Tj, then theconstraintTj <: Aisimplied.

DiscussIioN

We do not make use of such constraints in the main body of the inference algorithm. How-
ever, they are used in section §15.12.2.8.

o If F = U[], where the type U involves Tj, then if Aisan array type V[], or
atype variable with an upper bound that is an array type V[], whereVisa
reference type, thisagorithmis applied recursively to the constraint V >>
U. Otherwise, no constraint isimplied on ;.

DiscussioN

This follows from the covariant subtype relation among array types. The constraint A >> F,
in this case means that A >> U[]. A is therefore necessarily an array type V[], or a type vari-
able whose upper bound is an array type V[] - otherwise the relation A >> U[] could never
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hold true. It follows that V[] >> U[]. Since array subtyping is covariant, it must be the case
that V >> U.

o If F hasthe form G<..., Y1, U, Yk+1, ...>, Where U is atype expression
that involves Tj, then:

o If Alisan instance of a non-generic type, then no constraint is implied
onT;.
i

DiscussIoN

In this case (once again restricting the analysis to the unary case), we have the constraint
A >> F = G<U>. A must be a supertype of the generic type G. However, since A is not a
parameterized type, it cannot depend upon the type argument U in any way. It is a super-
type of G<X> for every X that is a valid type argument to G. No meaningful constraint on U
can be derived from A.

o If Aisan invocation of ageneric type declaration H, where H iseither G
or superclass or superinterface of G, then:

o If HzG, thenlet Sy, ..., S, bethe formal type parameters of G, and let
H<Uj ..., U;> be the unique invocation of H that is a supertype of
G<S§, ..., §>, andlet V= H<Ug .., U>[S§ = U]. Then,if V:> F
this algorithm is applied recursively to the constraint A >> V.

DiscussioN

Our goal here is to simplify the relationship between A and F. We aim to recursively invoke
the algorithm on a simpler case, where the actual type argument is known to be an invoca-
tion of the same generic type declaration as the formal.

Let’s consider the case where both H and G have only a single type argument. Since
we have the constraint A = H<X> >> F = G<U>, where H is distinct from G, it must be the
case that H is some proper superclass or superinterface of G. There must be a (non-wild-
card) invocation of H that is a supertype of F = G<U>. Call this invocation V.

If we replace F by V in the constraint, we will have accomplished the goal of relating
two invocations of the same generic (as it happens, H).

How do we compute V? The declaration of G must introduce a formal type parameter
S, and there must be some (non-wildcard) invocation of H, H<U1>, that is a supertype of
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G<S>. Substituting the type expression U for S will then yield a (non-wildcard) invocation of
H, H<U1>[S = U], that is a supertype of G<U>. For example, in the simplest instance, Ul
might be S, in which case we have G<S> <: H<S>, and G<U> <: H<U>=H<S>[S=U] = V.

It may be the case that H<U1> is independent of S - that is, S does not occur in U1 at
all. However, the substitution described above is still valid - in this situation, V = H<U1>[S =
U] = H<U1>. Furthermore, in this circumstance, G<T> <: H<U1> for any T, and in particular
G<U> <: H<U1>=V.

Regardless of whether U1 depends on S, we have determined the type V, the invoca-
tion of H that is a supertype of G<U>. We can now invoke the algorithm recursively on the
constraint H<X> = A >> V = H<U1>[S = U]. We will then be able to relate the type argu-
ments of both invocations of H and extract the relevant constraints from them.

o Otherwise, if Aisof the form G<..., Xx.1, W, Xy+1, ...>, where Wisa
type expression this algorithm is applied recursively to the constraint
W= U.

DiscussioN

We have A = G<W> >> F = G<U> for some type expression W. Since W is a type expres-
sion (and not a wildcard type argument), it must be the case that W = U, by the non-vari-
ance of parameterized types.

o Otherwiseg, if Aisof theform G<..., X1, ? extends W, Xy4 1, ...>, this
algorithm is applied recursively to the constraint W>> U.

DiscussioN

We have A = G<? extends W> >> F = G<U> for some type expression W. It must be the
case that W >> U, by the subtyping rules for wildcard types.

o Otherwise, if Ais of the form G<..., Xi.1, ? super W, Xy+1, ...>, this
algorithm is applied recursively to the constraint W << U.
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DiscussIioN

We have A = G<? super W> >> F = G<U> for some type expression W. It must be the case
that W << U, by the subtyping rules for wildcard types.

o Otherwise, no constraint isimplied on T;.

o Otherwise, no constraint isimplied on T;.

o If F has the form G<..., Y1, ? extends U, Yy+1, ...>, Where U is atype
expression that involves Tj, then:

o If Alis an instance of a non-generic type, then no constraint is implied
onT;.
j

DiscussioN

Once again restricting the analysis to the unary case, we have the constraint A >> F = G<?
extends U>. A must be a supertype of the generic type G. However, since A is not a param-
eterized type, it cannot depend upon U in any way. It is a supertype of the type G<?
extends X> for every X such that ? extends X is a valid type argument to G. No meaningful
constraint on U can be derived from A.

o If Aisaninvocation of ageneric type declaration H, where H iseither G
or superclass or superinterface of G, then:

o If HzG, thenlet Sy, ..., S, bethe formal type parameters of G, and let
H<Ugq, ..., U;> be the unique invocation of H that is a supertype of
G<S, ..., S»,and let V= H<? extends U;_ ..., ? extends U;>[ S =
U]. Then this algorithm is applied recursively to the constraint A >>
V.
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DiscussIioN

Our goal here is once more to simplify the relationship between A and F, and recursively
invoke the algorithm on a simpler case, where the actual type argument is known to be an
invocation of the same generic type as the formal.

Assume both H and G have only a single type argument. Since we have the constraint
A = H<X> >> F = G<? extends U>, where H is distinct from G, it must be the case that H is
some proper superclass or superinterface of G. There must be an invocation of H<Y> such
that H<X> >> H<Y> that we can use instead of F = G<? extends U>.

How do we compute H<Y>? As before, note that the declaration of G must introduce a
formal type parameter S, and there must be some (non-wildcard) invocation of H, H<U1>,
that is a supertype of G<S>. However, substituting ? extends U for S is not generally valid.
To see this, assume Ul = TJ].

Instead, we produce an invocation of H, H<? extends U1>[S = U]. In the simplest
instance, U1 might be S, in which case we have G<S> <: H<S>, and G<? extends U> <:
H<? extends U> = H<? extends S>[S=U] = V.

o Otherwise, if Aisof theform G<..., Xi_1, ? extends W, Xy 1, ...>, this
algorithm is applied recursively to the constraint W >>U.

DiscussIoN

We have A = G<? extends W> >> F = G<? extends U> for some type expression W. By the
subtyping rules for wildcards it must be the case that W >> U.

o Otherwise, no constraint isimplied on T;.
o If F has the form G<..., Yy.1, ? super U, Yi+1, ...>, Where U is atype
expression that involves Tj, then A is either:

o If Alis an instance of a non-generic type, then no constraint is implied
onT;.
i
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DiscussIioN

Restricting the analysis to the unary case, we have the constraint A >> F = G<? super U>.
A must be a supertype of the generic type G. However, since A is not a parameterized type,
it cannot depend upon U in any way. It is a supertype of the type G<? super X> for every X
such that ? super X is a valid type argument to G. No meaningful constraint on U can be
derived from A.

o If Aisaninvocation of ageneric type declaration H, where H is either G
or superclass or superinterface of G, then:

o IfHzG,thenlet Sy, ..., S, bethe formal type parameters of G, and let
H<Ujy ..., U;> be the unique invocation of H that is a supertype of
G<S, ..., §>,and let V= H<? super Uy ..., ? super U>[§= U].
Then this algorithm is applied recursively to the constraint A >> V.

DiscussioN

The treatment here is analogous to the case where A = G<? extends U>. Here our example
would produce an invocation H<? super U1>[S = U]

o Otherwise, if Ais of the form G<..., X1, ? super W, ..., Xi+1, -..>,
this algorithm is applied recursively to the constraint W << U.

DiscussioN

We have A = G<? super W> >> F = G<? super U> for some type expression W. It must be
the case that W << U, by the subtyping rules for wildcard types.

o Otherwise, no constraint isimplied on Tj.
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DiscussIioN

This concludes the process of determining constraints on the formal type parameters of a
method.

Note that this process does not impose any constraints on the type parameters based
on their declared bounds. Once the actual type arguments are inferred, they will be tested
against the declared bounds of the formal type parameters as part of applicability testing.

Note also that type inference does not affect soundness in any way. If the types
inferred are nonsensical, the invocation will yield a type error. The type inference algorithm
should be viewed as a heuristic, designed to perfdorm well in practice. If it fails to infer the
desired result, explicit type paramneters may be used instead.

Next, for each type variable Tj, 1< j<n, the implied equality constraints are
resolved as follows:
For each implied equality constraint T; = U or U = Tj:

» If U is not one of the type parameters of the method, then U is the type
inferred for Tj. Then al remaining constraints involving Tj are rewritten such
that Tj isreplaced with U. There are necessarily no further equality constraints
involving Tj, and processing continues with the next type parameter, if any.

* Otherwise, if U is Tj, then this constraint carries no information and may be
discarded.

» Otherwise, the constraint is of the form Tj = Ty for k# j. Then al constraints
involving T; are rewritten such that T; is replaced with Ty, and processing con-
tinues with the next type variable.

Then, for each remaining type variable Tj, the constraints T; :> U are consid-
ered. Given that these constraintsare Tj :> Uy ... Tj :> Uy, thetype of Tj isinferred
aslub(Uq ... Uy), computed as follows:

For a type U, we write ST(U) for the set of supertypes of U, and define the
erased supertype set of U,

EST(U)={V|WinST(U)andV = |W}

where|W| is the erasure (84.6) of W,

DiscussioN

The reason for computing the set of erased supertypes is to deal with situations where a
type variable is constrained to be a supertype of several distinct invocations of a generic
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type declaration, For example, if T :> List<String> and T :> List<Object>, simply intersect-
ing the sets ST(List<String>) = {List<String>, Collection<String>, Object} and
ST(List<Object>) = {List<Object>), Collection<Object>, Object} would yield a set {Object},
and we would have lost track of the fact that T can safely be assumed to be a List.

In contrast, intersecting EST(List<String>) = {List, Collection, Object} and
EST(List<Object>) = {List, Collection, Object} yields {List, Collection, Object}, which we will
eventually enable us to infer T = List<?> as described below.

The erased candidate set for type parameter Tj , EC, is the intersection of all
the sets EST(U) for each U in Uy .. Uy. The minimal erased candidate set for Tj is
MEC = { V| VInEC, andfor all wzV in EC, it is not the case that W <: V}

DiscussioN

Because we are seeking to infer more precise types, we wish to filter out any candidates
that are supertypes of other candidates. This is what computing MEC accomplishes.
In our running example, we had EC = {List, Collection, Object}, and now MEC = {List}.
The next step will be to recover actual type arguments for the inferred types.

For any element G of MEC that is a generic type declaration, define the rele-
vant invocations of G, Inv(G) to be:
Iv(G) = { V| 1<i<k,VinST(Y;), V= G<...>}

DiscussioN

In our running example, the only generic element of MEC is List, and Inv(List) =
{List<String>, List<Object>}. We now will seek to find a type argument for List that contains
(84.5.1.1) both String and Object.

This is done by means of the least containing invocation (Ici) operation defined below.
The first line defines Ici() on a set, such as Inv(List), as an operation on a list of the ele-
ments of the set. The next line defines the operation on such lists, as a pairwise reduction
on the elements of the list. The third line is the definition of Ici() on pairs of parameterized
types, which in turn relies on the notion of least containing type argument (Icta).

Icta() is defined for all six possible cases. Then Candidatelnvocation(G) defines the
most specific invocation of the generic G that is contains all the invocations of G that are
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known to be supertypes of Tj. This will be our candidate invocation of G in the bound we
infer for T; .
i

and let Candidatelnvocation(G) = Ici(Inv(G)) where Ici, the least containing
invocation is defined

Ici(S) = Ici(eyq, ..., en) Whereg in S 1<i<n

Ici(ey, ..., ey) = Ici(Ici(ey, ), €3, ..., &)

ICI(G<X1, .., Xy, G< VY1, ..., Yp>) = G<Icta(Xy, Y1),..., Icta(Xn, Yn)>

where Icta() is the the least containing type argument function defined
(assuming U and V are type expressions) as.

Icta(U, V) = U if U =V, ? extends lub(U, V) otherwise

Icta(U, ? extends V) = ? extends lub(U, V)

Icta(U, ? super V) = ? super glb(U, V)

Icta(? extends U, ? extends V) = ? extends lub(U, V)

Icta(? extends U, ? super V) = U if U = V, ? otherwise

Icta(? super U, ? super V) = ? super glb(U, V)

where glb() is as defined in (85.1.10).

DiscussioN

Finally, we define a bound for T; based on on all the elements of the minimal erased candi-
date set of its supertypes. If any of these elements are generic, we use the Candidatelnvo-
cation() function to recover the type argument information.

Then, define Candidate(W) = Candidatel nvocation(W) if Wis generic, W oth-
erwise.

Then the inferred type for Tjis

lub(U1 ... Uy) = Candidate(W,) & ... & Candidate(W;) where W, 1<i<r, are
the elements of MEC.

It is possible that the process above yields an infinite type. Thisis permissible,
and Java compilers must recognize such situations and represent them appropri-
ately using cyclic data structures.
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DiscussIioN

The possibility of an infinite type stems from the recursive calls to lub().
Readers familiar with recursive types should note that an infinite type is not the same
as a recursive type.

15.12.2.8 Inferring Unresolved Type Arguments

If any of the method's type arguments were not inferred from the types of the
actual arguments, they are now inferred as follows.

« If the method result occursin a context where it will be subject to assignment
conversion (85.2) to atype S, then let R be the declared result type of the
method, and let R’ = R[T7 = B(T7) ... Tp = B(Tn,)] where B(T;) isthe
type inferred for T; in the previous section, or T; if no type was inferred.

Then, aset of initial constraints consisting of:
 theconstraint S >> R’, provided Risnot void; and

* additional constraints 8;[T7 = B(T7) ... Tn = B(Tp)] >> T4, where B4
isthe declared bound of 75,

is created and used to infer constraints on the type arguments using the algo-
rithm of section (815.12.2.7). Any equality constraints are resolved, and then, for
each remaining constraint of theform 7; <: Uy, theargument T, isinferred to be
alb(Uz, ..., Uk (85.1.10).
Any remaining type variables that have not yet been inferred are then inferred
to have type Object
» Otherwise, the unresolved type arguments are inferred by invoking the proce-
dure described in this section under the assumption that the method result was
assigned to avariable of type Object.

15.12.2.9 Examples

In the example program:
pubTlic class Doubler {

static int two() { return two(1); }
private static int two(int i) { return 2%i; }

}

class Test extends Doubler {
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public static Tong two(long j) {return j+j; }
public static void main(String[] args) {

System.out.println(two(3));
System.out.printin(Doubler.two(3)); // compile-time error

}

}

for the method invocation two (1) within class Doubler, there are two accessible
methods named two, but only the second one is applicable, and so that is the one
invoked at run time. For the method invocation two (3) within class Test, there
are two applicable methods, but only the one in class Test is accessible, and so
that is the one to be invoked at run time (the argument 3 is converted to type
Tong). For the method invocation DoubTer. two(3), the class Doubler, not class
Test, is searched for methods named two; the only applicable method is not
accessible, and so this method invocation causes a compile-time error.

Another exampleis:

class ColoredPoint {

int x, y;
byte color;
void setColor(byte color) { this.color = color; }

}

class Test {
public static void main(String[] args) {
ColoredPoint cp = new ColoredPoint();
byte color = 37;
cp.setColor(color);
cp.setColor(37); // compile-time error

}

Here, acompile-time error occurs for the second invocation of setColor, because
no applicable method can be found at compile time. The type of the literal 37 is
int, and int cannot be converted to byte by method invocation conversion.
Assignment conversion, which is used in the initiaization of the variable color,
performs an implicit conversion of the constant from type int to byte, which is
permitted because the value 37 is small enough to be represented in type byte; but
such a conversion is not alowed for method invocation conversion.

If the method setColor had, however, been declared to take an int instead of
abyte, then both method invocations would be correct; the first invocation would
be allowed because method invocation conversion does permit awidening conver-
sion from byte to int. However, a narrowing cast would then be required in the
body of setColor:

void setColor(int color) { this.color = (byte)color; }
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15.12.2.10 Example: Overloading Ambiguity

Consider the example:
class Point { int x, y; }
class ColoredPoint extends Point { int color; }

class Test {
static void test(ColoredPoint p, Point q) {

System.out.printin("(ColoredPoint, Point)");
}

static void test(Point p, ColoredPoint q) {

System.out.println("(Point, ColoredPoint)");
}

public static void main(String[] args) {

ColoredPoint cp = new ColoredPoint();
test(cp, cp); // compile-time error
}

}

This example produces an error at compile time. The problem is that there are two
declarations of test that are applicable and accessible, and neither is more spe-
cific than the other. Therefore, the method invocation is ambiguous.
If athird definition of test were added:
static void test(ColoredPoint p, ColoredPoint q) {

System.out.println("(ColoredPoint, ColoredPoint)");
}

then it would be more specific than the other two, and the method invocation
would no longer be ambiguous.

15.12.2.11 Example: Return Type Not Considered

As another example, consider:
class Point { int x, y; }
class ColoredPoint extends Point { int color; }

class Test {
static int test(ColoredPoint p) {

return p.color;

}

static String test(Point p) {
return "Point";

}
public static void main(String[] args) {
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ColoredPoint cp = new ColoredPoint();
String s = test(cp); // compile-time error
}

}

Here the most specific declaration of method test is the one taking a parameter
of type ColoredPoint. Because the result type of the method is int, a compile-
time error occurs because an int cannot be converted to a String by assignment
conversion. This example shows that the result types of methods do not participate
in resolving overloaded methods, so that the second test method, which returns a
String, is not chosen, even though it has aresult type that would allow the exam-
ple program to compile without error.

15.12.2.12 Example: Compile-Time Resolution

The most applicable method is chosen at compile time; its descriptor determines
what method is actually executed at run time. If a new method is added to a class,
then source code that was compiled with the old definition of the class might not
use the new method, even if a recompilation would cause this method to be cho-
sen.
So, for example, consider two compilation units, one for class Point:
package points;
pubTlic class Point {
public int x, y;
public Point(int x, int y) { this.x = x; this.y =
pubTlic String toString() { return toString(""); }
public String toString(String s) {

return "(" + x + "," +y + s + ")";

y; }

}

}

and one for class ColoredPoint:
package points;
public class ColoredPoint extends Point {
pubTlic static final int
RED = 0, GREEN = 1, BLUE = 2;
public static String[] COLORS =
{ "red", "green", "blue" };

public byte color;
public ColoredPoint(int x, int y, int color) {

super(x, y); this.color = (byte)color;
}

469



15.12.2 Compile-Time Step 2: Determine Method Signature EXPRESSONS

470

/** Copy all relevant fields of the argument into
thisColoredPoint object. */

public void adopt(Point p) { x = p.x; y = p.y; }

public String toString() {

String s = "," + COLORS[color];
return super.toString(s);

}

}

Now consider athird compilation unit that uses ColoredPoint:
import points.¥*;
class Test {
public static void main(String[] args) {
ColoredPoint cp =
new ColoredPoint(6, 6, ColoredPoint.RED);
ColoredPoint cp2 =
new ColoredPoint(3, 3, ColoredPoint.GREEN);
cp.adopt(cp2);
System.out.printin("cp:

+ Cp);

}

Theoutput is:

cp: (3,3,red)

The application programmer who coded class Test has expected to see the
word green, because the actual argument, a ColoredPoint, has a color field,
and color would seem to be a “relevant field” (of course, the documentation for
the package Points ought to have been much more precise!).

Notice, by the way, that the most specific method (indeed, the only applicable
method) for the method invocation of adopt has a signature that indicates a
method of one parameter, and the parameter is of type Point. This signature
becomes part of the binary representation of class Test produced by the compiler
and is used by the method invocation at run time.

Suppose the programmer reported this software error and the maintainer of
the points package decided, after due deliberation, to correct it by adding a
method to class ColoredPoint:

public void adopt(ColoredPoint p) {

adopt((Point)p); color = p.color;

If the application programmer then runs the old binary file for Test with the
new binary filefor ColoredPoint, the output is still:
cp: (3,3,red)
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because the old binary file for Test still has the descriptor “one parameter, whose
type is Point; void” associated with the method call cp.adopt(cp2). If the
source code for Test is recompiled, the compiler will then discover that there are
now two applicable adopt methods, and that the signature for the more specific
oneis“one parameter, whose typeis ColoredPoint; void”; running the program
will then produce the desired output:

cp: (3,3,green)

With forethought about such problems, the maintainer of the points package
could fix the ColoredPoint class to work with both newly compiled and old
code, by adding defensive code to the old adopt method for the sake of old code
that still invokesit on ColoredPoint arguments:

public void adopt(Point p) {

if (p instanceof ColoredPoint)
color = ((ColoredPoint)p).color;

X =Pp.X; Yy =p.y;

}

Ideally, source code should be recompiled whenever code that it dependsonis
changed. However, in an environment where different classes are maintained by
different organizations, this is not aways feasible. Defensive programming with
careful attention to the problems of class evolution can make upgraded code much
more robust. See 813 for a detailed discussion of binary compatibility and type
evolution.

15.12.3 Compile-Time Step 3: Isthe Chosen Method Appropriate?

If there is amost specific method declaration for a method invocation, it is called
the compile-time declaration for the method invocation. Three further checks
must be made on the compile-time declaration:

* If the method invocation has, before the left parenthesis, a MethodName of
the form Identifier, and the method is an instance method, then:

o If the invocation appears within a static context (88.1.3), then a compile-
time error occurs. (The reason is that a method invocation of this form can-
not be used to invoke an instance method in places where this (815.8.3) is
not defined.)

o Otherwise, let C be the innermost enclosing class of which the method is a
member. If the invocation is not directly enclosed by C or an inner class of
C, then a compile-time error occurs

« If the method invocation has, before the left parenthesis, a MethodName of
the form TypeName. Identifier, or if the method invocation , before the left
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parenthesis, has the form TypeName. NonW1dTypeArguments Identifier, then
the compile-time declaration should be static. If the compile-time declara
tion for the method invocation is for an instance method, then a compile-time
error occurs. (The reason is that a method invocation of this form does not
specify a reference to an object that can serve as this within the instance
method.)

If the method invocation has, before the left parenthesis, the form
super . NonWIdTypeArgumentsy | dentifier, then:

o If the method is abstract, acompile-time error occurs

o If the method invocation occurs in a static context, a compile-time error
occurs

If the method invocation has, before the left parenthesis, the form
ClassName. super . NonWIdTypeArgumentsy | dentifier, then:

o If the method is abstract, acompile-time error occurs

o If the method invocation occurs in a static context, a compile-time error
occurs

o Otherwise, let C be the class denoted by ClassName. If the invocation is not
directly enclosed by C or an inner class of C, then a compile-time error
occurs

If the compile-time declaration for the method invocation is void, then the
method invocation must be atop-level expression, that is, the Expressionin an
expression statement (814.8) or in the Forlnit or ForUpdate part of a for
statement (§14.14), or a compile-time error occurs. (The reason is that such a
method invocation produces no value and so must be used only in a situation
where avalue is not needed.)

The following compile-time information is then associated with the method

invocation for use at run time;

The name of the method.

The qualifying type of the method invocation (§13.1).

The number of parameters and the types of the parameters, in order.
The result type, or void.

The invocation mode, computed as follows:
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o If the compile-time declaration hasthe stat1ic modifier, then the invocation
modeisstatic.

o Otherwise, if the compile-time declaration has the private modifier, then
the invocation modeis nonvirtual.

o Otherwise, if the part of the method invocation before the |eft parenthesisis
of the form super . Identifier or of the form ClassName. super . Identifier
then the invocation modeis super.

o Otherwise, if the compile-time declaration is in an interface, then the invo-
cation modeisinterface.

o Otherwise, the invocation modeisvirtual.

If the compile-time declaration for the method invocation is not void, then
the type of the method invocation expression is the result type specified in the
compile-time declaration.

15.12.4 Runtime Evaluation of M ethod | nvocation

At run time, method invocation requires five steps. First, atarget reference may be
computed. Second, the argument expressions are evaluated. Third, the accessibil-
ity of the method to be invoked is checked. Fourth, the actual code for the method
to be executed is located. Fifth, a new activation frame is created, synchronization
is performed if necessary, and control is transferred to the method code.

15.12.4.1 Compute Target Reference (If Necessary)

There are severa cases to consider, depending on which of the five productions
for MethodInvocation (815.12) is involved:

« If the first production for Methodl nvocation, which includes a MethodName,
isinvolved, then there are three subcases:

o If the MethodName is asimple name, that is, just an Identifier, then there are
two subcases:

o If theinvocation modeis static, then thereis no target reference.

o Otherwise, let T be the enclosing type declaration of which the method is
amember, and let n be an integer such that Tisthe nth lexically enclosing
type declaration (88.1.3) of the class whaose declaration immediately con-
tains the method invocation. Then the target reference is the nth lexically
enclosing instance (88.1.3) of this. It is a compile-time error if the nth
lexically enclosing instance (88.1.3) of this does not exist.
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o If the MethodName is a qualified name of the form TypeName . Identifier,
then there is no target reference.

o If the MethodName is a qualified name of the form FieldName . Identifier,
then there are two subcases:

o If the invocation mode is static, then there is no target reference. The
expression FieldName is evaluated, but the result is then discarded.

o Otherwise, the target reference is the value of the expression FieldName.

« |If the second production for Methodlnvocation, which includes a Primary;, is
involved, then there are two subcases:

o If the invocation mode is static, then there is no target reference. The
expression Primary is evaluated, but the result is then discarded.

o Otherwise, the expression Primary is evaluated and the result is used as the
target reference.

In either case, if the evaluation of the Primary expression completes abruptly,
then no part of any argument expression appears to have been evaluated, and
the method invocation completes abruptly for the same reason.

o If the third production for Methodlnvocation, which includes the keyword
super, isinvolved, then the target reference is the value of this.

« If the fourth production for Methodlnvocation, ClassName.super, isinvolved,
then the target reference is the value of ClassName.this.

o If the fifth production for Methodinvocation, beginning with
TypeName. NonWiIdTypeArguments, is involved, then there is no target refer-
ence.

15.12.4.2 Evaluate Arguments

The process of evaluating of the argument list differs, depending on whether
the method being invoked is a fixed arity method or a variable arity method
(88.4.2).

If the method being invoked is avariable arity method (88.4.1) m, it necessar-
ily has n>0 formal parameters. The final formal parameter of m necessarily has
type T[] for some T, and mis necessarily being invoked with k>0 actual argument
expressions.

If misbeing invoked with k#n actual argument expressions, or, if misbeing
invoked with k = n actual argument expressions and the type of the kth argument
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expression is not assignment compatiblewith T[], then the argument list (ey, ...,
€n-1, € -..€) isevaluated asif it were written as (e, ..., €1, new T[][{en, ..., &}).

The argument expressions (possibly rewritten as described above) are now
evaluated to yield argument values. Each argument value corresponds to exactly
one of the method’s n formal parameters.

The argument expressions, if any, are evaluated in order, from left to right. If
the evaluation of any argument expression completes abruptly, then no part of any
argument expression to its right appears to have been evaluated, and the method
invocation completes abruptly for the same reason.The result of evaluating the jth
argument expression is the jth argument value, for 1< j<n. Evaluation then con-
tinues, using the argument values, as described bel ow.

15.12.4.3 Check Accessibility of Type and Method

Let C be the class containing the method invocation, and let T be the qualifying
type of the method invocation (813.1), and m be the name of the method, as deter-
mined at compile time (815.12.3). An implementation of the Java programming
language must insure, as part of linkage, that the method m still exists in the type
T. If thisis not true, then a NoSuchMethodError (which is a subclass of Incom-
patibleClassChangeError) occurs. If the invocation modeis interface, then
the implementation must also check that the target reference type still implements
the specified interface. If the target reference type does not still implement the
interface, then an IncompatibleClassChangeError Occurs.

The implementation must also insure, during linkage, that the type T and the
method m are accessible. For thetype T:

 If T isinthe same package as C, then T isaccessible.
 If Tisinadifferent packagethan C, and T ispublic, then T isaccessible.

« If Tisinadifferent package than C, and T isprotected, then T is accessible
if and only if Cisasubclassof T.

For the method m:

* If m ispublic, then m is accessible. (All members of interfaces are public
(89.2)).

» If misprotected, then m is accessible if and only if either T isin the same
packageas C, or Cis T or asubclassof T.

« If m has default (package) access, then m is accessibleif and only if T isinthe
same package as C.
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e If misprivate, thenmisaccessibleif andonly if CisT, or CenclosesT,or T
encloses C, or T and C are both enclosed by athird class.

If either T or m isnot accessible, then an I11egalAccessError occurs (812.3).

15.12.4.4 Locate Method to Invoke

The strategy for method lookup depends on the invocation mode.

If theinvocation modeis static, no target referenceis needed and overriding
isnot allowed. Method m of class T is the one to be invoked.

Otherwise, an instance method is to be invoked and there is a target reference.
If the target reference isnul11, aNul1PointerException isthrown at this point.
Otherwise, the target referenceis said to refer to atarget object and will be used as
the value of the keyword th1i s in the invoked method. The other four possibilities
for the invocation mode are then considered.

If the invocation mode isnonvirtual, overriding is not allowed. Method m of
class T isthe one to be invoked.

Otherwise, the invocation mode is interface, virtual, or super, and over-
riding may occur. A dynamic method lookup is used. The dynamic lookup process
starts from aclass S, determined as follows:

« If theinvocation modeisinterface or virtual, then S isinitialy the actual
run-time class R of the target object. Thisistrue even if the target object isan
array instance. (Note that for invocation mode interface, R necessarily
implements T; for invocation mode virtual, R is necessarily either T or a
subclass of T.)

« If theinvocation modeis super, then S isinitially the qualifying type (§13.1)
of the method invocation.

The dynamic method lookup uses the following procedure to search class S, and
then the superclasses of class S, as necessary, for method m.

Let X be the compile-time type of the target reference of the method invoca-
tion.

1. If class S contains a declaration for a non-abstract method named m with the
same descriptor (same number of parameters, the same parameter types, and
the same return type) required by the method invocation as determined at com-
piletime (815.12.3), then:
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o If theinvocation modeis super or interface, then thisisthe method to be
invoked, and the procedure terminates.

o If the invocation mode is virtual, and the declaration in S overrides
(88.4.8.1) X.m, then the method declared in S is the method to be invoked,
and the procedure terminates.

2. Otherwise, if S has a superclass, this same lookup procedure is performed
recursively using the direct superclass of S in place of S; the method to be
invoked is the result of the recursive invocation of this lookup procedure.

The above procedure will aways find a non-abstract, accessible method to
invoke, provided that al classes and interfaces in the program have been consis-
tently compiled. However, if this is not the case, then various errors may occur.
The specification of the behavior of a Java virtual machine under these circum-
stances is given by The Java Mrtual Machine Specification.We note that the
dynamic lookup process, while described here explicitly, will often be imple-
mented implicitly, for example as a side-effect of the construction and use of per-
class method dispatch tables, or the construction of other per-class structures used
for efficient dispatch.

15.12.4.5 Create Frame, Synchronize, Transfer Control

A method m in some class S has been identified as the one to be invoked.

Now a new activation frameis created, containing the target reference (if any)
and the argument values (if any), as well as enough space for the local variables
and stack for the method to be invoked and any other bookkeeping information
that may be required by the implementation (stack pointer, program counter, refer-
ence to previous activation frame, and the like). If there is not sufficient memory
available to create such an activation frame, an StackOverflowError isthrown.

The newly created activation frame becomes the current activation frame. The
effect of this is to assign the argument values to corresponding freshly created
parameter variables of the method, and to make the target reference available as
this, if there is atarget reference. Before each argument value is assigned to its
corresponding parameter variable, it is subjected to method invocation conversion
(85.3), which includes any required value set conversion (85.1.13).

If the erasure of the type of the method being invoked differsin its signature
from the erasure of the type of the compile-time declaration for the method invo-
cation (815.12.3), then if any of the argument values is an object which is not an
instance of a subclass or subinterface of the erasure of the corresponding formal
parameter type in the compile-time declaration for the method invocation, then a
ClassCastException isthrown.
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DiscussIioN

As an example of such a situation, consider the declarations:
class C<T> { abstract T id(T x); }
class D extends C<String> { String id(String x) { return x; } }

Now, given an invocation
Cc=new DO;
c.id(new Object()); // fails with a ClassCastException

The erasure of the actual method being invoked, D.1id (), differs in its signature from
that of the compile-time method declaration, C.id(). The former takes an argument of
type String while the latter takes an argument of type Object. The invocation fails with a
ClassCastException before the body of the method is executed.

Such situations can only arise if the program gives rise to an unchecked warning
(85.1.9).

Implementations can enforce these semantics by creating bridge methods. In the
above example, the following bridge method would be created in class D:

Object id(Object x) { return id((String) x); }

This is the method that would actually be invoked by the Java virtual machine in
response to the call c.id(new Object()) shown above, and it will execute the cast and
fail, as required.

If the method m isanative method but the necessary native, implementation-
dependent binary code has not been loaded or otherwise cannot be dynamically
linked, then an UnsatisfiedLinkError isthrown.

If the method m isnot synchronized, control istransferred to the body of the
method m to be invoked.

If the method m is synchronized, then an object must be locked
before the transfer of control. No further progress can be made until
the current thread can obtain the lock. If there is a target reference,
then the target must be locked; otherwise the Class object for class
S, the class of the method m, must be locked. Control is then transferred to the
body of the method m to be invoked. The object is automatically unlocked when
execution of the body of the method has completed, whether normally or abruptly.
The locking and unlocking behavior is exactly as if the body of the method were
embedded in a synchronized statement (§14.19).
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15.12.4.6 Example: Target Reference and Static Methods

When a target reference is computed and then discarded because the invocation
modeis static, the reference is not examined to see whether it isnul1:
class Test {

static void mountain() {
System.out.printin("Monadnock™);
}

static Test favorite(){

System.out.print("Mount ");
return null;

}

public static void main(String[] args) {
favorite() .mountain();

}

}

which prints:
Mount Monadnock
Here favorite returnsnull, yet no Nul1PointerException isthrown.

15.12.4.7 Example: Evaluation Order

As part of an instance method invocation (815.12), there is an expression that
denotes the object to be invoked. This expression appears to be fully evaluated
before any part of any argument expression to the method invocation is evaluated.
So, for example, in:
class Test {

public static void main(String[] args) {
String s = "one";
if (s.startsWith(s = "two™))
System.out.printin("oops");

}

the occurrence of s before” . startsWith” isevaluated first, before the argument
expression s="two". Therefore, areference to the string "one" is remembered as
the target reference before the local variable s is changed to refer to the string
"two". As aresult, the startsWith method is invoked for target object "one"
with argument "two", so the result of the invocation is false, asthe string "one"
does not start with "two". It follows that the test program does not print “oops”.
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15.12.4.8 Example: Overriding

In the example:
class Point {

final int EDGE = 20;

int x, y;

void move(int dx, int dy) {
X += dx; y += dy;
if (Math.abs(x) >= EDGE || Math.abs(y) >= EDGE)

clear(Q);

}

void clear() {
System.out.printin("\tPoint clear");

X =0;y=0;
}
3
class ColoredPoint extends Point {
int color;
void clear() {
System.out.printin("\tColoredPoint clear");
super.clear();
color = 0;
}
}

the subclass ColoredPoint extends the clear abstraction defined by its super-
class Point. It does so by overriding the clear method with its own method,
which invokes the c1ear method of its superclass, using the form super.clear.

This method is then invoked whenever the target object for an invocation of
clear is a ColoredPoint. Even the method move in Point invokes the clear
method of class ColoredPoint when the class of this is ColoredPoint, as
shown by the output of this test program:

class Test {

public static void main(String[] args) {
Point p = new Point();
System.out.println("p.move(20,20):");
p.move(20, 20);
ColoredPoint cp = new ColoredPoint();
System.out.printin("cp.move(20,20):");
cp.move(20, 20);
p = new ColoredPoint();
System.out.println("p.move(20,20), p colored:");
p.move(20, 20);
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}

}

whichis;

p.move(20,20):
Point clear

cp.move(20,20):
ColoredPoint clear
Point clear

p.move(20,20), p colored:
ColoredPoint clear
Point clear

Overriding is sometimes called “late-bound self-reference’; in this example it
means that the reference to clear in the body of Point.move (which is realy
syntactic shorthand for this. clear) invokes a method chosen “late” (at runtime,
based on the run-time class of the object referenced by this) rather than a method
chosen “early” (at compile time, based only on the type of this). This provides
the programmer a powerful way of extending abstractions and is a key idea in
object-oriented programming.

15.12.49 Example: Method Invocation using super

An overridden instance method of a superclass may be accessed by using the key-
word super to access the members of the immediate superclass, bypassing any
overriding declaration in the class that contains the method invocation.

When accessing an instance variable, super meansthe same asacast of this
(815.11.2), but this equivalence does not hold true for method invocation. Thisis
demonstrated by the example:

class T1 {

String s() { return "1"; }

class T2 extends T1 {
String s() { return "2"; }

class T3 extends T2 {
String s() { return "3"; }
void test() {

System.out.printin("sQ=\t\t"+s();
System.out.printin("super.s(Q=\t"+super.s());
System.out.print("((T2)this).s(O=\t");
System.out.printIn(((T2)this).s();
System.out.print("((T1)this).sO=\t");
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System.out.printIn(((T1)this).s();
}

}

class Test {

public static void main(String[] args) {
T3 t3 = new T3Q);
t3.testQ;

}

}

which produces the output:

sQO= 3

super.s(Q)= 2

((T2)this).sOQ= 3

((MDthis).sO= 3

The casts to types T1 and T2 do not change the method that is invoked,
because the instance method to be invoked is chosen according to the run-time
class of the object referred to be this. A cast does not change the class of an
object; it only checks that the class is compatible with the specified type.

15.13 Array Access Expressions

An array access expression refers to avariable that is a component of an array.

ArrayAccess.
ExpressionName [ Expression ]
PrimaryNoNewArray [ Expression ]

An array access expression contains two subexpressions, the array reference
expression (before the | eft bracket) and the index expression (within the brackets).
Note that the array reference expression may be a name or any primary expression
that is not an array creation expression (815.10).

The type of the array reference expression must be an array type (cal it T[],
an array whose components are of type T) or a compile-time error results. Then
the type of the array access expression is the result of applying capture conversion
(85.1.10)to T.

The index expression undergoes unary numeric promotion (8); the promoted
type must be int.

The result of an array reference is a variable of type T, namely the variable
within the array selected by the value of the index expression. This resulting vari-
able, which is a component of the array, is never considered final, even if the
array reference was obtained from a final variable.
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15.13.1 Runtime Evaluation of Array Access

An array access expression is evaluated using the following procedure:

* Firgt, the array reference expression is evaluated. If this evaluation completes
abruptly, then the array access completes abruptly for the same reason and the
index expression is not evaluated.

» Otherwise, the index expression is evaluated. If this evaluation completes
abruptly, then the array access completes abruptly for the same reason.

» Otherwise, if the value of the array reference expression is null, then a
NulTPointerException isthrown.

» Otherwise, the value of the array reference expression indeed refers to an
array. If the value of the index expression is less than zero, or greater than or
equal to the array’s length, then an ArrayIndexOutOfBoundsException is
thrown.

» Otherwise, the result of the array access is the variable of type T, within the
array, selected by the value of the index expression. (Note that this resulting
variable, which is a component of the array, is never considered final, even
if the array reference expressionisa final variable.)

15.13.2 Examples: Array Access Evaluation Order

In an array access, the expression to the left of the brackets appears to be fully
evaluated before any part of the expression within the brackets is evaluated. For
example, in the (admittedly monstrous) expression a[ (a=b) [3]], the expression
a isfully evaluated before the expression (a=b) [3]; this means that the original
value of a is fetched and remembered while the expression (a=b) [3] is evalu-
ated. Thisarray referenced by the original value of a isthen subscripted by avalue
that is element 3 of another array (possibly the same array) that was referenced by
b and is now also referenced by a.

Thus, the example:

class Test {

public static void main(String[] args) {
int[] a = { 11, 12, 13, 14 };
int[] b={0, 1, 2, 3 };
System.out.printin(al(a=b) [3]11);
}
}

prints:
14
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because the monstrous expression’s value is equivalent to a[b[3]] or a[3] or 14.
If evaluation of the expression to the left of the brackets completes abruptly,
no part of the expression within the brackets will appear to have been evaluated.
Thus, the example:
class Test {

public static void main(String[] args) {
int index = 1;
try {
skedaddTe() [index=2]++;
} catch (Exception e) {
System.out.println(e + ", index=" + index);
}
}

static int[] skedaddle() throws Exception {
throw new Exception("Ciao");
}

}

prints:

java.lang.Exception: Ciao, index=1
because the embedded assignment of 2 to index never occurs.

If the array reference expression produces nul1 instead of a reference to an
array, then a Nul1PointerException is thrown at run time, but only after all
parts of the array access expression have been evaluated and only if these evalua-
tions completed normally. Thus, the example:

class Test {

public static void main(String[] args) {
int index = 1;
try {
nada() [index=2]++;
} catch (Exception e) {
System.out.printin(e + ", index='
}

+ index);

static int[] nada() { return null; }
}

prints:
java.lang.NulTPointerException, index=2
because the embedded assignment of 2 to index occurs before the check for anull
pointer. As arelated example, the program:
class Test {
public static void main(String[] args) {
int[] a = null;
try {
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int i = a[vamoose()];

System.out.printin(i);
} catch (Exception e) {

System.out.printin(e);
}

}

static int vamoose() throws Exception {
throw new Exception("Twenty-three skidoo!");

}
}
always prints:
java.lang.Exception: Twenty-three skidoo!
A NulT1PointerException never occurs, because the index expression must
be completely evaluated before any part of the indexing operation occurs, and that
includes the check asto whether the value of the left-hand operandisnul1.

15.14 Postfix Expressions

Postfix expressions include uses of the postfix ++ and -- operators. Also, as dis-
cussed in §15.8, names are not considered to be primary expressions, but are han-
dled separately in the grammar to avoid certain ambiguities. They become
interchangeable only here, at the level of precedence of postfix expressions.

PostfixExpression:
Primary
ExpressionName
PostIncrementExpression
PostDecrementExpression

15.14.1 Expression Names

The rules for evaluating expression names are given in 86.5.6.

15.14.2 Postfix Increment Operator ++

PostIncrementExpression:
PostfixExpression ++

A postfix expression followed by a ++ operator is a postfix increment expres-
sion. The result of the postfix expression must be a variable of atype that is con-
vertible (85.1.8) to anumeric type, or acompile-time error occurs. The type of the
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postfix increment expression is the type of the variable. The result of the postfix
increment expression is not a variable, but a value.

At run time, if evaluation of the operand expression completes abruptly, then
the postfix increment expression completes abruptly for the same reason and no
incrementation occurs. Otherwise, the value 1 is added to the value of the variable
and the sum is stored back into the variable. Before the addition, binary numeric
promotion (85.6.2) is performed on the value 1 and the value of the variable. If
necessary, the sum is narrowed by a narrowing primitive conversion (85.1.3) and/
or subjected to boxing conversion (85.1.7) to the type of the variable beforeit is
stored. The value of the postfix increment expression is the value of the variable
before the new value is stored.

Note that the binary numeric promotion mentioned above may include unbox-
ing conversion (85.1.8) and value set conversion (85.1.13). If necessary, value set
conversion is applied to the sum prior to its being stored in the variable.

A variable that is declared final cannot be incremented (unless it is a defi-
nitely unassigned (816) blank final variable (84.12.4)), because when an access of
such afinal variable isused as an expression, the result is avalue, not avariable.
Thus, it cannot be used as the operand of a postfix increment operator.

15.14.3 Postfix Decrement Operator --

PostDecrementExpression:
PostfixExpression --

A postfix expression followed by a -- operator is a postfix decrement expres-
sion. The result of the postfix expression must be a variable of atype that is con-
vertible (85.1.8) to anumeric type, or acompile-time error occurs. The type of the
postfix decrement expression is the type of the variable. The result of the postfix
decrement expression is not avariable, but avalue.

At run time, if evaluation of the operand expression completes abruptly, then
the postfix decrement expression completes abruptly for the same reason and no
decrementation occurs. Otherwise, the value 1 is subtracted from the value of the
variable and the difference is stored back into the variable. Before the subtraction,
binary numeric promotion (85.6.2) is performed on the value 1 and the value of
thevariable. If necessary, the difference is narrowed by a narrowing primitive con-
version (85.1.3) and/or subjected to boxing conversion (85.1.7) to the type of the
variable before it is stored. The value of the postfix decrement expression is the
value of the variable before the new value is stored.

Note that the binary numeric promotion mentioned above may include unbox-
ing conversion (85.1.8) and value set conversion (85.1.13). If necessary, value set
conversion is applied to the difference prior to its being stored in the variable.
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A variable that is declared final cannot be decremented (unlessiit is a defi-
nitely unassigned (816) blank final variable (84.12.4)), because when an access of
such afinal variableisused as an expression, the result isavalue, not avariable.
Thus, it cannot be used as the operand of a postfix decrement operator.

15.15 Unary Operators

The unary operators include +, -, ++, --, ~, !, and cast operators. Expressions
with unary operators group right-to-left, so that -~x means the sasme as - (~x).

UnaryExpression:
PrelncrementExpression
PreDecrementExpression
+ UnaryExpression
- UnaryExpression
UnaryExpressionNotPlusMinus

Prel ncrementExpression:
++ UnaryExpression

PreDecrementExpression:
-- UnaryExpression

UnaryExpressionNotPlusMinus:
PostfixExpression
~ UnaryExpression
I UnaryExpression
CastExpression

The following productions from §15.16 are repeated here for convenience:
CastExpression:

( PrimitiveType ) UnaryExpression
( ReferenceType ) UnaryExpressionNotPlusMinus

15.15.1 Prefix Increment Operator ++

A unary expression preceded by a ++ operator is a prefix increment expression.
The result of the unary expression must be a variable of atype that is convertible
(85.1.8) to a numeric type, or a compile-time error occurs. The type of the prefix
increment expression is the type of the variable. The result of the prefix increment
expression isnot avariable, but avalue.
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At run time, if evaluation of the operand expression completes abruptly, then
the prefix increment expression completes abruptly for the same reason and no
incrementation occurs. Otherwise, the value 1 is added to the value of the variable
and the sum is stored back into the variable. Before the addition, binary numeric
promotion (85.6.2) is performed on the value 1 and the value of the variable. If
necessary, the sum is narrowed by a narrowing primitive conversion (85.1.3) and/
or subjected to boxing conversion (85.1.7) to the type of the variable beforeit is
stored. The value of the prefix increment expression is the value of the variable
after the new valueis stored.

Note that the binary humeric promotion mentioned above may include unbox-
ing conversion (85.1.8) and value set conversion (85.1.13). If necessary, value set
conversion is applied to the sum prior to its being stored in the variable.

A variable that is declared final cannot be incremented (unless it is a defi-
nitely unassigned (816) blank final variable (84.12.4)), because when an access of
such afinal variable isused as an expression, the result isavalue, not avariable.
Thus, it cannot be used as the operand of a prefix increment operator.

15.15.2 Prefix Decrement Operator --

A unary expression preceded by a -- operator is a prefix decrement expression.
The result of the unary expression must be a variable of atype that is convertible
(85.1.8) to a numeric type, or a compile-time error occurs. The type of the prefix
decrement expression is the type of the variable. The result of the prefix decre-
ment expression is not a variable, but avalue.

At run time, if evaluation of the operand expression completes abruptly, then
the prefix decrement expression completes abruptly for the same reason and no
decrementation occurs. Otherwise, the value 1 is subtracted from the value of the
variable and the difference is stored back into the variable. Before the subtraction,
binary numeric promotion (85.6.2) is performed on the value 1 and the value of
the variable. If necessary, the difference is narrowed by anarrowing primitive con-
version (85.1.3) and/or subjected to boxing conversion (85.1.7) to the type of the
variable before it is stored. The value of the prefix decrement expression is the
value of the variable after the new valueis stored.

Note that the binary numeric promotion mentioned above may include unbox-
ing conversion (85.1.8) and value set conversion (85.1.13). If necessary, format
conversion is applied to the difference prior to its being stored in the variable.

A variable that is declared final cannot be decremented (unless it is a defi-
nitely unassigned (816) blank final variable (84.12.4)), because when an access of
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such afinal variable is used as an expression, the result is avalue, not avariable.
Thus, it cannot be used as the operand of a prefix decrement operator.

15.15.3 Unary Plus Operator +

The type of the operand expression of the unary + operator must be atype that is
convertible (85.1.8) to a primitive numeric type, or a compile-time error occurs.
Unary numeric promotion (8) is performed on the operand. The type of the unary
plus expression is the promoted type of the operand. The result of the unary plus
expression is not a variable, but a value, even if the result of the operand expres-
sionisavariable.

At run time, the value of the unary plus expression is the promoted value of
the operand.

15.15.4 Unary Minus Operator -

The type of the operand expression of the unary - operator must be atype that is
convertible (85.1.8) to a primitive numeric type, or a compile-time error occurs.
Unary numeric promotion (8) is performed on the operand. The type of the unary
minus expression is the promoted type of the operand.

Note that unary numeric promotion performs value set conversion (85.1.13).
Whatever value set the promoted operand value is drawn from, the unary negation
operation is carried out and the result is drawn from that same value set. That
result is then subject to further value set conversion.

At run time, the value of the unary minus expression is the arithmetic negation
of the promoted value of the operand.

For integer values, negation is the same as subtraction from zero. The Java
programming language uses two’'s-complement representation for integers, and
the range of two’s-complement values is not symmetric, so negation of the maxi-
mum negative int or Tong results in that same maximum negative number. Over-
flow occurs in this case, but no exception is thrown. For all integer values x, -x
equals (~x)+1.

For floating-point values, negation is not the same as subtraction from zero,
because if x is +0.0, then 0.0-x is +0.0, but -x is -0.0. Unary minus merely
inverts the sign of afloating-point number. Special cases of interest:

« If the operand is NaN, the result is NaN (recall that NaN has no sign).

« If the operand is an infinity, the result is the infinity of opposite sign.
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« If the operand is a zero, the result is the zero of opposite sign.

15.15.5 Bitwise Complement Operator ~

The type of the operand expression of the unary ~ operator must be atype that is
convertible (85.1.8) to a primitive integral type, or a compile-time error occurs.
Unary numeric promotion (8) is performed on the operand. The type of the unary
bitwise complement expression is the promoted type of the operand.

At run time, the value of the unary bitwise complement expression is the bit-
wise complement of the promoted value of the operand; note that, in al cases,
~x equals (-x)-1.

15.15.6 Logical Complement Operator !

The type of the operand expression of the unary ! operator must be booTlean or
Boolean, or a compile-time error occurs. The type of the unary logical comple-
ment expression isboolean.

At run time, the operand is subject to unboxing conversion (85.1.8) if neces-
sary; the value of the unary logical complement expressionis true if the (possibly
converted) operand value is false and false if the (possibly converted) operand
valueis true.

15.16 Cast Expressions

A cast expression converts, at run time, a value of one numeric type to a similar
value of another numeric type; or confirms, at compile time, that the type of an
expression is boolean; or checks, at run time, that a reference value refers to an
object whose class is compatible with a specified reference type.

CastExpression:
( PrimitiveType Dimsyy ) UnaryExpression
( ReferenceType ) UnaryExpressionNotPlusMinus
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See §15.15 for a discussion of the distinction between UnaryExpression and
UnaryExpressionNotPlusMinus.

The type of a cast expression is the result of applying capture conversion
(85.1.10) to the type whose name appears within the parentheses. (The parenthe-
ses and the type they contain are sometimes called the cast operator.) The result
of a cast expression is not avariable, but avalue, even if the result of the operand
expression isavariable.

A cast operator has no effect on the choice of value set (84.2.3) for a value of
type float or type double. Consequently, a cast to type float within an expres-
sion that is not FP-strict (815.4) does not necessarily cause its vaue to be converted
to an element of the float value set, and a cast to type doub1e within an expression
that is not FP-strict does not necessarily cause its value to be converted to an ele-
ment of the double value set.

It is a compile-time error if the compile-time type of the operand may never
be cast to the type specified by the cast operator according to the rules of casting
conversion (85.5). Otherwise, at run-time, the operand value is converted (if nec-
essary) by casting conversion to the type specified by the cast operator.

Some casts result in an error at compile time. Some casts can be proven, at
compile time, always to be correct at run time. For example, it is always correct to
convert a value of a class type to the type of its superclass; such a cast should
reguire no special action at run time. Finally, some casts cannot be proven to be
either always correct or always incorrect at compile time. Such casts require a test
a run time. Seefor 85.5 details.

A ClassCastException isthrown if acast isfound at run time to be imper-
missible.

15.17 Multiplicative Operators

The operators *, /, and % are called the multiplicative operators. They have the
same precedence and are syntactically |eft-associative (they group left-to-right).

MultiplicativeExpression:
UnaryExpression
MultiplicativeExpression * UnaryExpression
MultiplicativeExpression / UnaryExpression
MultiplicativeExpression % UnaryExpression

The type of each of the operands of a multiplicative operator must be a type
that is convertible (85.1.8) to a primitive numeric type, or a compile-time error
occurs. Binary numeric promotion is performed on the operands (85.6.2). The

15.17
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type of a multiplicative expression is the promoted type of its operands. If this
promoted type is int or Tong, then integer arithmetic is performed; if this pro-
moted typeis float or double, then floating-point arithmetic is performed.

Note that binary numeric promotion performs unboxing conversion (85.1.8)
and value set conversion (85.1.13).

15.17.1 Multiplication Operator *

The binary * operator performs multiplication, producing the product of its oper-
ands. Multiplication is a commutative operation if the operand expressions have
no side effects. While integer multiplication is associative when the operands are
all of the same type, floating-point multiplication is not associative.

If an integer multiplication overflows, then the result is the low-order bits of
the mathematical product as represented in some sufficiently large two’'s-comple-
ment format. Asaresult, if overflow occurs, then the sign of the result may not be
the same as the sign of the mathematical product of the two operand values.

The result of a floating-point multiplication is governed by the rules of IEEE
754 arithmetic:

* If either operand is NaN, the result is NaN.

« If theresult is not NaN, the sign of the result is positive if both operands have
the same sign, and negative if the operands have different signs.

e Multiplication of aninfinity by a zero resultsin NaN.

» Multiplication of an infinity by a finite value results in a signed infinity. The
sign is determined by the rule stated above.

* In the remaining cases, where neither an infinity nor NaN is involved, the
exact mathematical product is computed. A floating-point value set is then
chosen:

o If the multiplication expression is FP-strict (815.4):

o If the type of the multiplication expression is fl1oat, then the float value
set must be chosen.

o If the type of the multiplication expression is double, then the double
value set must be chosen.

o If the multiplication expression is not FP-strict:
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o If the type of the multiplication expression is float, then either the float
value set or the float-extended-exponent value set may be chosen, at the
whim of the implementation.

o If the type of the multiplication expression is doubTe, then either the dou-
ble value set or the double-extended-exponent value set may be chosen, at
the whim of the implementation.

Next, a value must be chosen from the chosen value set to represent the prod-
uct. If the magnitude of the product is too large to represent, we say the oper-
ation overflows; the result is then an infinity of appropriate sign. Otherwise,
the product is rounded to the nearest value in the chosen value set using |EEE
754 round-to-nearest mode. The Java programming language requires support
of gradual underflow as defined by IEEE 754 (84.2.4).

Despite the fact that overflow, underflow, or loss of information may occur,
evaluation of a multiplication operator * never throws a run-time exception.

15.17.2 Division Operator /

The binary / operator performs division, producing the quotient of its operands.
The left-hand operand is the dividend and the right-hand operand is the divisor.

Integer division rounds toward . That is, the quotient produced for operands
n and d that are integers after binary numeric promotion (85.6.2) is an integer
vaue g whose magnitude is as large as possible while satisfying |d g <|n|;
moreover, q is positive when |n| > |d| and n and d have the same sign, but q is neg-
ative when |n| = |d| and n and d have opposite signs. There is one special case that
does not satisfy thisrule: if the dividend is the negative integer of largest possible
magnitude for its type, and the divisor is -1, then integer overflow occurs and the
result is equal to the dividend. Despite the overflow, no exception isthrown in this
case. On the other hand, if the value of the divisor in an integer division is 0, then
an ArithmeticException isthrown.

The result of a floating-point division is determined by the specification of
|EEE arithmetic:

« If either operand is NaN, the result is NaN.

« If theresult is not NaN, the sign of the result is positive if both operands have
the same sign, negative if the operands have different signs.
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Division of an infinity by an infinity resultsin NaN.

Division of an infinity by afinite value resultsin asigned infinity. The signis
determined by the rule stated above.

Division of afinite value by an infinity results in a signed zero. The sign is
determined by the rule stated above.

Division of azero by a zero resultsin NaN; division of zero by any other finite
value resultsin asigned zero. The sign is determined by the rule stated above.

Division of a nonzero finite value by a zero results in a signed infinity. The
sign is determined by the rule stated above.

In the remaining cases, where neither an infinity nor NaN is involved, the
exact mathematical quotient is computed. A floating-point value set is then
chosen:

o If the division expression is FP-strict (§15.4):

o If the type of the division expression is float, then the float value set
must be chosen.

o If the type of the division expression is doub1e, then the double value set
must be chosen.

o If the division expression is not FP-strict:

o If the type of the division expression is float, then either the float value
set or the float-extended-exponent value set may be chosen, at the whim
of the implementation.

o If the type of the division expression is doubTe, then either the double
value set or the double-extended-exponent value set may be chosen, at the
whim of the implementation.

Next, a value must be chosen from the chosen value set to represent the quo-
tient. If the magnitude of the quotient is too large to represent, we say the
operation overflows; the result is then an infinity of appropriate sign. Other-
wise, the quotient is rounded to the nearest value in the chosen value set using
IEEE 754 round-to-nearest mode. The Java programming language requires
support of gradual underflow as defined by |EEE 754 (84.2.4).

Despite the fact that overflow, underflow, division by zero, or loss of informa-

tion may occur, evaluation of a floating-point division operator / never throws a
run-time exception
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15.17.3 Remainder Operator %

The binary % operator is said to yield the remainder of its operands from an
implied division; the left-hand operand is the dividend and the right-hand operand
isthe divisor.

In C and C++, the remainder operator accepts only integral operands, but in
the Java programming language, it also accepts floating-point operands.

The remainder operation for operands that are integers after binary numeric
promotion (85.6.2) produces a result value such that (a/b) *b+(a%b) is equal to
a. This identity holds even in the specia case that the dividend is the negative
integer of largest possible magnitude for its type and the divisor is -1 (the remain-
der is ). It follows from this rule that the result of the remainder operation can be
negative only if the dividend is negative, and can be positive only if the dividend is
positive; moreover, the magnitude of the result is always less than the magnitude
of the divisor. If the value of the divisor for an integer remainder operator is 0,
then an ArithmeticException isthrown.Examples:

5%3 produces 2 (notethat 5/3 produces 1)

5%(-3) produces 2  (notethat 5/(-3) produces -1)

(-5)%3 produces -2 (notethat (-5)/3 produces -1)

(-5)%(-3) produces -2 (notethat (-5)/(-3) produces 1)

The result of afloating-point remainder operation as computed by the % oper-
ator is not the same as that produced by the remainder operation defined by IEEE
754. The |EEE 754 remainder operation computes the remainder from a rounding
division, not a truncating division, and so its behavior is not analogous to that of
the usual integer remainder operator. Instead, the Java programming language
defines % on floating-point operations to behave in a manner analogous to that of
the integer remainder operator; this may be compared with the C library function
fmod. The IEEE 754 remainder operation may be computed by the library routine
Math.IEEEremainder.

The result of a floating-point remainder operation is determined by the rules
of IEEE arithmetic:

* If either operand is NaN, the result is NaN.
« If theresult is not NaN, the sign of the result equals the sign of the dividend.

« If thedividend is an infinity, or the divisor isa zero, or both, the result is NaN.
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« If the dividend is finite and the divisor is an infinity, the result equals the divi-
dend.

* If thedividend is a zero and the divisor isfinite, the result equals the dividend.

* In the remaining cases, where neither an infinity, nor a zero, nor NaN is
involved, the floating-point remainder r from the division of adividend n by a
divisor d is defined by the mathematical relation r = n—(d () wheregisan
integer that is negative only if n/d is negative and positive only if n/d is
positive, and whose magnitude is as large as possible without exceeding the
magnitude of the true mathematical quotient of n and d.

Evaluation of a floating-point remainder operator % never throws a run-time
exception, even if the right-hand operand is zero. Overflow, underflow, or loss of
precision cannot occur.

Examples:

5.0%3.0 produces 2.0

5.0%(-3.0) produces 2.0
(-5.0)%3.0 produces -2.0
(-5.0)%(-3.0) produces-2.0

15.18 Additive Operators

The operators + and - are called the additive operators. They have the same pre-
cedence and are syntactically left-associative (they group |eft-to-right).

AdditiveExpression:
MultiplicativeExpression
AdditiveExpression + MultiplicativeExpression
AdditiveExpression - MultiplicativeExpression

If the type of either operand of a + operator is String, then the operation is
string concatenation.

Otherwise, the type of each of the operands of the + operator must be a type
that is convertible (85.1.8) to a primitive numeric type, or a compile-time error
OCCUrs.

In every case, the type of each of the operands of the binary - operator must
be a type that is convertible (85.1.8) to a primitive numeric type, or a compile-
time error occurs.
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15.18.1 String Concatenation Operator +

If only one operand expression is of type String, then string conversion is per-
formed on the other operand to produce a string at run time. The result is a refer-
ence to a String object (newly created, unless the expression is a compile-time
constant expression (815.28))that is the concatenation of the two operand strings.
The characters of the left-hand operand precede the characters of the right-hand
operand in the newly created string. If an operand of type String is nul1, then
the string "nu11" is used instead of that operand.

15.18.1.1 String Conversion

Any type may be converted to type String by string conversion.
A value x of primitive type T is first converted to a reference value as if by
giving it as an argument to an appropriate class instance creation expression:

» If Tisboolean, then use new Boolean(x).

 If Tischar, then use new Character(x).

» If Tisbyte, short, or int, then use new Integer(x).
* If Tislong, then use new Long(x).

e If Tisfloat, thenuse new Float(x).

e If Tisdouble, then use new Double(x).

This reference value is then converted to type String by string conversion.

Now only reference values need to be considered. If thereferenceisnull, itis
converted to the string "nu11" (four ASCII charactersn, u, 1, 1). Otherwise, the
conversion is performed asif by an invocation of the toString method of the ref-
erenced object with no arguments; but if the result of invoking the toString
method isnu11, then the string "nu11" is used instead.

The toString method is defined by the primordial class Object; many
classes override it, notably Boolean, Character, Integer, Long, Float, Dou-
ble, and String.
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15.18.1.2 Optimization of Sring Concatenation

An implementation may choose to perform conversion and concatenation in one
step to avoid creating and then discarding an intermediate String object. To
increase the performance of repeated string concatenation, a Java compiler may
use the StringBuffer class or asimilar technique to reduce the number of inter-
mediate String objectsthat are created by evaluation of an expression.

For primitive types, an implementation may also optimize away the creation
of awrapper object by converting directly from a primitive type to a string.

15.18.1.3 Examples of Sring Concatenation

The example expression:

"The square root of 2 is " + Math.sqrt(2)
produces the result:

"The square root of 2 is 1.4142135623730952"

The + operator is syntactically left-associative, no matter whether it is later
determined by type analysis to represent string concatenation or addition. In some
cases care is required to get the desired result. For example, the expression:

a+b+c
is always regarded as meaning:

(a+b) +c
Therefore the result of the expression:

1+2+ " fiddlers"
is:

"3 fiddlers"
but the result of:

"fiddlers " + 1 + 2
is.

"fiddlers 12"

Inthisjocular little example:

class Bottles {

static void printSong(Object stuff, int n) {
String plural = (n == 1) ? "" : "s";
Toop: while (true) {
System.out.printin(n + " bottle" + plural
+ " of " + stuff + " on the wall,");
System.out.println(n + " bottle" + plural
+ " of " + stuff + ";");
System.out.printin("You take one down
+ "and pass it around:");
—-n;
plural = (n == 1) ? "" : "s";
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if (n == 0)
break Toop;
System.out.printin(n + " bottle" + plural
+ " of " + stuff + " on the wall!");
System.out.printin();

}
System.out.printin("No bottles of " +

stuff + " on the wall!™);

the method printSong will print a version of a children’s song. Popular values
for stuff include "pop" and "beer"; the most popular value for n is 100. Here is
the output that results from BottTles.printSong("sTime", 3):

3 bottles of slime on the wall,

3 bottles of slime;
You take one down and pass it around:
2 bottles of slime on the walTl!

2 bottles of sTlime on the wall,

2 bottles of sTime;

You take one down and pass it around:
1 bottle of slime on the wall!

1 bottle of slime on the wall,
1 bottle of slime;

You take one down and pass it around:
No bottles of sTime on the wall!

In the code, note the careful conditional generation of the singular “bott1e”
when appropriate rather than the plural “bottles”; note also how the string con-
catenation operator was used to break the long constant string:

"You take one down and pass it around:"

into two piecesto avoid an inconveniently long line in the source code.
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15.18.2 Additive Operators (+ and -) for Numeric Types

The binary + operator performs addition when applied to two operands of numeric
type, producing the sum of the operands. The binary - operator performs subtrac-
tion, producing the difference of two numeric operands.

Binary numeric promotion is performed on the operands (85.6.2). The type of
an additive expression on humeric operands is the promoted type of its operands.
If this promoted typeis int or Tong, then integer arithmetic is performed; if this
promoted typeis float or double, then floating-point arithmetic is performed.

Note that binary numeric promotion performs value set conversion (85.1.13)
and unboxing conversion (85.1.8).

Addition is a commutative operation if the operand expressions have no side
effects. Integer addition is associative when the operands are all of the same type,
but floating-point addition is not associative.

If an integer addition overflows, then the result is the low-order bits of the
mathematical sum as represented in some sufficiently large two's-complement
format. If overflow occurs, then the sign of the result is not the same as the sign of
the mathematical sum of the two operand values.

The result of afloating-point addition is determined using the following rules
of IEEE arithmetic:

* If either operand is NaN, the result is NaN.

» The sum of two infinities of opposite sign is NaN.

* The sum of two infinities of the same sign isthe infinity of that sign.

» The sum of aninfinity and afinite value is equal to the infinite operand.

e The sum of two zeros of opposite sign is positive zero.

» The sum of two zeros of the same sign is the zero of that sign.

» The sum of azero and anonzero finite value is equal to the nonzero operand.

» The sum of two nonzero finite values of the same magnitude and opposite
sign is positive zero.

* In the remaining cases, where neither an infinity, nor a zero, nor NaN is
involved, and the operands have the same sign or have different magnitudes,
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the exact mathematical sum is computed. A floating-point value set is then
chosen:

o If the addition expression is FP-strict (815.4):

o If the type of the addition expression is float, then the float value set
must be chosen.

o If the type of the addition expression is doub1e, then the double value set
must be chosen.

o If the addition expression is not FP-strict:

o If the type of the addition expression is f1oat, then either the float value
set or the float-extended-exponent value set may be chosen, at the whim
of the implementation.

o If the type of the addition expression is double, then either the double
value set or the double-extended-exponent value set may be chosen, at the
whim of the implementation.

Next, a value must be chosen from the chosen value set to represent the sum.
If the magnitude of the sum is too large to represent, we say the operation
overflows; the result isthen an infinity of appropriate sign. Otherwise, the sum
is rounded to the nearest value in the chosen value set using |EEE 754 round-
to-nearest mode. The Java programming language requires support of gradual
underflow as defined by |EEE 754 (84.2.4).

The binary - operator performs subtraction when applied to two operands of
numeric type producing the difference of its operands; the left-hand operand isthe
minuend and the right-hand operand is the subtrahend. For both integer and float-
ing-point subtraction, it is aways the case that a-b produces the same result as
a+(-b).

Note that, for integer values, subtraction from zero is the same as negation.
However, for floating-point operands, subtraction from zero is not the same as
negation, becauseif x is+0.0,then 0.0-x is+0.0, but -x is-0.0.

Degspite the fact that overflow, underflow, or loss of information may occur,
evaluation of anumeric additive operator never throws a run-time exception.
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15.19 Shift Operators

The shift operators include left shift <<, signed right shift >>, and unsigned right
shift >>>; they are syntactically |eft-associative (they group left-to-right). The left-
hand operand of a shift operator is the value to be shifted; the right-hand operand
specifies the shift distance.

ShiftExpression:
AdditiveExpression
ShiftExpression << AdditiveExpression
ShiftExpression >> AdditiveExpression
ShiftExpression >>> AdditiveExpression

Thetype of each of the operands of a shift operator must be atypethat is con-
vertible (85.1.8) to a primitive integral type, or a compile-time error occurs.
Binary numeric promotion (85.6.2) is not performed on the operands; rather,
unary numeric promotion (8) is performed on each operand separately. The type
of the shift expression is the promoted type of the |eft-hand operand.

If the promoted type of the left-hand operand is int, only the five lowest-
order bits of the right-hand operand are used as the shift distance. It is as if the
right-hand operand were subjected to a bitwise logical AND operator & (815.22.1)
with the mask value 0x1f. The shift distance actually used is therefore alwaysin
therange 0 to 31, inclusive.

If the promoted type of the left-hand operand is Tong, then only the six low-
est-order bits of the right-hand operand are used as the shift distance. It isasif the
right-hand operand were subjected to a bitwise logical AND operator & (815.22.1)
with the mask value 0x3f. The shift distance actually used is therefore always in
the range 0 to 63, inclusive.

At run time, shift operations are performed on the two’'s complement integer
representation of the value of the left operand.

The value of n<<s is n left-shifted s bit positions; this is equivalent (even if
overflow occurs) to multiplication by two to the power s.

The value of n>>s is n right-shifted s bit positions with sign-extension. The
resulting value is Ln/ ZSJ . For nonnegative values of n, thisis equivalent to trun-
cating integer division, as computed by the integer division operator /, by two to
the power s.

The value of n>>>s is n right-shifted s bit positions with zero-extension. If n
is positive, then the result is the same as that of n>>s; if n is negative, theresultis
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equal to that of the expression (n>>s)+(2<<~s) if the type of the |eft-hand oper-
andisint, and to the result of the expression (n>>s)+(2L<<~s) if thetype of the
left-hand operand is Tong. The added term (2<<~s) or (2L<<~s) cancels out the
propagated sign bit. (Note that, because of the implicit masking of the right-hand
operand of a shift operator, ~s as a shift distanceis equivalent to 31-s when shift-
ing an int value and to 63-s when shifting a Tong value.)

15.20 Relational Operators

The relational operators are syntactically left-associative (they group left-to-
right), but this fact is not useful; for example, a<b<c parses as (a<b)<c, whichis
always a compile-time error, because the type of a<b is aways boolean and < is
not an operator on booTean values.

Relational Expression:
ShiftExpression
Relational Expression < ShiftExpression
Relational Expression > ShiftExpression
Relational Expression <= ShiftExpression
Relational Expression >= ShiftExpression
Relational Expression instanceof ReferenceType

Thetype of arelational expression is alwaysboolean.

15.20.1 Numerical Comparison Operators <, <=, >, and >=

The type of each of the operands of a numerical comparison operator must be a
type that is convertible (85.1.8) to a primitive numeric type, or a compile-time
error occurs. Binary numeric promotion is performed on the operands (85.6.2). If
the promoted type of the operandsisint or Tong, then signed integer comparison
is performed; if this promoted typeis float or double, then floating-point com-
parison is performed.

Note that binary numeric promotion performs value set conversion (85.1.13)
and unboxing conversion (85.1.8). Comparison is carried out accurately on float-
ing-point values, no matter what value sets their representing values were drawn
from.

The result of a floating-point comparison, as determined by the specification
of the |IEEE 754 standard, is:
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« If either operand is NaN, then the result is false.

« All values other than NaN are ordered, with negative infinity less than all
finite values, and positive infinity greater than all finite values.

* Positive zero and negative zero are considered equal. Therefore, -0.0<0.0 is
false, for example, but -0.0<=0.0 is true. (Note, however, that the meth-
odsMath.min and Math.max treat negative zero as being strictly smaller than
positive zero.)

Subject to these considerations for floating-point numbers, the following rules
then hold for integer operands or for floating-point operands other than NaN:

» The value produced by the < operator is true if the value of the left-hand
operand is less than the vaue of the right-hand operand, and otherwise is
false.

e The value produced by the <= operator is true if the value of the left-hand
operand islessthan or equal to the value of the right-hand operand, and other-
wiseis false.

» The value produced by the > operator is true if the value of the left-hand
operand is greater than the value of the right-hand operand, and otherwise is
false.

e The value produced by the >= operator is true if the value of the left-hand
operand is greater than or equal to the value of the right-hand operand, and
otherwiseis false.

15.20.2 Type Comparison Operator instanceof

The type of a Relational Expression operand of the instanceof operator must be
areference type or the null type; otherwise, a compile-time error occurs. The Ref-
erenceType mentioned after the instanceof operator must denote a reference
type; otherwise, a compile-time error occurs. It is a compile-time error if the Ref-
erenceType mentioned after the instanceof operator does not denote areifiable
type (84.7).

At run time, the result of the instanceof operator is true if the value of the
Relational Expression is not nu11 and the reference could be cast (815.16) to the
ReferenceType without raising a ClassCastException. Otherwise the result is
false.

If acast of the Relational Expression to the ReferenceType would be rejected
as a compile-time error, then the instanceof relational expression likewise pro-
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duces a compile-time error. In such a situation, the result of the instanceof
expression could never be true.

Consider the example program:

class Point { int x, y; }

class Element { int atomicNumber; }

class Test {
public static void main(String[] args) {
Point p = new Point();
Element e = new Element();

if (e instanceof Point) { // compile-time error
System.out.printin("I get your point!");
p = (Point)e; // compile-time error
}

}

This example results in two compile-time errors. The cast (Point)e isincorrect
because no instance of E1ement or any of its possible subclasses (none are shown
here) could possibly be an instance of any subclass of Point. The instanceof
expression isincorrect for exactly the same reason. If, on the other hand, the class
Point were asubclass of E1ement (an admittedly strange notion in this example):
class Point extends Element { int x, y; }

then the cast would be possible, though it would require a run-time check, and the
instanceof expression would then be sensible and valid. The cast (Point)e
would never raise an exception because it would not be executed if the value of e
could not correctly be cast to type Point.

15.21 Equality Operators

The equality operators are syntactically left-associative (they group left-to-right),
but this fact is essentially never useful; for example, a==b==c parses as
(a==b)==c. The result type of a==b is always boolean, and c must therefore be
of type boolean or a compile-time error occurs. Thus, a==b==c does not test to
see whether a, b, and c are all equal.

EqualityExpression:
Relational Expression
EqualityExpression == Relational Expression
EqualityExpression != Relational Expression

1521
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The == (equal to) and the!= (not equal to) operators are analogousto the rela-
tional operators except for their lower precedence. Thus, a<b==c<d is true when-
ever a<b and c<d have the same truth value.

The equality operators may be used to compare two operands that are convert-
ible (85.1.8) to numeric type, or two operands of type boolean or Boolean, or
two operands that are each of either reference type or the null type. All other cases
result in a compile-time error. The type of an equality expression is always boo1 -
ean.

In all cases, a!=b produces the same result as ! (a==b). The equality opera-
tors are commutative if the operand expressions have no side effects.

15.21.1 Numerical Equality Operators== and !=

If the operands of an equality operator are both of numeric type, or one is of
numeric type and the other is convertible (85.1.8) to numeric type, binary numeric
promotion is performed on the operands (85.6.2). If the promoted type of the
operands is int or long, then an integer equality test is performed; if the pro-
moted typeis float or double, then afloating-point equality test is performed.

Note that binary numeric promotion performs value set conversion (85.1.13)
and unboxing conversion (85.1.8). Comparison is carried out accurately on float-
ing-point values, no matter what value sets their representing values were drawn
from.

Floating-point equality testing is performed in accordance with the rules of
the IEEE 754 standard:

* If either operand is NaN, then the result of == is false but the result of !=is
true. Indeed, the test x!=x istrue if and only if the value of x is NaN. (The
methods Float.isNaN and Double.isNaN may also be used to test whether a
valueis NaN.)

* Positive zero and negative zero are considered equal. Therefore, -0.0==0.0is
true, for example.

» Otherwise, two distinct floating-point values are considered unequal by the
equality operators. In particular, there is one value representing positive infin-
ity and one value representing negative infinity; each compares equal only to
itself, and each compares unegual to all other values.

Subject to these considerations for floating-point numbers, the following rules
then hold for integer operands or for floating-point operands other than NaN:
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» The value produced by the == operator is true if the value of the left-hand
operand is equal to the value of the right-hand operand; otherwise, theresult is
false.

» The value produced by the != operator is true if the value of the left-hand
operand is not equal to the value of the right-hand operand; otherwise, the
resultis false.

15.21.2 Boolean Equality Operators== and !=

If the operands of an equality operator are both of type boolean, or if one operand
is of type booTlean and the other is of type Boolean, then the operation is boolean
equality. The boolean equality operators are associative.

If one of the operands is of type Boolean it is subjected to unboxing conver-
sion (85.1.8).

The result of == is true if the operands (after any required unboxing conver-
sion) are both true or both false; otherwise, theresult is false.

Theresult of !=is false if the operands are both true or both false; other-
wise, the result is true. Thus != behaves the same as A (815.22.2) when applied
to boolean operands.

15.21.3 Reference Equality Operators== and !=

If the operands of an equality operator are both of either reference type or the null
type, then the operation is object equality.

A compile-time error occurs if it is impossible to convert the type of either
operand to the type of the other by a casting conversion (85.5). The run-time val-
ues of the two operands would necessarily be unequal.

At run time, the result of == is true if the operand values are both nul11 or
both refer to the same object or array; otherwise, theresult is false.

Theresult of !=is false if the operand values are both nu11 or both refer to
the same object or array; otherwise, theresult is true.

While == may be used to compare references of type String, such an equal-
ity test determines whether or not the two operands refer to the same String
object. The result is false if the operands are distinct String objects, even if
they contain the same sequence of characters. The contents of two strings s and t
can be tested for equality by the method invocation s.equals(t). See aso
§3.10.5.
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15.22 Bitwiseand Logical Operators

The bitwise operators and logical operators include the AND operator &, exclu-
sive OR operator A, and inclusive OR operator |. These operators have different
precedence, with & having the highest precedence and | the lowest precedence.
Each of these operatorsis syntactically left-associative (each groups left-to-right).
Each operator is commutative if the operand expressions have no side effects.
Each operator is associative.

AndExpression:
EqualityExpression
AndExpression & EqualityExpression

ExclusiveOr Expression:
AndExpression
ExclusiveOrExpression A AndExpression

InclusiveOrExpression:
ExclusiveOrExpression
InclusiveOrExpression | ExclusiveOrExpression

The bitwise and logical operators may be used to compare two operands of
numeric type or two operands of type boolean. All other cases result in a com-
pile-time error.

15.22.1 Integer Bitwise Operators&, A, and |

When both operands of an operator &, A, or | are of a type that is convertible
(85.1.8) to a primitive integral type, binary humeric promotion is first performed
on the operands (85.6.2). The type of the bitwise operator expression is the pro-
moted type of the operands.

For &, the result value is the bitwise AND of the operand val ues.

For A, the result value is the bitwise exclusive OR of the operand values.

For |, theresult valueis the bitwise inclusive OR of the operand values.

For example, the result of the expression 0xff00 & 0xfofo is 0xf0e0. The
result of Oxffo0 A Oxfof0 isox0ffo.Theresult of Oxffo0 | Oxfof0 isoxfffo.

15.22.2 Boolean Logical Operators &, A, and |

When both operands of a&, A, or | operator are of type booTlean or Boolean, then
the type of the bitwise operator expression is booTean. In al cases, the operands
are subject to unboxing conversion (85.1.8) as necessary.



EXPRESSONS Conditional-Or Operator || 15.24

For &, the result value is true if both operand values are true; otherwise, the
result is false.

For A, the result value is true if the operand values are different; otherwise,
theresult is false.

For |, the result value is false if both operand values are false; otherwise,
theresultis true.

15.23 Conditional-And Operator &&

The && operator is like & (815.22.2), but evaluates its right-hand operand only if
the value of its left-hand operand is true. It is syntactically left-associative (it
groups left-to-right). It is fully associative with respect to both side effects and
result value; that is, for any expressions a, b, and c, evaluation of the expression
((a)&&(b))&&(c) produces the same result, with the same side effects occur-
ring in the same order, as evaluation of the expression (a)&&((b) &&(c)).

Conditional AndExpression:
InclusiveOrExpression
Conditional AndExpression && InclusiveOrExpression

Each operand of && must be of type boolean or Boolean, or a compile-time
error occurs. The type of aconditional-and expression is always boolean.

At run time, the left-hand operand expression is evaluated first; if the result
has type Boolean, it is subjected to unboxing conversion (85.1.8); if the resulting
valueis false, the value of the conditional-and expressionis false and the right-
hand operand expression is not evaluated. If the value of the left-hand operand is
true, then the right-hand expression is evaluated; if the result has type Boolean,
it is subjected to unboxing conversion (85.1.8); the resulting value becomes the
value of the conditional-and expression. Thus, && computes the same result as &
on booTean operands. It differs only in that the right-hand operand expression is
evaluated conditionally rather than always.

15.24 Conditional-Or Operator | |

The | | operator is like | (815.22.2), but evaluates its right-hand operand only if
the value of its left-hand operand is false. It is syntactically left-associative (it
groups left-to-right). It is fully associative with respect to both side effects and
result value; that is, for any expressions a, b, and c, evaluation of the expression
(@ 11b))11(c) produces the same result, with the same side effects occur-
ring in the same order, as evaluation of the expression (a) | | ((b) | | ().
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Conditional Or Expression:
Conditional AndExpression
Conditional OrExpression || Conditional AndExpression

Each operand of | | must be of type boolean or Boolean, or a compile-time
error occurs. The type of a conditional-or expression is aways boolean.

At run time, the left-hand operand expression is evaluated first; if the result
has type Boolean, it is subjected to unboxing conversion (85.1.8); if the resulting
value is true, the value of the conditional-or expression is true and the right-
hand operand expression is not evaluated. If the value of the left-hand operand is
false, then the right-hand expression is evaluated; if the result hastype Boolean,
it is subjected to unboxing conversion (85.1.8); the resulting value becomes the
value of the conditional-or expression.

Thus, | | computes the same result as | on boolean or Boolean operands. It
differs only in that the right-hand operand expression is evaluated conditionally
rather than always.

15.25 Conditional Operator ? :

The conditional operator ? : uses the boolean value of one expression to decide
which of two other expressions should be evaluated.

The conditional operator is syntactically right-associative (it groups right-to-
left), sothat a?b:c?d:e?f:g meansthe sameasa?b: (c?d: (e?f:g)).

Conditional Expression:
Conditional Or Expression
Conditional OrExpression ? Expression : Conditional Expression

The conditional operator has three operand expressions; ? appears between
the first and second expressions, and : appears between the second and third
expressions.

The first expression must be of type boolean or Boolean, or a compile-time
error occurs.

Note that it is a compile-time error for either the second or the third operand
expression to be an invocation of avoid method. In fact, it is not permitted for a
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conditional expression to appear in any context where an invocation of a void
method could appear (814.8).
The type of aconditional expression is determined as follows:

* If the second and third operands have the same type (which may be the null
type), then that is the type of the conditional expression.

« If one of the second and third operandsiis of type boolean and the type of the
other is of type Boolean, then the type of the conditional expression isbool-
ean.

* If one of the second and third operands is of the null type and the type of the
other is a reference type, then the type of the conditional expression is that
reference type.

» Otherwise, if the second and third operands have types that are convertible
(85.1.8) to numeric types, then there are several cases:

o If one of the operands is of type byte or Byte and the other is of type short
or Short, then the type of the conditional expressionisshort.

o If one of the operandsis of type T where T isbyte, short, or char, and the
other operand is a constant expression of type int whose valueis represent-
ableintype T, then the type of the conditional expressionisT.

o If one of the operands is of type Byte and the other operand is a constant
expression of type int whose value is representable in type byte, then the
type of the conditional expressionisbyte.

o If one of the operandsis of type Short and the other operand is a constant
expression of type int whose value is representable in type short, then the
type of the conditional expression is short.

o If one of the operandsis of type Character and the other operand is a con-
stant expression of type int whose value is representable in type char, then
the type of the conditional expression is char.

o Otherwise, binary numeric promotion (85.6.2) is applied to the operand
types, and the type of the conditional expression isthe promoted type of the
second and third operands. Note that binary numeric promation performs
unboxing conversion (85.1.8) and value set conversion (85.1.13).

» Otherwise, the second and third operands are of types S1 and S2 respectively.
Let T2 be the type that results from applying boxing conversion to S1, and let
T2 be the type that results from applying boxing conversion to 2. The type of
the conditional expression is the result of applying capture conversion
(85.1.10) to lub(T1, T2) (815.12.2.7).
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At run time, the first operand expression of the conditional expressionis eval-
uated first; if necessary, unboxing conversion is performed on the result; the
resulting boolean value isthen used to choose either the second or the third oper-
and expression:

« If thevalue of thefirst operand is true, then the second operand expression is
chosen.

« If the value of the first operand is false, then the third operand expression is
chosen.

The chosen operand expression is then evaluated and the resulting value is con-
verted to the type of the conditional expression as determined by the rules stated
above. This conversion may include boxing (85.1.7) or unboxing conversion. The
operand expression not chosen is not evaluated for that particular evaluation of the
conditional expression.

15.26 Assignment Operators

There are 12 assignment operators; all are syntactically right-associative (they
group right-to-1eft). Thus, a=b=c means a=(b=c), which assigns the value of c to
b and then assigns the value of b to a.

AssignmentExpression:
Conditional Expression
Assignment

Assignment:
LeftHandSde AssignmentOperator AssignmentExpression

LeftHandS de:
ExpressionName
FieldAccess
ArrayAccess

AssignmentOperator: one of

e

= = /= %: += - <<= >>= >>>= &: A= | =

Theresult of thefirst operand of an assignment operator must be avariable, or
a compile-time error occurs. This operand may be a named variable, such as a
local variable or afield of the current object or class, or it may be acomputed vari-
able, as can result from a field access (815.11) or an array access (815.13). The
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type of the assignment expression is the type of the variable after capture conver-
sion (85.1.10).

At run time, the result of the assignment expression isthe value of the variable
after the assignment has occurred. The result of an assignment expression is not
itself avariable.

A variable that is declared final cannot be assigned to (unless it is a defi-
nitely unassigned (816) blank final variable (84.12.4)), because when an access of
such afinal variableisused as an expression, theresult isavalue, not avariable,
and so it cannot be used as the first operand of an assignment operator.

15.26.1 Simple Assignment Operator =

A compile-time error occurs if the type of the right-hand operand cannot be con-
verted to the type of the variable by assignment conversion (85.2).
At run time, the expression is evaluated in one of three ways.

* If the left-hand operand expression is a field access expression (815.11) ef,
possibly enclosed in one or more pairs of parentheses, then:

o Firgt, the expression eis evaluated. If evaluation of e completes abruptly, the
assignment expression completes abruptly for the same reason.

o Next, the right hand operand is evaluated. If evaluation of the right hand
expression completes abruptly, the assignment expression completes
abruptly for the same reason.

o Then, if the field denoted by e.f is not static and the result of the evalua-
tion of e aboveisnull, then aNul1PointerException isthrown.

o Otherwise, the variable denoted by e.f is assigned the value of theright hand
operand as computed above.

« If the left-hand operand is an array access expression (815.13), possibly
enclosed in one or more pairs of parentheses, then:

o Firg, the array reference subexpression of the left-hand operand array
access expression is evaluated. If this evaluation completes abruptly, then
the assignment expression completes abruptly for the same reason; the
index subexpression (of the left-hand operand array access expression) and
the right-hand operand are not evaluated and no assignment occurs.

o Otherwise, the index subexpression of the left-hand operand array access
expression is evaluated. If this evaluation completes abruptly, then the
assignment expression completes abruptly for the same reason and the
right-hand operand is not evaluated and no assignment occurs.
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Otherwise, the right-hand operand is evaluated. If this evaluation completes
abruptly, then the assignment expression completes abruptly for the same
reason and no assignment occurs.

Otherwise, if the value of the array reference subexpressionisnul1, then no
assignment occurs and aNul1PointerException isthrown.

Otherwise, the value of the array reference subexpression indeed refers to
an array. If the value of the index subexpression is less than zero, or greater
than or equal to the length of the array, then no assignment occurs and an
ArrayIndexOutOfBoundsException isthrown.

Otherwise, the value of the index subexpression is used to select a compo-
nent of the array referred to by the value of the array reference subexpres-
sion. This component is avariable; cal itstype SC. Also, let TC be the type
of the left-hand operand of the assignment operator as determined at com-
pile time.

If TC isaprimitive type, then SC is necessarily the same as TC. The value of
the right-hand operand is converted to the type of the selected array compo-
nent, is subjected to value set conversion (85.1.13) to the appropriate stan-
dard value set (not an extended-exponent value set), and the result of the
conversion is stored into the array component.

If TCis areference type, then SC may not be the same as TC, but rather a
type that extends or implements TC. Let RC be the class of the object
referred to by the value of the right-hand operand at run time.

The compiler may be able to prove at compile time that the array compo-
nent will be of type TC exactly (for example, TC might be final). But if the
compiler cannot prove at compile time that the array component will be of
type TC exactly, then a check must be performed at run time to ensure that
the class RC is assignment compatible (85.2) with the actual type SC of the
array component. This check is similar to a narrowing cast (85.5, §15.16),
except that if the check fails, an ArrayStoreException is thrown rather
than aClassCastException. Therefore:

o If class RC is not assignable to type SC, then no assignment occurs and an
ArrayStoreException isthrown.

Otherwise, the reference value of the right-hand operand is stored into the
selected array component.

» Otherwise, three steps are required:
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o Firgt, the left-hand operand is evaluated to produce avariable. If this evalua-
tion completes abruptly, then the assignment expression completes abruptly
for the same reason; the right-hand operand is not evaluated and no assign-
ment occurs.

o Otherwise, the right-hand operand is evaluated. If this evaluation completes
abruptly, then the assignment expression completes abruptly for the same
reason and no assignment occurs.

Otherwise, the value of the right-hand operand is converted to the type of the
left-hand variable, is subjected to value set conversion (85.1.13) to the appropriate
standard value set (not an extended-exponent value set), and the result of the con-
version is stored into the variable. The rules for assignment to an array component
areillustrated by the following example program:

class ArrayReferenceThrow extends RuntimeException { }
class IndexThrow extends RuntimeException { }
class RightHandSideThrow extends RuntimeException { }

class ITlustrateSimpleArrayAssignment {

static Object[] objects = { new Object(), new Object() };
static Thread[] threads = { new Thread(), new Thread() };

static Object[] arrayThrow() {
throw new ArrayReferenceThrow();
}

static int indexThrow() { throw new IndexThrow(); }

static Thread rightThrow() {

throw new RightHandSideThrow();
}
static String name(Object q) {

String sq = g.getClass() .getName();
int k = sg.lastIndexOf('.");
return (k < @) ? sq : sq.substring(k+1);

3

static void testFour(Object[] x, int j, Object y) {
String sx = x == null ? "null" : name(x[0]) + "s";
String sy = name(y);
System.out.printin();
try {

System.out.print(sx + "[throw]=throw => ");
x[indexThrow()] = rightThrow();
System.out.printin("Okay!");

} catch (Throwable e) { System.out.printin(name(e)); }
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try {
System.out.print(sx + "[throw]=" + sy + " => ");
x[indexThrow()] = y;
System.out.printin("Okay!");
} catch (Throwable e) { System.out.println(name(e)); }
try {
System.out.print(sx + "[" + j + "]=throw => ");
x[j]1 = rightThrow();
System.out.printin("Okay!");
} catch (Throwable e) { System.out.println(name(e)); }

try {
System.out.print(sx + "[" + j + "]="+ sy + " = ");
x[3] = y;

System.out.printin("Okay!");

} catch (Throwable e) { System.out.printin(name(e)); }

}
public static void main(String[] args) {

try {
System.out.print("throw[throw]=throw => ");
arrayThrow() [indexThrow()] = rightThrow();
System.out.printin("Okay!");

} catch (Throwable e) { System.out.println(name(e)); }

try {
System.out.print("throw[throw]=Thread => ");
arrayThrow() [indexThrow()] = new Thread();
System.out.printin("Okay!");

} catch (Throwable e) { System.out.println(name(e)); }

try {
System.out.print("throw[1]=throw => ");
arrayThrow() [1] = rightThrow();
System.out.printin("Okay!");

} catch (Throwable e) { System.out.println(name(e)); }

try {
System.out.print("throw[1]=Thread => ");
arrayThrow() [1] = new Thread();
System.out.printin("Okay!");

} catch (Throwable e) { System.out.printin(name(e)); }

testFour(null, 1, new StringBuffer());

testFour(null, 1, new StringBuffer());

testFour(null, 9, new Thread());

testFour(null, 9, new Thread());

testFour(objects, 1, new StringBuffer());

testFour(objects, 1, new Thread());
testFour(objects, 9, new StringBuffer());
testFour(objects, 9, new Thread());
testFour(threads, 1, new StringBuffer());
testFour(threads, 1, new Thread());
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testFour(threads, 9, new StringBuffer());
testFour(threads, 9, new Thread());

}
This program prints:
throw[throw]=throw => ArrayReferenceThrow

throw[throw]=Thread => ArrayReferenceThrow
throw[1l]=throw => ArrayReferenceThrow
throw[1l]=Thread => ArrayReferenceThrow

null[throw]=throw => IndexThrow

nulT[throw]=StringBuffer => IndexThrow
null[1]=throw => RightHandSideThrow
null[1]=StringBuffer => NullPointerException

null[throw]=throw => IndexThrow
nulT[throw]=StringBuffer => IndexThrow
null[1]=throw => RightHandSideThrow
null[1]=StringBuffer => NullPointerException

null[throw]=throw => IndexThrow
null[throw]=Thread => IndexThrow
null[9]=throw => RightHandSideThrow
nul1[9]=Thread => NullPointerException

null[throw]=throw => IndexThrow
null[throw]=Thread => IndexThrow
null1[9]=throw => RightHandSideThrow
nul1[9]=Thread => NullPointerException

Objects[throw]=throw => IndexThrow
Objects[throw]=StringBuffer => IndexThrow
Objects[1l]=throw => RightHandSideThrow
Objects[1]=StringBuffer => Okay!
Objects[throw]=throw => IndexThrow
Objects[throw]=Thread => IndexThrow
Objects[1]=throw => RightHandSideThrow
Objects[1]=Thread => Okay!
Objects[throw]=throw => IndexThrow
Objects[throw]=StringBuffer => IndexThrow

Objects[9]=throw => RightHandSideThrow
Objects[9]=StringBuffer => ArrayIndexOutOfBoundsException

Objects[throw]=throw => IndexThrow

Objects[throw]=Thread => IndexThrow
Objects[9]=throw => RightHandSideThrow
Objects[9]=Thread => ArrayIndexOutOfBoundsException
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Threads[throw]=throw => IndexThrow
Threads[throw]=StringBuffer => IndexThrow
Threads[1]=throw => RightHandSideThrow
Threads[1]=StringBuffer => ArrayStoreException
Threads[throw]=throw => IndexThrow
Threads[throw]=Thread => IndexThrow
Threads[1]=throw => RightHandSideThrow
Threads[1]=Thread => Okay!
Threads[throw]=throw => IndexThrow
Threads[throw]=StringBuffer => IndexThrow
Threads[9]=throw => RightHandSideThrow
Threads[9]=StringBuffer => ArrayIndexOutOfBoundsException
Threads[throw]=throw => IndexThrow

Threads[throw]=Thread => IndexThrow
Threads[9]=throw => RightHandSideThrow
Threads[9]=Thread => ArrayIndexOutOfBoundsException

The most interesting case of the lot is the one thirteenth from the end:
Threads[1]=StringBuffer => ArrayStoreException

which indicates that the attempt to store a reference to a StringBuffer into an
array whase components are of type Thread throws an ArrayStoreException.
The code is type-correct at compile time: the assignment has a left-hand side of
type Object[] and aright-hand side of type Object. At run time, the first actual
argument to method testFour is areference to an instance of “array of Thread”
and the third actual argument is areference to an instance of class StringBuffer.

15.26.2 Compound Assignment Operators

A compound assignment expression of the form E1 op= E2 is equivalent to
E1=(T)((EL) op (E2)), where T isthe type of E1, except that £1 is evaluated
only once.

For example, the following code is correct:

short x = 3;
X += 4.6;

and resultsin x having the value 7 because it is equivalent to:

short x = 3;
X = (short)(x + 4.6);

At run time, the expression is evaluated in one of two ways. If the left-hand
operand expression is not an array access expression, then four steps are required:
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First, the left-hand operand is evaluated to produce a variable. If this evalua-
tion completes abruptly, then the assignment expression completes abruptly
for the same reason; the right-hand operand is not evaluated and no assign-
ment occurs.

Otherwise, the value of the left-hand operand is saved and then the right-hand
operand is evaluated. If this evaluation completes abruptly, then the assign-
ment expression completes abruptly for the same reason and no assignment
occurs.

Otherwise, the saved value of the |eft-hand variable and the value of the right-
hand operand are used to perform the binary operation indicated by the com-
pound assignment operator. If this operation completes abruptly, then the
assignment expression completes abruptly for the same reason and no assign-
ment occurs.

Otherwise, the result of the binary operation is converted to the type of the
left-hand variable, subjected to value set conversion (85.1.13) to the appropri-
ate standard value set (not an extended-exponent value set), and the result of
the conversion is stored into the variable.

If the left-hand operand expression is an array access expression (815.13), then
many steps are required:

First, the array reference subexpression of the left-hand operand array access
expression is evaluated. If this evaluation completes abruptly, then the assign-
ment expression completes abruptly for the same reason; the index subexpres-
sion (of the left-hand operand array access expression) and the right-hand
operand are not evaluated and no assignment occurs.

Otherwise, the index subexpression of the left-hand operand array access
expression is evaluated. If this evaluation compl etes abruptly, then the assign-
ment expression completes abruptly for the same reason and the right-hand
operand is not evaluated and no assignment occurs.

Otherwise, if the value of the array reference subexpression is nu11, then no
assignment occurs and aNuT11PointerException isthrown.

Otherwise, the value of the array reference subexpression indeed refers to an
array. If the value of the index subexpression is less than zero, or greater
than or equal to the length of the array, then no assignment occurs and an
ArrayIndexOutOfBoundsException isthrown.

Otherwise, the value of the index subexpression is used to select a component
of the array referred to by the value of the array reference subexpression. The

Compound Assignment Operators 15.26.2
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value of this component is saved and then the right-hand operand is eval uated.
If this evaluation completes abruptly, then the assignment expression com-
pletes abruptly for the same reason and no assignment occurs. (For a simple
assignment operator, the evaluation of the right-hand operand occurs before
the checks of the array reference subexpression and the index subexpression,
but for a compound assignment operator, the evaluation of the right-hand
operand occurs after these checks.)

Otherwise, consider the array component selected in the previous step, whose
value was saved. This component is a variable; call itstype S. Also, let T be
the type of the left-hand operand of the assignment operator as determined at
compiletime.

o If Tisaprimitivetype, then S is necessarily the same as T.

v The saved value of the array component and the value of the right-hand
operand are used to perform the binary operation indicated by the com-
pound assignment operator. If this operation completes abruptly (the only
possibility is an integer division by zero—see §15.17.2), then the assign-
ment expression completes abruptly for the same reason and no assign-
ment occurs.

o Otherwise, the result of the binary operation is converted to the type of the
selected array component, subjected to value set conversion (85.1.13) to
the appropriate standard value set (not an extended-exponent value set),
and the result of the conversion is stored into the array component.

o If Tisareference type, then it must be String. Because class String isa
final class, S must also be String. Therefore the run-time check that is
sometimes required for the simple assignment operator is never required for
a compound assignment operator.

o The saved value of the array component and the value of the right-hand
operand are used to perform the binary operation (string concatenation)
indicated by the compound assignment operator (which is necessarily
+=). If this operation completes abruptly, then the assignment expression
completes abruptly for the same reason and no assignment occurs.

Otherwise, the String result of the binary operation is stored into the array

component.

The rules for compound assignment to an array component are illustrated by

the following example program:

class ArrayReferenceThrow extends RuntimeException { }
class IndexThrow extends RuntimeException { }
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class RightHandSideThrow extends RuntimeException { }
class ITlustrateCompoundArrayAssignment {
static String[] strings = { "Simon", "Garfunkel" };
static double[] doubles = { Math.E, Math.PI };

static String[] stringsThrow() {
throw new ArrayReferenceThrow();

}

static double[] doublesThrow() {
throw new ArrayReferenceThrow();

}

static int indexThrow() { throw new IndexThrow(); }

static String stringThrow() {
throw new RightHandSideThrow();

}

static double doubleThrow() {
throw new RightHandSideThrow();

}

static String name(Object q) {

String sq = gq.getClass().getName();
int k = sqg.lastIndexOf('.");
return (k < @) ? sq : sq.substring(k+1);

}

static void testEight(String[] x, double[] z, int j) {
String sx = (x == null) ? "null" : "Strings";
String sz = (z == null) ? "null" : "doubles";
System.out.printin();
try {

System.out.print(sx + "[throw]+=throw => ");
x[indexThrow()] += stringThrow();
System.out.printin("Okay!");
} catch (Throwable e) { System.out.println(name(e)); }
try {
System.out.print(sz + "[throw]+=throw => ");
z[indexThrow()] += doubleThrow();
System.out.println("Okay!");
} catch (Throwable e) { System.out.printin(name(e)); }
try {
System.out.print(sx + "[throw]+=\"heh\" => ");
x[indexThrow()] += "heh";
System.out.printin("Okay!");
} catch (Throwable e) { System.out.println(name(e)); }
try {
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System.out.print(sz + "[throw]+=

z[indexThrow()] += 12345;
System.out.printin("Okay!");
} catch (Throwable e) { System.out.
try {
System.out.print(sx + "[" + j +
x[j] += stringThrow();
System.out.printin("Okay!");
} catch (Throwable e) { System.out.
try {
System.out.print(sz + "[" + j +
z[j] += doubleThrow();
System.out.println("Okay!");
} catch (Throwable e) { System.out.

try {
System.out.print(sx + "[" + j +
X[j] 4= "heh";

System.out.printin("Okay!");
} catch (Throwable e) { System.out.
try {
System.out.print(sz + "[" + j +
z[j] += 12345;
System.out.printin("Okay!");
} catch (Throwable e) { System.out.

try {

EXPRESS ONS

12345 => ");

println(name(e)); ?

"l+=throw => ");

println(name(e)); ?

"J+=throw => ");

println(name(e)); }

"J+=\"heh\" => ");

printin(name(e)); }

"14=12345 => ");

println(name(e)); }

public static void main(String[] args) {

System.out.print("throw[throw]+=throw => ");

stringsThrow() [indexThrow()] +=
System.out.printin("Okay!");
} catch (Throwable e) { System.out.
try {

stringThrow();

println(name(e)); 3

System.out.print("throw[throw]+=throw => ");

doubTesThrow() [indexThrow()] +=
System.out.println("Okay!");
} catch (Throwable e) { System.out.
try {

doubleThrow();

println(name(e)); }

System.out.print("throw[throw]+=\"heh\" => ");

stringsThrow() [indexThrow()] +=
System.out.println("Okay!");

} catch (Throwable e) { System.out.

try {

llhehll;

printin(name(e)); }

System.out.print("throw[throw]+=12345 => ");

doublesThrow() [indexThrow()] +=
System.out.printin("Okay!");

} catch (Throwable e) { System.out.

try {

12345;

println(name(e)); ?
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System.out.print("throw[1]+=throw => ");
stringsThrow() [1] += stringThrow();
System.out.printin("Okay!");
} catch (Throwable e) { System.out.println(name(e)); }
try {
System.out.print("throw[1]+=throw => ");
doubTesThrow() [1] += doubleThrow();
System.out.printin("Okay!");
} catch (Throwable e) { System.out.println(name(e)); }
try {
System.out.print("throw[1]+=\"heh\" => ");
stringsThrow() [1] += "heh";
System.out.println("Okay!");
} catch (Throwable e) { System.out.printin(name(e)); }
try {
System.out.print("throw[1]+=12345 => ");
doublesThrow() [1] += 12345;
System.out.printin("Okay!");
} catch (Throwable e) { System.out.println(name(e)); }
testEight(null, null, 1);

testEight(null, null, 9);
testEight(strings, doubles, 1);
testEight(strings, doubles, 9);

}
This program prints:

throw[throw]+=throw => ArrayReferenceThrow
throw[throw]+=throw => ArrayReferenceThrow
throw[throw]+="heh" => ArrayReferenceThrow
throw[throw]+=12345 => ArrayReferenceThrow
throw[1]+=throw => ArrayReferenceThrow
throw[1]+=throw => ArrayReferenceThrow
throw[1]+="heh" => ArrayReferenceThrow
throw[1]+=12345 => ArrayReferenceThrow

null[throw]+=throw => IndexThrow

null[throw]+=throw => IndexThrow
null[throw]+="heh" => IndexThrow
null[throw]+=12345 => IndexThrow
null[1]+=throw => NullPointerException
null[1]+=throw => NullPointerException
null[1]+="heh" => NullPointerException
nulT1[1]+=12345 => NullPointerException

null[throw]+=throw => IndexThrow

null[throw]+=throw => IndexThrow
null[throw]+="heh" => IndexThrow
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nulT[throw]+=12345 => IndexThrow

nul1[9]+=throw => NullPointerException
nul1[9]+=throw => NullPointerException
nul1[9]+="heh" => NullPointerException
nul1[9]+=12345 => NullPointerException

Strings[throw]+=throw => IndexThrow
doubles[throw]+=throw => IndexThrow
Strings[throw]+="heh" => IndexThrow
doubles[throw]+=12345 => IndexThrow
Strings[1l]+=throw => RightHandSideThrow
doubles[1]+=throw => RightHandSideThrow
Strings[1]+="heh" => Okay!
doubles[1]+=12345 => Okay!
Strings[throw]+=throw => IndexThrow

doubles[throw]+=throw => IndexThrow
Strings[throw]+="heh" => IndexThrow
doubles[throw]+=12345 => IndexThrow
Strings[9]+=throw => ArrayIndexOutOfBoundsException
doubles[9]+=throw => ArrayIndexOutOfBoundsException
Strings[9]+="heh" => ArrayIndexOutOfBoundsException
doubles[9]+=12345 => ArrayIndexOutOfBoundsException

The most interesting cases of the lot are tenth and eleventh from the end:
Strings[1l]+=throw => RightHandSideThrow
doubles[1]+=throw => RightHandSideThrow

They are the cases where a right-hand side that throws an exception actually gets
to throw the exception; moreover, they are the only such cases in the lot. This
demonstrates that the evaluation of the right-hand operand indeed occurs after the
checks for anull array reference value and an out-of-bounds index value.

The following program illustrates the fact that the value of the left-hand side
of acompound assignment is saved before the right-hand side is evaluated:

class Test {

public static void main(String[] args) {
int k = 1;
int[] a={11};
k += (k = 4) * (k + 2);
af[0] += (af[0] = 4) * (a[@] + 2);
System.out.printin("k==" + k + " and a[0]==" + a[0]);

}
This program prints:

k==25 and a[@]==25
The value 1 of k is saved by the compound assignment operator += before its
right-hand operand (k = 4) * (k + 2) is evaluated. Evaluation of this right-hand
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operand then assigns 4 to k, calculates the value 6 for k + 2, and then multiplies
4 by 6 to get 24. Thisis added to the saved value 1 to get 25, which is then stored
into k by the += operator. An identical analysis appliesto the case that usesa[0].
In short, the statements

k += (k = 4) * (k + 2);

afo] += (a[o] = 4) * (a[0] + 2);

behave in exactly the same manner as the statements:
k =k + (k=4)* (k +2);
a[0] = a[@] + (a[o] = 4) * (a[o] + 2);

15.27 Expression

An Expression is any assignment expression:

Expression:
AssignmentExpression

Unlike C and C++, the Java programming language has no comma operator.

15.28 Constant Expression

ConstantExpression:
Expression

A compile-time constant expression is an expression denoting a value of
primitive type or a String that does not complete abruptly and is composed
using only the following:

o Literals of primitive type and literals of type String (83.10.5)
» Caststo primitive types and casts to type String

» The unary operators +, -, ~,and ! (but not ++ or --)

» The multiplicative operators *, /, and %

 The additive operators + and -

» The shift operators <<, >>, and >>>

» Therelational operators <, <=, >, and >= (but not instanceof)

15.28
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e The equality operators==and !=

» The bitwise and logical operators &, A, and |

» The conditional-and operator && and the conditional-or operator | |
» Theternary conditional operator ? :

 Parenthesized expressions whose contained expression is a constant expres-
sion.

» Simple names that refer to constant variables (84.12.4).

» Qualified names of the form TypeName . Identifier that refer to constant vari-
ables (84.12.4).

Compile-time constant expressions are used in case labelsin switch statements
(814.11) and have a specid significance for assignment conversion (85.2). Com-
pile-time constants of type String are always “interned” so as to share unique
instances, using the method String.intern.

A compile-time constant expression is always treated as FP-strict (815.4),
even if it occurs in a context where a non-constant expression would not be con-
sidered to be FP-strict.

Examples of constant expressions:

true

(short) (1%2%3%4%5%6)

Integer.MAX_VALUE / 2

2.0 * Math.PI

"The integer " + Long.MAX_VALUE + " is mighty big."



CHAPTER 16

Definite Assignment

EACH local variable (814.4) and every blank final (84.12.4) field (88.3.1.2)
must have a definitely assigned value when any access of its value occurs. An
access to its value consists of the simple name of the variable occurring anywhere
in an expression except asthe left-hand operand of the simple assignment operator
=. A Java compiler must carry out a specific conservative flow analysis to make
surethat, for every access of alocal variable or blank final field £, fisdefinitely
assigned before the access; otherwise a compile-time error must occur.

Similarly, every blank final variable must be assigned at most once; it must
be definitely unassigned when an assignment to it occurs. Such an assignment is
defined to occur if and only if either the simple name of the variable, or its simple
name qualified by this, occurs on the left hand side of an assignment operator. A
Java compiler must carry out a specific conservative flow analysis to make sure
that, for every assignment to a blank final variable, the variable is definitely
unassigned before the assignment; otherwise a compile-time error must occur.

The remainder of this chapter is devoted to a precise explanation of the words
“definitely assigned before” and “ definitely unassigned before”.

The idea behind definite assignment is that an assignment to the local variable
or blank final field must occur on every possible execution path to the access.
Similarly, the idea behind definite unassignment is that no other assignment to the
blank final variable is permitted to occur on any possible execution path to an
assignment. The analysis takes into account the structure of statements and
expressions; it also provides a specia treatment of the expression operators !, &&,
|l,and ? :, and of boolean-valued constant expressions.

For example, a Java compiler recognizes that k is definitely assigned before
its access (as an argument of a method invocation) in the code:
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int k;
if (v > 0 & (k = System.in.read()) >= 0)
System.out.printin(k);
}

because the access occurs only if the value of the expression:

v > 0 && (k = System.in.read()) >= 0
is true, and the value can be true only if the assignment to k is executed (more
properly, evaluated).

Similarly, a Java compiler will recognize that in the code:

{
int k;
while (true) {
k = n;
if (k >= 5) break;
n ==6;
}
System.out.printin(k);
}

the variable k is definitely assigned by the whi1e statement because the condition
expression true never has the value false, so only the break statement can
cause the while statement to complete normally, and k is definitely assigned
before the break statement.

On the other hand, the code

{
int k;
while (n < 4) {
k = n;
if (k >= 5) break;
n ==~6;
}
System.out.printin(k);// kisnot “definitely assigned” before this
}

must be rejected by a Java compiler, because in this case the while statement
is not guaranteed to execute its body as far as the rules of definite assignment are
concerned.

Except for the specia treatment of the conditional boolean operators &&, | |,
and ? : and of boolean-valued constant expressions, the values of expressions
are not taken into account in the flow analysis.

For example, a Java compiler must produce a compile-time error for the code:

{

int k;
int n = 5;



DEFINITE ASSGNMENT Definite Assignment

if (n > 2
k = 3;
System.out.printin(k);// kisnot “definitely assigned” before this
}
even though the value of n is known at compile time, and in principle it can be
known at compile time that the assignment to k will always be executed (more
properly, evaluated). A Java compiler must operate according to the rules laid out
in this section. The rules recognize only constant expressions; in this example, the
expression n > 2 is not a constant expression as defined in §15.28.
As another example, a Java compiler will accept the code:
void flow(boolean flag) {

int k;
if (flag)
k = 3;
else
k = 4;

System.out.printIn(k);
}

as far as definite assignment of k is concerned, because the rules outlined in this
section allow it to tell that k is assigned no matter whether the flag is true or
false. But the rules do not accept the variation:
void flow(boolean flag) {
int k;
if (flag)
k = 3;
if (!flag)
k = 4;
System.out.printin(k); // kisnot“definitely assigned” before here
}

and so compiling this program must cause a compile-time error to occur.
A related example illustrates rules of definite unassignment. A Java compiler
will accept the code:

void unflow(boolean flag) {
final int k;

if (flag) {
k = 3;
System.out.println(k);
}
else {
k = 4;
System.out.printin(k);
}
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asfar as definite unassignment of k is concerned, because the rules outlined in this
section allow it to tell that k is assigned at most once (indeed, exactly once) no
matter whether theflag is true or false. But the rules do not accept the variation:
void unflow(boolean flag) {
final int k;
if (flag)
k = 3;
System.out.println(k);

3
if (Iflag) {
k = 4; // kisnot “definitely unassigned” before here
System.out.printin(k);
}
}

and so compiling this program must cause a compile-time error to occur.
In order to precisely specify al the cases of definite assignment, the rulesin
this section define several technical terms:

» whether avariable is definitely assigned before a statement or expression;
» whether avariable is definitely unassigned before a statement or expression;
» whether avariable is definitely assigned after a statement or expression; and

» whether avariable is definitely unassigned after a statement or expression.

For boolean-valued expressions, the last two are refined into four cases:
» whether avariable is definitely assigned after the expression when trug;
» whether avariable is definitely unassigned after the expression when true;
» whether avariable is definitely assigned after the expression when false; and

» whether avariable is definitely unassigned after the expression when false.

Here when true and when false refer to the value of the expression.

For example, thelocal variable k is definitely assigned a value after evaluation
of the expression

a && ((k=m) > 5)
when the expression is true but not when the expressionis false (becauseif ais
false, then the assignment to k is not necessarily executed (more properly, evalu-
ated)).

The phrase“ V is definitely assigned after X” (where visalocal variable and X
isastatement or expression) means“ V is definitely assigned after X if X completes
normally”. If X completes abruptly, the assignment need not have occurred, and
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the rules stated here take this into account. A peculiar consequence of this defini-
tion is that “V is definitely assigned after break;” is aways true! Because a
break statement never completes normally, it is vacuously true that v has been
assigned avalueif the break statement completes normally.

Similarly, the statement “ v is definitely unassigned after X" (where Visavari-
able and X is a statement or expression) means “ V is definitely unassigned after X
if X completes normally”. An even more peculiar consequence of this definitionis
that “V is definitely unassigned after break;” is aways true! Because a break
statement never completes normally, it is vacuously true that vV has not been
assigned avalue if the break statement completes normally. (For that matter, itis
also vacuously true that the moon is made of green cheese if the break statement
completes normally.)

In all, there are four possibilities for a variable V after a statement or expres-
sion has been executed:

» Visdefinitely assigned and is not definitely unassigned.
(The flow analysis rules prove that an assignment to V has occurred.)

» Visdefinitely unassigned and is not definitely assigned.
(The flow analysis rules prove that an assignment to v has not occurred.)

 Visnot definitely assigned and is not definitely unassigned.
(The rules cannot prove whether or not an assignment to V has occurred.)

* Visdefinitely assigned and is definitely unassigned.
(It isimpossible for the statement or expression to complete normally.)

To shorten the rules, the customary abbreviation “iff” is used to mean “if and
only if”. We also use an abbreviation convention: if a rule contains one or more
occurrences of “[un]assigned” then it stands for two rules, one with every occur-
rence of “[un]assigned” replaced by “definitely assigned” and one with every
occurrence of “[un]assigned” replaced by “ definitely unassigned”.

For example:

* Vis[un]assigned after an empty statement iff it is [un]assigned before the
empty statement.

should be understood to stand for two rules:
* V is definitely assigned after an empty statement iff it is definitely assigned
before the empty statement.

* V is definitely unassigned after an empty statement iff it is definitely unas-
signed before the empty statement.

16
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The definite unassignment analysis of loop statements raises a special prob-
lem. Consider the statement while (€) S. In order to determine whether Vis defi-
nitely unassigned within some subexpression of e, we need to determine whether
Vis definitely unassigned before e. One might argue, by analogy with the rule for
definite assignment (816.2.10), that Vv is definitely unassigned before eiff it is def-
initely unassigned before the whi1e statement. However, such arule isinadequate
for our purposes. If e evaluatesto true, the statement S will be executed. Later, if v
is assigned by S, then in the following iteration(s) Vv will have aready been
assigned when e is evaluated. Under the rule suggested above, it would be possi-
ble to assign vV multiple times, which is exactly what we have sought to avoid by
introducing these rules.

A revised rule would be: “ Vv is definitely unassigned before eiff it is definitely
unassigned before the while statement and definitely unassigned after S”. How-
ever, when we formulate the rule for S, wefind: * Vis definitely unassigned before
S iff it is definitely unassigned after e when true”. This leads to a circularity. In
effect, V is definitely unassigned before the loop condition e only if it is unas-
signed after the loop as awhole!

We break this vicious circle using a hypothetical analysis of the loop condi-
tion and body. For example, if we assume that V is definitely unassigned before e
(regardless of whether Vv really is definitely unassigned before €), and can then
prove that vV was definitely unassigned after e then we know that e does not assign
V. Thisis stated more formally as:

Assuming V is definitely unassigned before e, V is definitely unassigned after
e.

Variations on the above analysis are used to define well founded definite unas-
signment rules for all loop statements in the language.

Throughout the rest of this chapter, we will, unless explicitly stated otherwise,
write V to represent a local variable or a blank final field (for rules of definite
assignment) or ablank final variable (for rules of definite unassignment). Like-
wise, we will use a, b, ¢, and e to represent expressions, and S and T to represent
statements. We will use the phrase a is V to mean that a is either the simple name
of the variable V, or Vs simple name qualified by this (ignoring parentheses). We
will use the phrase ais not Vv to mean the negation of ais V.
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16.1 Definite Assignment and Expressions

16.1.1 Boolean Constant Expressions

» Vis[un]assigned after any constant expression whose value is true when
fase.

* Vis[un]assigned after any constant expression whose value is false when
true.

Because a constant expression whose value is true never has the value false,
and a constant expression whose value is false never hasthe value true, the two
preceding rules are vacuoudly satisfied. They are helpful in analyzing expressions
involving the operators && (816.1.2), | | (816.1.3), ! (816.1.4), and ? : (816.1.5).

* Vis[un]assigned after any constant expression whose value is true when true
iff Vis[un]assigned before the constant expression.

* Vis[un]assigned after any constant expression whose value is false when
faseiff Vis[un]assigned before the constant expression.

* V is [un]assigned after a boolean-valued constant expression e iff V is
[un]assigned after e when true and V is [un]assigned after e when false. (This
is equivalent to saying that V is [un]assigned after e iff V is [un]assigned
beforee.)

16.1.2 The Boolean Operator &&

* Vis[un]assigned after a && b when true iff Vv is [un]assigned after b when
true.

Vis [un]assigned after a && b when false iff V is [un]assigned after a when
false and v is[un]assigned after b when false.

Vis[un]assigned before aiff v is[un]assigned before a && b.

Vis[un]assigned before b iff v is[un]assigned after a when true.

Vis[un]assigned after a && b iff V is[un]assigned after a && b when true and
Vis[un]assigned after a && b when false.
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16.1.3 The Boolean Operator | |

* Vis[un]assigned after a | | b when trueiff Vis[un]assigned after a when true

and Vv is[un]assigned after b when true.

V is [un]assigned after a | | b when false iff V is [un]assigned after b when
fase.

Vis[un]assigned before aiff v is[un]assigned beforea | | b.
Vis[un]assigned before b iff v is[un]assigned after a when false.

Vis[un]assigned after a | | biff Vis[un]assigned after a | | b when true and
Vis[un]assigned after a | | b when false.

16.1.4 TheBoolean Operator !
* Vis[un]assigned after !a when trueiff Vv is[un]assigned after a when false.
* Vis[un]assigned after 'a when falseiff V is[un]assigned after a when true.
» Vis[un]assigned before aiff v is[un]assigned before !a.

e Vis[un]assigned after !a iff Vv is[un]assigned after 'a when true and V is

[un]assigned after !'a when false. (This is equivalent to saying that V is
[un]assigned after 'aiff v is[un]assigned after a.)

16.1.5 TheBoolean Operator ? :

Suppose that b and ¢ are boolean-valued expressions.

* Vis[un]assigned after a ? b : ¢ when true iff V is[un]assigned after b when

true and V is[un]assigned after ¢ when true.

Vis[un]assigned after a ? b : ¢ when false iff v is[un]assigned after b when
false and v is[un]assigned after c when false.

Vis[un]assigned before a iff Vis[un]assigned beforea? b : c.
Vis[un]assigned before b iff v is[un]assigned after a when true.
Vis[un]assigned before c iff Vis[un]assigned after a when false.

Vis[un]assigned after a? b : ciff Vis[un]assigned after a? b : ¢c when true
and Vis[un]assigned after a? b : cwhen false.
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16.1.6 The Conditional Operator ? :

Suppose that b and ¢ are expressions that are not bool ean-val ued.

* V is [un]assigned after a ? b : c iff V is [un]assigned after b and V is
[un]assigned after c.

e Vis[un]assigned before aiff v is[un]assigned beforea? b : c.
» Vis[un]assigned before b iff v is[un]assigned after a when true.

* Vis[un]assigned before ciff V is[un]assigned after a when false.

16.1.7 Other Expressions of Type boolean

Suppose that e is a an expression of type boolean and is not a boolean constant
expression, logical complement expression !a, conditional-and expression a &&
b, conditional-or expression a | | b, or conditional expressiona? b : c.

* Vis[un]assigned after e when true iff Vv is[un]assigned after e.
* Vis[un]assigned after e when falseiff V is[un]assigned after e.

16.1.8 Assignment Expressions

Consider an assignment expressiona=b,a+=b,a-=b,a*=b,a/=b,a%=b, a
<<=b,a>>=b,a>>>=b,a&=b,a|=b,orasr=h.

» Visdefinitely assigned after the assignment expression iff either
o aisvor
o Visdefinitely assigned after b.

» Visdefinitely unassigned after the assignment expression iff aisnot v and v
is definitely unassigned after b.
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» Vis[un]assigned before a iff Vv is[un]assigned before the assignment expres-
sion.

* Vis[un]assigned before b iff v is[un]assigned after a.

Note that if ais Vv and V is not definitely assigned before a compound assign-
ment such as a &= b, then a compile-time error will necessarily occur. The first
rule for definite assignment stated above includes the disunct “ais v” even for
compound assignment expressions, not just simple assignments, so that vV will be
considered to have been definitely assigned at later points in the code. Including
thedigunct “ais V" does not affect the binary decision asto whether a program is
acceptable or will result in a compile-time error, but it affects how many different
points in the code may be regarded as erroneous, and so in practice it can improve
the quality of error reporting. A similar remark appliesto the inclusion of the con-
junct “aisnot v” inthefirst rule for definite unassignment stated above.

16.1.9 Operators++ and --

» Visdefinitely assigned after ++a, --a, a++, or a-- iff either ais v or Visdef-
initely assigned after the operand expression.

* Visdefinitely unassigned after ++a, --a, a++, or a-- iff aisnot Vand Vv is
definitely unassigned after the operand expression.

* Vis[un]assigned before aiff v is[un]assigned before ++a, --a, a++, or a--.

16.1.10 Other Expressions

If an expression is nhot a boolean constant expression, and is not a preincrement
expression ++a, predecrement expression --a, postincrement expression as++,
postdecrement expression a--, logica complement expression !a, conditional-
and expression a && b, conditional-or expression a | | b, conditional expression a
? b : ¢, or assignment expression, then the following rules apply:

* If the expression has no subexpressions, V is[un]assigned after the expression
iff Vv is [un]assigned before the expression. This case applies to literals,
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names, this (both qualified and unqualified), unqualified class instance cre-
ation expressions with no arguments, initialized array creation expressions
whose initializers contain no expressions, unqualified superclass field access
expressions, named method invocations with no arguments, and unqualified
superclass method invocations with no arguments.

« If the expression has subexpressions, V is[un]assigned after the expression iff
Vis[un]assigned after its rightmost immediate subexpression.

There is a piece of subtle reasoning behind the assertion that a variable v can
be known to be definitely unassigned after a method invocation. Taken by itself, at
face value and without qualification, such an assertion is not always true, because
an invoked method can perform assignments. But it must be remembered that, for
the purposes of the Java programming language, the concept of definite unassign-
ment isapplied only to blank final variables. If Visablank final local variable,
then only the method to which its declaration belongs can perform assignmentsto
V. If visablank final field, then only a constructor or an initializer for the class
containing the declaration for V can perform assignments to V; no method can per-
form assignmentsto V. Finally, explicit constructor invocations (88.8.7.1) are han-
dled specialy (816.9); dthough they are syntactically similar to expression
statements containing method invocations, they are not expression statements and
therefore the rules of this section do not apply to explicit constructor invocations.

For any immediate subexpression y of an expression x, V is [un]assigned
beforey iff one of the following situationsis true:

* yistheleftmost immediate subexpression of x and V is[un]assigned before x.

« yistheright-hand operand of abinary operator and V is[un]assigned after the
left-hand operand.

e X IS an array access, y is the subexpression within the brackets, and V is
[un]assigned after the subexpression before the brackets.

» xisaprimary method invocation expression, y isthe first argument expression
in the method invocation expression, and V is [un]assigned after the primary
expression that computes the target object.

» X isamethod invocation expression or a class instance creation expression; y
is an argument expression, but not the first; and V is [un]assigned after the
argument expression to the left of .

* X is a qualified class instance creation expression, y is the first argument
expression in the class instance creation expression, and V is [un]assigned
after the primary expression that computes the qualifying object.
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» Xisan array instance creation expression; y is a dimension expression, but not
thefirst; and V is[un]assigned after the dimension expression to the left of .

* X isan array instance creation expression initialized via an array initializer; y
isthe array initializer in x; and V is [un]assigned after the dimension expres-
sion to the left of y.

16.2 Definite Assignment and Statements

16.2.1 Empty Statements

* Vis[un]assigned after an empty statement iff it is [un]assigned before the
empty statement.

16.2.2 Blocks

* A blank final member field v is definitely assigned (and moreover is not defi-
nitely unassigned) before the block that is the body of any method in the
scope of V.

* A local variable Vv is definitely unassigned (and moreover is not definitely
assigned) before the block that is the body of the constructor, method,
instance initializer or static initializer that declares V.

* Let Cbeaclass declared within the scope of V. Then:

o Visdefinitely assigned before the block that is the body of any constructor,
method, instance initializer or static initidizer declared in C iff V is defi-
nitely assigned before the declaration of C.

Note that there are no rulesthat would allow usto conclude that Vis definitely
unassigned before the block that is the body of any constructor, method,
instance initializer or static initializer declared in C. We can informally con-
clude that vis not definitely unassigned before the block that is the body of
any constructor, method, instance initializer or static initializer declared in C,
but there is no need for such arule to be stated explicitly.

* C[un]assigned after an empty block iff it is [un]assigned before the empty
block.
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e Vis[un]assigned after a nonempty block iff it is [un]assigned after the last
statement in the block.

* Vis[un]assigned before the first statement of the block iff it is [un]assigned
before the block.

* V is [un]assigned before any other statement S of the block iff it is
[un]assigned after the statement immediately preceding S in the block.
We say that V is definitely unassigned everywherein ablock B iff
» Visdefinitely unassigned before B.

* Visdefinitely assigned after e in every assignment expressonV=¢,V+=¢,V
-=e,V*=e,V/=eV%=6 V<=6 V>>=¢, V>>>=e, V&=¢ V|=¢g oV
A= ethat occursin B.

» Visdefinitely assigned before before every expression ++V, --V, V++, or V--.
that occursin B.

These conditions are counterintuitive and require some explanation. Consider a
simple assignment V = e. If V is definitely assigned after e, then either:

1. The assignment occurs in dead code, and V is vacouusly definitely assigned.
Inthis case, the assignment will not actually take place, and we can assumethat
V is not being assigned by the assignment expression.

2. V was aready assigned by an earlier expression prior to e. In this case the cur-
rent assignment will cause a compile-time error.

So, we can conclude that if the conditions are met by a program that causes no
compile time error, then any assignmentsto V in B will not actualy take place at
run time.

16.2.3 Local Class Declaration Statements

* Vis[un]assigned after alocal class declaration statement iff it is [un]assigned
before the local class declaration statement.

16.2.4 Local Variable Declaration Statements

* Vis[un]assigned after alocal variable declaration statement that contains no
variable initializers iff it is [un]assigned before the local variable declaration
Statement.
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V is definitely assigned after a local variable declaration statement that con-
tains at least one variable initiaizer iff either it is definitely assigned after the
last variable initializer in the local variable declaration statement or the last
variableinitializer in the declaration isin the declarator that declares V.

V is definitely unassigned after alocal variable declaration statement that con-
tains at least one variable initiaizer iff it is definitely unassigned after the last
variableinitializer in the local variable declaration statement and the last vari-
ableinitializer in the declaration is not in the declarator that declares V.

Vis[un]assigned before thefirst variable initializer in alocal variable declara-
tion statement iff it is [un]assigned before the local variable declaration state-
ment.

V isdefinitely assigned before any variable initializer e other than the first one
in the local variable declaration statement iff either v is definitely assigned
after the variable initializer to the left of e or the initializer expression to the
left of eisin the declarator that declares V.

V is definitely unassigned before any variable initializer e other than the first
one in the local variable declaration statement iff V is definitely unassigned
after the variable initializer to the left of e and the initializer expression to the
left of eisnot in the declarator that declares V.

16.2.5 Labeled Statements

V is [un]assigned after a labeled statement L: S (where L is alabel) iff v is
[un]assigned after S and V is [un]assigned before every break statement that
may exit the labeled statement L : S.

Vis[un]assigned before S iff Vis[un]assigned before L :S.

16.2.6 Expression Statements
* Vis[un]assigned after an expression statement e; iff it is[un]assigned after e.

* Vis[un]assigned before eiff it is[un]assigned before e; .
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16.2.7 4if Statements

The following rules apply to a statement if (e) S:

* V is [un]assigned after if (e) S iff V is [un]assigned after S and V is
[un]assigned after e when false.

» Vis[un]assigned before eiff Vis[un]assigned beforeif (e) S.

* Vis[un]assigned before S iff Vis[un]assigned after e when true.

The following rules apply to astatement if (€) Selse T:

* Vis[un]assigned after if () S else Tiff Vis[un]assigned after S and V is
[un]assigned after T.

» Vis[un]assigned before e iff Vis[un]assigned beforeif (e) S else T.
» Vis[un]assigned before S iff v is[un]assigned after e when true.

e Vis[un]assigned before T iff v is[un]assigned after e when false.

16.2.8 assert Statements

The following rules apply both to a statement assert €l and to a statement
assertel:e2 :

» Visdefinitely [un]assigned before el iff Vis definitely [un]assigned before the
assert statement.

* Visdefinitely assigned after the assert statement iff Vis definitely assigned
before the assert statement.

» Visdefinitely unassigned after the assert statement iff v is definitely unas-
signed before the assert statement and V is definitely unassigned after el
when true.

The following rule appliesto a statement assert el: €2 :

* Visdefinitely [un]assigned before e2 iff Vis definitely [un]assigned after el
when false.

16.2.9 switch Statements

* Vis[un]assigned after a switch statement iff al of the following are true:

o Either there is a default labd in the switch block or V is [un]assigned
after the switch expression.

541



16.2.10 while Statements DEFINITE ASSIGNMENT

o Either there are no switch labels in the switch block that do not begin a
block-statement-group (that is, there are no switch labels immediately
before the “}” that ends the switch block) or Vv is [un]assigned after the
switch expression.

o Either the switch block contains no block-statement-groups or V is
[un]assigned after the last block-statement of the last block-statement-

group.
o Vis[un]assigned before every break statement that may exit the switch
statement.

* Vis[un]assigned before the switch expression iff V is[un]assigned before the
switch statement.
If a switch block contains at least one block-statement-group, then the following
rules also apply:

» Vis[un]assigned before the first block-statement of the first block-statement-
group in the switch block iff V is[un]assigned after the switch expression.

* V is [un]assigned before the first block-statement of any block-statement-
group other than the first iff V is[un]assigned after the switch expression and
Vis[un]assigned after the preceding block-statement.

16.2.10 while Statements

* Vis[un]assigned after while (€) S iff V is[un]assigned after e when false
and V is [un]assigned before every break statement for which the while
statement is the break target.

* Visdefinitely assigned before e iff V is definitely assigned before the while
statement.

» Visdefinitely unassigned before e iff all of the following conditions hold:
o Visdefinitely unassigned before the while statement.

o Assuming V is definitely unassigned before e, V is definitely unassigned
after S.

o Assuming V is definitely unassigned before e, V is definitely unassigned
before every continue statement for which thewh1ile statement isthe con-
tinue target.

* Vis[un]assigned before S iff v is[un]assigned after e when true.
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16.2.11 do Statements

* Vis[un]assigned after do S while (€); iff V is [un]assigned after e when
false and V is [un]assigned before every break statement for which the do
statement is the break target.

» V is definitely assigned before S iff v is definitely assigned before the do
Statement.

* Visdefinitely unassigned before S iff all of the following conditions hold:
o Visdefinitely unassigned before the do statement.

o Assuming V is definitely unassigned before S, V is definitely unassigned
after e when true.

» Vis[un]assigned before e iff v is[un]assigned after S and V is [un]assigned
before every continue statement for which the do statement is the continue
target.

16.2.12 for Statements

Therules herein cover the basic for statement (814.14.1). Since the enhanced for
(814.14.2) statement is defined by traslation to a basic for statement, no special
rules need to be provided for it.

» Vis[un]assigned after a for statement iff both of the following are true:

o Either a condition expression is not present or V is [un]assigned after the
condition expression when false.

o Vis[un]assigned before every break statement for which the for statement
isthe break target.

* Vis[un]assigned before the initialization part of the for statement iff Vv is
[un]assigned before the for statement.

» Visdefinitely assigned before the condition part of the for statement iff v is
definitely assigned after the initialization part of the for statement.

» Visdefinitely unassigned before the condition part of the for statement iff all
of the following conditions hold:

o Visdefinitely unassigned after the initialization part of the for statement.

o Assuming V is definitely unassigned before the condition part of the for
statement, V is definitely unassigned after the contained statement.
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o Assuming V is definitely unassigned before the contained statement, V is
definitely unassigned before every continue statement for which the for
statement is the continue target.

* Vis[un]assigned before the contained statement iff either of the following is
true:

o A condition expression is present and V is [un]assigned after the condition
expression when true.

o No condition expression is present and V is [un]assigned after the initializa-
tion part of the for statement.

* Vis[un]assigned before the incrementation part of the for statement iff V is
[un]assigned after the contained statement and V is [un]assigned before every
continue statement for which the for statement is the continue target.

16.2.12.1 Initialization Part

o If the initialization part of the for statement is a local variable declaration
statement, the rules of §16.2.4 apply.

e Otherwise, if the initialization part is empty, then V is [un]assigned after the
initialization part iff v is[un]assigned before the initialization part.

» Otherwise, three rules apply:
o Vis[un]assigned after the initialization part iff V is[un]assigned after the
last expression statement in the initialization part.

o Vis [un]assigned before the first expression statement in the initialization
part iff V is[un]assigned before theinitialization part.

o Vis[un]assigned before an expression statement E other than thefirst in the
initialization part iff V is[un]assigned after the expression statement imme-
diately preceding E.

16.2.12.2 Incrementation Part

o If the incrementation part of the for statement is empty, then V is
[un]assigned after the incrementation part iff V is [un]assigned before the
incrementation part.

» Otherwise, three rules apply:

o Vis[un]assigned after the incrementation part iff v is[un]assigned after the
last expression statement in the incrementation part.
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o Vis[un]assigned before the first expression statement in the incrementation
part iff V is[un]assigned before the incrementation part.

o Vis[un]assigned before an expression statement E other than the first in the
incrementation part iff vV is [un]assigned after the expression statement
immediately preceding E.

16.2.13 break, continue, return, and throw Statements

» By convention, we say that V is [un]assigned after any break, continue,
return, Or throw statement. The notion that avariableis“[un]assigned after”
a statement or expression really means “is [un]assigned after the statement or
expression completes normally”. Because a break, continue, return, or
throw statement never completes normally, it vacuously satisfies this notion.

* In a return statement with an expression e or a throw statement with an
expression e, V is [un]assigned before e iff V is [un]assigned before the
return or throw statement.

16.2.14 synchronized Statements
e Vis[un]assigned after synchronized (e) S iff Vis[un]assigned after S.

» Vis[un]assigned before eiff v is[un]assigned before the statement synchro-
nized (e S.

* Vis[un]assigned before S iff v is[un]assigned after e.

16.2.15 try Statements

These rules apply to every try statement, whether or not it hasa finally block:

* Vis [un]assigned before the try block iff V is [un]assigned before the try
statement.

* V is definitely assigned before a catch block iff Vv is definitely assigned
before the try block.
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» Visdefinitely unassigned before a catch block iff all of the following condi-
tions hold:
o Visdefinitely unassigned after the try block.

o Visdefinitely unassigned before every return statement that belongs to the
try block.

o Visdefinitely unassigned after ein every statement of the form throw e that
belongs to the try block.

o Vis definitely unassigned after el for every statement of the form assert
el, that occursin the try block.

o Visdefinitely unassigned after e2 in every statement of the form assert el
: €2 that occursin the try block.

o Vis definitely unassigned before every break statement that belongs to the
try block and whose break target contains (or is) the try statement.

o Vis definitely unassigned before every continue statement that belongs to
the try block and whose continue target contains the try statement.

If a try statement does not have a finally block, then thisrule also applies:
* Vis[un]assigned after the try statement iff V is [un]assigned after the try
block and V is[un]assigned after every catch block in the try statement.
If atry statement does have a finally block, then these rules also apply:

» Visdefinitely assigned after the try statement iff at least one of the following
istrue:

o Visdefinitely assigned after the try block and V is definitely assigned after
every catch block in thetry statement.

o Visdefinitely assigned after the finally block.

o Visdefinitely unassigned after a try statement iff V is definitely unassigned
after the finally block.

» Visdefinitely assigned before the finally block iff V is definitely assigned
before the try statement.

* V is definitely unassigned before the finally block iff all of the following
conditions hold:

o Visdefinitely unassigned after the try block.
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o Visdefinitely unassigned before every return statement that belongs to the
try block.

o V is definitely unassigned after e in before every statement of the form
throw ethat belongsto the try block.

o V is definitely unassigned after el for every statement of the form assert
el, that occursin the try block.

o Visdefinitely unassigned after €2 in every statement of the form assert el
. e2 that occurs in the try block.

o Visdefinitely unassigned before every break statement that belongs to the
try block and whose break target contains (or is) the try statement.

o Vis definitely unassigned before every continue statement that belongs to
the try block and whose continue target contains the try statement.

o Visdefinitely unassigned after every catch block of the try statement.

16.3 Definite Assignment and Parameters

A formal parameter v of a method or constructor is definitely assigned (and
moreover is not definitely unassigned) before the body of the method or con-
structor.

An exception parameter V of a catch clauseis definitely assigned (and more-
over is not definitely unassigned) before the body of the catch clause.

16.4 Definite Assignment and Array Initializers

V is[un]assigned after an empty array initializer iff it is [un]assigned before
the empty array initializer.

V is [un]assigned after a nonempty array initializer iff it is [un]assigned after
the last variableinitiaizer in the array initializer.

Vis[un]assigned before thefirst variableinitializer of the array initializer iff it
is [un]assigned before the array initializer.

Vv is[un]assigned before any other variable initializer T of the array initializer
iff it is [un]assigned after the variable initializer to the left of I in the array
initializer.

16.4
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16.5 Definite Assignment and Enum Constants

The rules determining when a variable is definitely assigned or definitely unas-
signed before an enum constant are given §16.8.

DiscussioN

This is because an enum constant is essentially a static final field (§88.3.1.1, §8.3.1.2) that
is initialized with a class instance creation expression (815.9).

» Visdefinitely assigned before the declaration of a class body of an enum con-
stant with no arguments that is declared within the scope of Viff Visdefinitely
assigned before the enum constant.

* Vis definitely assigned before the declaration of the class body of an enum
constant with arguments that is declared within the scope of V iff Vis defi-
nitely assigned after the last argument expression of the enum constant

The definite assignment/unassignment status of any construct within the class
body of an enum constant is governed by the usual rules for classes.
Let y be an argument of an enum constant, but not the first. Then:

* Vis[un]assigned beforey iff it is[un]assigned after the argument to the | eft of
y

Otherwise:

e V is [un]assigned before the first argument to an enum constant iff it is
[un]assigned before the enum constant

16.6 Definite Assignment and Anonymous Classes
» Visdefinitely assigned before an anonymous class declaration (815.9.5) that

is declared within the scope of V iff V is definitely assigned after the class
instance creation expression that declares the anonymous class.
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DiscussIioN

It should be clear that if an anonymous class is implicitly defined by an enum constant, the
rules of section §16.5 apply.

16.7 Definite Assignment and Member Types

Let Cbeaclass, and let v be ablank final member field of C. Then:
» Vis definitely assigned (and moreover, not definitely unassigned) before the
declaration of any member type of C.
Let C be aclass declared within the scope of V. Then:

* Visdefinitely assigned before a member type (88.5, §9.5) declaration of C iff
Vis definitely assigned before the declaration of C.

16.8 Definite Assignment and Static I nitializers

Let Cbe aclass declared within the scope of V. Then:

» Visdefinitely assigned before an enum constant or static variable initializer of
Ciff Visdefinitely assigned before the declaration of C.

Note that there are no rules that would allow usto conclude that v is definitely
unassigned before a static variable initializer or enum constant. We can informally
conclude that Vv is not definitely unassigned before any static variable initializer of
C, but there is no need for such aruleto be stated explicitly.

Let C be a class, and let vV be a blank final static member field of C,
declared in C. Then:

* Visdefinitely unassigned (and moreover is not definitely assigned) before the
leftmost enum constant, static initializer or static variable initializer of C.

» Vis[un]assigned before an enum constant, static initializer or static vari-
able initiaizer of C other than the leftmost iff Vis [un]assigned after the pre-
ceding enum constant, static initializer or static variable initializer of C.

16.8
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Let C be aclass, and let V be a blank final static member field of C,
declared in a superclass of C. Then:

* Vis definitely assigned (and moreover is not definitely unassigned) before
every enum constant of C.

* Visdefinitely assigned (and moreover is not definitely unassigned) before the
block that isthe body of a static initializer of C.

* Vis definitely assigned (and moreover is not definitely unassigned) before
every static variable initializer of C.

16.9 Definite Assignment, Constructors, and Instance I nitializers

Let C be aclass declared within the scope of V. Then:

* Visdefinitely assigned before an instance variable initializer of Ciff vis defi-
nitely assigned before the declaration of C.

Note that there are no rules that would allow us to conclude that Vis definitely
unassigned before an instance variable initializer. We can informally conclude that
Vv is not definitely unassigned before any instance variable initializer of C, but
thereis no need for such arule to be stated explicitly.

Let Cbe aclass, and let V be ablank final non-static member field of C,
declared in C. Then:

Vis definitely unassigned (and moreover is not definitely assigned) before the
leftmost instance initializer or instance variable initializer of C.

* Vis[un]assigned before an instance initializer or instance variable initializer
of C other than the leftmost iff Vis [un]assigned after the preceding instance
initializer or instance variable initializer of C.

The following rules hold within the constructors of class C:

* Vis definitely assigned (and moreover is not definitely unassigned) after an
alternate constructor invocation (88.8.7.1).

* Visdefinitely unassigned (and moreover is not definitely assigned) before an
explicit or implicit superclass constructor invocation (88.8.7.1).

* If Chas no instance initializers or instance variable initializers, then v is not
definitely assigned (and moreover is definitely unassigned) after an explicit or
implicit superclass constructor invocation.
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* If Chasat least oneinstance initializer or instance variable initializer then vis
[un]assigned after an explicit or implicit superclass constructor invocation iff
Vis [un]assigned after the rightmost instance initializer or instance variable
initializer of C.

Let Cbeaclass, and let Vbeablank final member field of C, declared in a super-
classof C. Then:

» Visdefinitely assigned (and moreover is not definitely unassigned) before the
block that is the body of a constructor, or instance initializer of C.

* Vis definitely assigned (and moreover is not definitely unassigned) before
every instance variableinitializer of C.

16.9
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CHAPTER 1;

Threads and Locké

W HILE most of the discussion in the preceding chaptersis concerned only with
the behavior of code as executed a single statement or expression at atime, that is,
by a single thread, each Java virtual machine can support many threads of execu-
tion at once. These threads independently execute code that operates on values
and objectsresiding in a shared main memory. Threads may be supported by hav-
ing many hardware processors, by time-slicing a single hardware processor, or by
time-slicing many hardware processors.

Threads are represented by the Thread class. The only way for auser to cre-
ate athread isto create an object of this class; each thread is associated with such
an object. A thread will start when the start() method isinvoked on the corre-
sponding Thread object.

The behavior of threads, particularly when not correctly synchronized, can be
confusing and counterintuitive. This chapter describes the semantics of multi-
threaded programs; it includes rules for which values may be seen by aread of
shared memory that is updated by multiple threads. As the specification is similar
to the memory models for different hardware architectures, these semantics are
known as the Java programming language memory model. When no confusion
can arise, we will simply refer to these rules as "the memory model”.

These semantics do not prescribe how a multithreaded program should be
executed. Rather, they describe the behaviors that multithreaded programs are
allowed to exhibit. Any execution strategy that generates only allowed behaviors
is an acceptabl e execution strategy.
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17.1 Locks

The Java programming language provides multiple mechanisms for commu-
nicating between threads. The most basic of these methods is synchronization,
which is implemented using monitors. Each object in Java is associated with a
monitor, which athread can lock or unlock. Only one thread at atime may hold a
lock on a monitor. Any other threads attempting to lock that monitor are blocked
until they can obtain alock on that monitor. A thread t may lock a particular mon-
itor multiple times; each unlock reverses the effect of one lock operation.

The synchronized statement (814.19) computes a reference to an object; it
then attempts to perform alock action on that object's monitor and does not pro-
ceed further until the lock action has successfully completed. After the lock
action has been performed, the body of the synchronized statement is executed.
If execution of the body is ever completed, either normally or abruptly, an unlock
action is automatically performed on that same monitor.

A synchronized method (88.4.3.6) automatically performs a lock action
when it isinvoked; its body is not executed until the lock action has successfully
completed. If the method is an instance method, it locks the monitor associated
with the instance for which it was invoked (that is, the object that will be known as
this during execution of the body of the method). If the method is static, it locks
the monitor associated with the C1ass object that represents the classin which the
method is defined. If execution of the method's body is ever completed, either nor-
mally or abruptly, an unlock action is automatically performed on that same mon-
itor.

The Java programming language neither prevents nor requires detection of
deadlock conditions. Programs where threads hold (directly or indirectly) locks on
multiple objects should use conventional techniques for deadlock avoidance, cre-
ating higher-level locking primitives that don't deadlock, if necessary.

Other mechanisms, such as reads and writes of volatile variables and classes
provided in the java.util.concurrent package, provide aternative ways of
synchronization.

17.2 Notation in Examples

The memory model specified herein is not fundamentally based in the object
oriented nature of the Java programming language. For conciseness and simplicity
in our examples, we often exhibit code fragments without class or method defini-
tions, or explicit dereferencing. Most examples consist of two or more threads
containing statements with access to local variables, shared global variables or
instance fields of an object. We typically use variables namessuch asrl or r2 to
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indicate variables local to amethod or thread. Such variables are not accessible by
other threads.

Restrictions of partial ordersand functions. We use f |4 to denote the func-
tion given by restricting the domain of f to d: for al xind, f |4(x) = f(x) and for all
x not ind, f|g(X) is undefined. Similarly, we use p|q to represent the restriction of
the partial order p to the elementsin d: for all x,y in d, p(x, y) if and only if p|q(X,
y) = p(X). If either x or y are not in d, then it is not the case that p|4(X, ).

17.3 Incorrectly Synchronized Programs Exhibit Surprising
Behaviors

The semantics of the Java programming language allow compilers and micro-
processors to perform optimizations that can interact with incorrectly synchro-
nized code in ways that can produce behaviors that seem paradoxical.

Trace 17.1: Surprising results caused by statement reordering - original code

Thread 1 | Thread 2
Lr2=A; 3 r1=§;
22B=1,; 4. A=2

Trace 17.2: Surprising results caused by statement reordering - valid compiler
transformation

Thread 1 | Thread?2
B= 1; ri= §;
r2=A; A=2;

Consider, for example, the example shown in Trace 17.1. This program uses
local variables r1 and r2 and shared variablesA and B. Initially, A == B == 0.

It may appear that theresult r2 == 2, rl == 1lisimpossible. Intuitively,
either instruction 1 or instruction 3 should come first in an execution. If instruc-
tion 1 comesfirst, it should not be able to see the write at instruction 4. |f instruc-
tion 3 comes firgt, it should not be able to see the write at instruction 2.

If some execution exhibited this behavior, then we would know that instruc-
tion 4 came before instruction 1, which came before instruction 2, which came
before instruction 3, which came before instruction 4. This is, on the face of it,
absurd.

However, compilers are allowed to reorder the instructions in either thread,
when this does not affect the execution of that thread in isolation. If instruction 1

17.3
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is reordered with instruction 2, as shown in Trace 17.2, then it is easy to see how
theresult r2 == 2 and r1 == 1 might occur.

To some programmers, this behavior may seem ““broken". However, it should
be noted that this code is improperly synchronized:

» thereisawritein one thread,
« aread of the same variable by another thread,

« and the write and read are not ordered by synchronization.

This situation is an example of a data race (817.4.5). When code contains a
datarace, counterintuitive results are often possible.

Several mechanisms can produce the reordering in Trace 17.2. The just-in-
time compiler and the processor may rearrange code. In addition, the memory
hierarchy of the architecture on which avirtual machineis run may make it appear
asif code is being reordered. In this chapter, we shall refer to anything that can
reorder code as a compiler.

Trace 17.3: Surprising results caused by forward substitution

Thread 1 Thread 2
ri=p r6=p;
r2=rlx; ré.x =3,
r3=q;

r4 =r3.x;

r5=rl.x;

Trace 17.4: Surprising results caused by forward substitution

Thread 1 Thread 2
ri=np; ré =p;
r2=rlx; re.x =3;
r3=gq;

r4 =r3.x;

r5=rz;

Another example of surprising results can be seen in Trace 17.3. Initialy: p
== ¢, p.x == 0. Thisprogram is also incorrectly synchronized; it writes to
shared memory without enforcing any ordering between those writes.
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One common compiler optimization involves having the value read for r2
reused for r5: they are both reads of r1.x with no intervening write. This situa-
tion isshown in Trace 17.4.

Now consider the case where the assignment to r6.x in Thread 2 happens
between the first read of r1.x and theread of r3.xinThread 1. If the compiler
decidesto reusethevalue of r2 for the r5,then r2 and r5 will have the value O,
and r4 will have the value 3. From the perspective of the programmer, the value
stored at p.x has changed from 0O to 3 and then changed back.

17.4 Memory Model

A memory model describes, given a program and an execution trace of that
program, whether the execution trace is a legal execution of the program. The
Java programming language memory model works by examining each read in an
execution trace and checking that the write observed by that read is valid accord-
ing to certain rules.

The memory model describes possible behaviors of a program. An imple-
mentation is free to produce any codeit likes, aslong as all resulting executions of
a program produce aresult that can be predicted by the memory model.

DiscussIioN

This provides a great deal of freedom for the implementor to perform a myriad of code
transformations, including the reordering of actions and removal of unnecessary synchroni-
zation.

The memory model determines what values can be read at every point in the
program. The actions of each thread in isolation must behave as governed by the
semantics of that thread, with the exception that the values seen by each read are
determined by the memory model. When we refer to this, we say that the program
obeys intra-thread semantics. Intra-thread semantics are the semantics for single
threaded programs, and allow the complete prediction of the behavior of athread
based on the values seen by read actions within the thread. To determine if the
actions of thread t in an execution are legal, we simply evaluate the implementa-
tion of thread t asit would be performed in a single threaded context, as defined in
therest of this specification.

17.4
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Each time the evaluation of thread t generates an inter-thread action, it must
match the inter-thread action a of t that comes next in program order. If aisaread,
then further evaluation of t uses the value seen by a as determined by the memory
model.

This section provides the specification of the Java programming language
memory model except for issues dealing with final fields, which are described in
§17.5.

17.4.1 Shared Variables

Memory that can be shared between threads is called shared memory or heap
memory.

All instance fields, static fields and array elements are stored in heap memory.
In this chapter, we use the term variable to refer to both fields and array elements.
Local variables (814.4), formal method parameters (88.4.1) or exception handler
parameters are never shared between threads and are unaffected by the memory
model.

Two accesses to (reads of or writes to) the same variable are said to be con-
flicting if at least one of the accessesis awrite.

17.4.2 Actions

An inter-thread action is an action performed by one thread that can be
detected or directly influenced by another thread. There are severa kinds of inter-
thread action that a program may perform:

* Read (normal, or non-volatile). Reading avariable.
» Write (normal, or non-volatile). Writing a variable.
» Synchronization actions, which are:

o Volatileread. A volatile read of avariable.

o Volatilewrite. A volatile write of avariable.

o Lock. Locking a monitor

o Unlock. Unlocking a monitor.

o The (synthetic) first and last action of athread

o Actions that start a thread or detect that a thread has terminated, as
described in §17.4.4.
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» External Actions. An external action is an action that may be observable out-
side of an execution, and has a result based on an environment external to the
execution.

» Thread divergence actions (817.4.9). A thread divergence action is only per-
formed by athread that isin an infinite loop in which no memory, synchroni-
zation or external actions are performed. If a thread performs a thread
divergence action, it will be followed by an infinite number of thread diver-
gence actions.

DiscussIioN

Thread divergence actions are introduced to model how a thread may cause all other
threads to stall and fail to make progress

This specification is only concerned with inter-thread actions. We do not need
to concern ourselves with intra-thread actions (e.g., adding two local variables and
storing the result in a third local variable). As previously mentioned, all threads
need to obey the correct intra-thread semantics for Java programs. We will usually
refere to inter-thread actions more succinctly as ssmply actions.

An action aisdescribed by atuple<t, k, v, u >, comprising:

* t - thethread performing the action
* k- thekind of action

* v - the variable or monitor involved in the action. For lock actions, v is the
monitor being locked; for unlock actions, it is the monitor being unlocked. If
the action is (volatile or non-volatile) read, v is the variable being read. If the
action isa (volatile or non-volatile) write, v isthe variable being written

* U - an arbitrary unique identifier for the action

An externa action tuple contains an additional component, which contains the
results of the external action as perceived by the thread performing the action.
This may be information as to the success or failure of the action, and any values
read by the action.

Parameters to the external action (e.g., which bytes are written to which
socket) are not part of the external action tuple. These parameters are set up by
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other actions within the thread and can be determined by examining the intra-
thread semantics. They are not explicitly discussed in the memory model.

In non-terminating executions, not all external actions are observable. Non-
terminating executions and observable actions are discussed in §17.4.9.

17.4.3 Programsand Program Order

Among al the inter-thread actions performed by each thread t, the program
order of t isatotal order that reflects the order in which these actions would be
performed according to the intra-thread semantics of t.

A set of actions is sequentially consistent if all actions occur in atotal order
(the execution order) that is consistent with program order and furthermore, each
read r of avariable v sees the value written by the write w to v such that:

« W comes beforer in the execution order, and

« thereisno other write w' such that w comes beforew' and w' comes beforer in
the execution order.

Sequential consistency is avery strong guarantee that is made about visibility
and ordering in an execution of a program. Within a sequentially consistent execu-
tion, there is a total order over all individual actions (such as reads and writes)
which is consistent with the order of the program, and each individual action is
atomic and isimmediately visible to every thread.

If aprogram has no data races, then all executions of the program will appear
to be sequentially consistent.

Sequential consistency and/or freedom from data races still allows errors aris-
ing from groups of operations that need to be perceived atomically and are not.

DiscussioN

If we were to use sequential consistency as our memory model, many of the compiler and
processor optimizations that we have discussed would be illegal. For example, in Trace
17.3, as soon as the write of 3to p.x occurred, subsequent reads of that location would be
required to see that value.
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17.4.4 Synchronization Order

Every execution has a synchronization order. A synchronization order is a
total order over al of the synchronization actions of an execution. For each thread
t, the synchronization order of the synchronization actions (817.4.2) intisconsis-
tent with the program order (817.4.3) of t.

Synchronization actions induce the synchronized-with relation on actions,
defined as follows:

» Anunlock action on monitor m synchronizes-with all subsequent lock actions
on m (where subsequent is defined according to the synchronization order).

» A write to a volatile variable (88.3.1.4) v synchronizes-with al subsequent
reads of v by any thread (where subsequent is defined according to the syn-
chronization order).

» An action that starts a thread synchronizes-with the first action in the thread it
starts.

» The write of the default value (zero, false or nul1) to each variable synchro-
nizes-with the first action in every thread. Although it may seem a little
strange to write a default value to a variable before the object containing the
variable is allocated, conceptually every object is created at the start of the
program with its default initialized values.

» Thefina action in athread T1 synchronizes-with any action in another thread
T2 that detects that T1 has terminated. T2 may accomplish this by calling
T1l.isAlive() orTl.join().

« If thread T1 interrupts thread T2, the interrupt by T1 synchronizes-with any
point where any other thread (including T2) determinesthat T2 has been inter-
rupted (by having an InterruptedException thrown or by invoking
Thread.interrupted or Thread.isInterrupted).

The source of asynchronizes-with edgeis called arelease, and the destination
iscaled an acquire.

17.45 Happens-before Order

Two actions can be ordered by a happens-before relationship. If one action hap-
pens-before another, then the first is visible to and ordered before the second.

If we have two actions x and y, we write hb(x, y) to indicate that X happens-
beforey.
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e If x and y are actions of the same thread and x comes before y in program
order, then hb(x, y).

» There is a happens-before edge from the end of a constructor of an object to
the start of afinalizer (812.6) for that object.

* If an action x synchronizes-with afollowing action y, then we also have hb(x,
y)-
« If hb(x, y) and hb(y, 2), then hb(x, 2).

It should be noted that the presence of a happens-before relationship between
two actions does not necessarily imply that they have to take place in that order in
an implementation. If the reordering produces results consistent with a legal exe-
cution, itisnot illegal.

DiscussioN

For example, the write of a default value to every field of an object constructed by a thread
need not happen before the beginning of that thread, as long as no read ever observes that
fact.

More specifically, if two actions share a happens-before relationship, they do not nec-
essarily have to appear to have happened in that order to any code with which they do not
share a happens-before relationship. Writes in one thread that are in a data race with
reads in another thread may, for example, appear to occur out of order to those reads.

The wait methods of class Object have lock and unlock actions associated
with them; their happens-before relationships are defined by these associated
actions. These methods are described further in 817.8.

The happens-before relation defines when data races take place.

A set of synchronization edges, S is sufficient if it isthe minimal set such that
the transitive closure of Swith the program order determines al of the happens-
before edges in the execution. This set is unique.
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DiscussIioN

It follows from the above definitions that:
* An unlock on a monitor happens-before every subsequent lock on that monitor.
A write to a volatile field (88.3.1.4) happens-before every subsequent read of that field.
* A call to start() on a thread happens-before any actions in the started thread.

« All actions in a thread happen-before any other thread successfully returns from a
join() on that thread.

» The default initialization of any object happens-before any other actions (other than
default-writes) of a program.

When a program contains two conflicting accesses (817.4.1) that are not ordered
by a happens-before relationship, it is said to contain a data race.

The semantics of operations other than inter-thread actions, such as reads of
array lengths (810.7), executions of checked casts (85.5, §15.16), and invocations
of virtual methods (815.12), are not directly affected by data races.

DiscussioN

Therefore, a data race cannot cause incorrect behavior such as returning the wrong length
for an array.

A program is correctly synchronized if and only if all sequentialy consistent exe-
cutions are free of data races.

DiscussIoN

A subtle example of incorrectly synchronized code can be seen below. The figures show
two different executions of the same program, both of which contain conflicting accesses to
shared variables X and Y. The two threads in the program lock and unlock a monitor M1.
In execution (a), there is a happens-before relationship between all pairs of conflicting
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accesses. However, in execution (b), there is no happens-before ordering between the con-
flicting accesses to X. Because of this, the program is not correctly synchronized.

Thread 1
Thread 2
X=1
Lock M1
Lock M1
ri=y
Y=1
Unlock M1
Unlock M1
r2=X

(8) Thread 1 acquires lock first; Accessesto X are ordered by happens-before
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Thread 2
Thread 1
Lock M1
X=1 l
ri=yY
Lock M1 l
Unlock M1
Y=1 l
r2=X
Unlock M1 l

:

(b) Thread 2 acquires lock first; Accessesto X not ordered by happens-before

If aprogram is correctly synchronized, then all executions of the program will
appear to be sequentially consistent (817.4.3).
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DiscussIioN

This is an extremely strong guarantee for programmers. Programmers do not need to rea-
son about reorderings to determine that their code contains data races. Therefore they do
not need to reason about reorderings when determining whether their code is correctly
synchronized. Once the determination that the code is correctly synchronized is made, the
programmer does not need to worry that reorderings will affect his or her code.

A program must be correctly synchronized to avoid the kinds of counterintuitive behav-
iors that can be observed when code is reordered. The use of correct synchronization
does not ensure that the overall behavior of a program is correct. However, its use does
allow a programmer to reason about the possible behaviors of a program in a simple way;
the behavior of a correctly synchronized program is much less dependent on possible reor-
derings. Without correct synchronization, very strange, confusing and counterintuitive
behaviors are possible.

We say that aread r of avariable v is allowed to observe awrite w to viif, in
the happens-before partial order of the execution trace:

* risnot ordered before w (i.e., it is not the case that hb(r, w), and
« thereis no intervening write w' to v (i.e., no write w' to v such that hb(w, w')
and hb(w', r).

Informally, aread r is allowed to see the result of awrite w if there is no hap-
pens-before ordering to prevent that read.
A set of actions Ais happens-before consistent if for all readsr in A, it isnot

Trace 17.5 Behavior allowed by happens-before consistency, but not sequential
consistency. May observe r2 ==0, r1 ==

Thread 1 Thread 2
B=1, A=2
r2=A; rl1=B;

the case that either hb(r, W(r)), where W(r) is the write action seen by r or that
there exists awrite w in A such that w.v = r.v and hb(\W(r), w) and hb(w, r).
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DiscussIioN

In a happens-before consistent set of actions, each read sees a write that it is allowed to
see by the happens-before ordering.

For example, the behavior shown in Trace 17.5 is happens-before consistent, since there
are execution orders that allow each read to see the appropriate write.

Initially, A == B == 0. In this case, since there is no synchronization, each read can see
either the write of the initial value or the write by the other thread. One such execution order
is
1: B = 1;

3: A=2;
2: A; // sees initial write of 0
4 B; // sees initial write of 0

r2 =
rl =

Similarly, the behavior shown in Trace 17.5 is happens-before consistent, since there
is an execution order that allows each read to see the appropriate write. An execution order
that displays that behavior is:

1: r2 = A; // sees write of A =2
3: r1l = B; // sees write of B =1
2: B =1;
4: A = 2;

In this execution, the reads see writes that occur later in the execution order. This may
seem counterintuitive, but is allowed by happens-before consistency. Allowing reads to see
later writes can sometimes produce unacceptable behaviors.

17.4.6 Executions
An execution E is described by atuple < P, A, po, so, W, V, sw, hb >, compris-
ing:
* P-aprogram
* A- asetof actions

* po - program order, which for each thread t, is a total order over all actions
performed by tin A

* 50 - synchronization order, which is a total order over all synchronization
actionsin A

* W - awrite-seen function, which for each read r in A, gives W(r), the write
actionseenby r in E.

V- avaue-written function, which for each writewin A, gives V(w), the value
written by win E.
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* W - synchronizes-with, a partial order over synchronization actions.

* hb - happens-before, a partial order over actions

Note that the synchronizes-with and happens-before are uniquely determined
by the other components of an execution and the rules for well-formed executions
(817.4.7).

An execution is happens-before consistent if its set of actions is happens-
before consistent(817.4.5).

17.4.7 Wdll-Formed Executions

We only consider well-formed executions. An execution E= < P, A, po, so, W,

V, sw, hb > iswell formed if the following conditions are true:

1. Each read seesa write to the same variable in the execution. All reads and
writes of volatile variables are volatile actions. For all readsr in A, we have
W(r) in Aand W(r).v = r.v. Thevariabler.v isvolatileif and only if r isavol-
atileread, and the variable w.v isvolatileif and only if wisavolatile write.

2. Happens-before order isa partial order. Happens-before order is given by the
transitive closure of synchronizes-with edges and program order. It must be a
valid partial order: reflexive, transitive and antisymmetric.

3. The execution obeys intra-thread consistency. For each thread t, the actions
performed by t in A are the same as would be generated by that thread in pro-
gram-order in isolation, with each write w writing the value V(w), given that
each read r sees the value V(W(r)). Values seen by each read are determined
by the memory model. The program order given must reflect the program
order in which the actions would be performed according to the intra-thread
semantics of P.

4. The execution is happens-before consistent (817.4.6).

5. Theexecution obeys synchronization-order consistency. For al volatilereadsr
in A, itisnot the case that either so(r, W(r)) or that there existsawritewin A
such that w.v = r.v and so(\W(r), w) and so(w, r).

17.4.8 Executionsand Causality Requirements

A well-formed execution E = < P, A, po, so, W, V, sw, hb > is validated by
committing actions from A. If al of the actions in A can be committed, then the
execution satisfies the causality requirements of the Java programming language
memory model.

Starting with the empty set as Cp, we perform a sequence of steps where we
take actions from the set of actions A and add them to a set of committed actions
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C; to get anew set of committed actions Cj+ 1. To demonstrate that thisis reason-
able, for each C; we need to demonstrate an execution E; containing C; that meets
certain conditions.

Formally, an execution E satisfies the causality requirements of the Java pro-
gramming language memory model if and only if there exist

e Setsof actions Cy, Cq, ... such that
o Cpisthe empty set
o Cjisaproper subset of Cj;q

o A=[](CyCqCo..)

If Aisfinite, then the sequence Cp, Cq, ... will befinite, endinginaset C, = A.
However, if Aisinfinite, then the sequence Cy, Cy, ... may beinfinite, and it
must be the case that the union of al elements of thisinfinite sequenceis
equal to A.

* Well-formed executions E4, ..., where Ej = < P, A;, poj, so;, W, Vi, sw;, hby;,
G >.

Given these sets of actions Cgp, ... and executions Ey, ... , every action in C;
must be one of the actions in E;. All actions in C; must share the same relative
happens-before order and synchronization order in both E; and E. Formally,

1. Cjisasubset of A
2. hbj |ci = hb g
3. S0 |ci = S0 g

The values written by the writesin C; must be the same in both E; and E. Only
the reads in Cj_1 need to see the same writesin Ej asin E. Formally,
4. Vilci =V [ci
5 Wlgi-1 = Wgia

All reads in E; that are not in C;.; must see writes that happen-before them.
Eachread r in C; - Cj_; must see writesin Cj_1 in both E; and E, but may see a dif-
ferent writein Ej from the one it seesin E. Formally,

6. ForanyreadrinA - Ci.1, wehave hbj(W(r), r)
7. Foranyreadr in(C; - Ci_.1), we have Wi(r) in Ci_; and W(r) in Cj_;

Given a set of sufficient synchronizes-with edges for E;, if there is a release-
acquire pair that happens-before (817.4.5) an action you are committing, then that
pair must be present in al Ej, where j >i. Formaly,

8. Let ssw; bethe sw; edgesthat are aso in the transitive reduction of hb; but not

in po. We call ssw; the sufficient synchronizes-with edges for E;. If sswi(x, y)

and hbj(y, 2) and zin Cj, then swj(x, y) for al j=i.

17.4.8
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If an action y is committed, all external actions that happen-before y are also
committed.
9. IfyisinC;j, xisan external action and hbj(x, y), then xin C;.

DiscussIoN

Happens-Before consistency is a necessary, but not sufficient, set of constraints. Merely
enforcing happens-before consistency would allow for unacceptable behaviors -- those that
violate the requirements we have established for programs. For example, happens-before
consistency allows values to appear ““out of thin air". This can be seen by a detailed exam-
ination of Trace 17.6.

Trace 17.6 Happens-Before consistency is not sufficient

Thread 1 Thread 2
r1=x; 2=y,
if(rl!'=0)y =1, if r2 1= 0) x= 1,

The code shown in Trace 17.6 is correctly synchronized. This may seem surprising,
since it doesn't perform any synchronization actions. Remember, however, that a program
is correctly synchronized if, when it is executed in a sequentially consistent manner, there
are no data races. If this code is executed in a sequentially consistent way, each action will
occur in program order, and neither of the writes will occur. Since no writes occur, there
can be no data races: the program is correctly synchronized.

Since this program is correctly synchronized, the only behaviors we can allow are
sequentially consistent behaviors. However, there is an execution of this program that is
happens-before consistent, but not sequentially consistent:

rl =x;// sees write of x =1

y=1
r2 =y; /l sees writeofy =1
x=1;

This result is happens-before consistent: there is no happens-before relationship that
prevents it from occurring. However, it is clearly not acceptable: there is no sequentially
consistent execution that would result in this behavior. The fact that we allow a read to see
a write that comes later in the execution order can sometimes thus result in unacceptable
behaviors.

Although allowing reads to see writes that come later in the execution order is some-
times undesirable, it is also sometimes necessary. As we saw above, Trace 17.5 requires
some reads to see writes that occur later in the execution order. Since the reads come first
in each thread, the very first action in the execution order must be a read. If that read can't
see a write that occurs later, then it can't see any value other than the initial value for the
variable it reads. This is clearly not reflective of all behaviors.
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We refer to the issue of when reads can see future writes as causality, because of
issues that arise in cases like the one found in Trace 17.6. In that case, the reads cause
the writes to occur, and the writes cause the reads to occur. There is no " first cause" for
the actions. Our memory model therefore needs a consistent way of determining which
reads can see writes early.

Examples such as the one found in Trace 17.6 demonstrate that the specification must
be careful when stating whether a read can see a write that occurs later in the execution
(bearing in mind that if a read sees a write that occurs later in the execution, it represents
the fact that the write is actually performed early).

The memory model takes as input a given execution, and a program, and determines
whether that execution is a legal execution of the program. It does this by gradually build-
ing a set of “"committed" actions that reflect which actions were executed by the program.
Usually, the next action to be committed will reflect the next action that can be performed by
a sequentially consistent execution. However, to reflect reads that need to see later writes,
we allow some actions to be committed earlier than other actions that happen-before them.

Obviously, some actions may be committed early and some may not. If, for example,
one of the writes in Trace 17.6 were committed before the read of that variable, the read
could see the write, and the “out-of-thin-air" result could occur. Informally, we allow an
action to be committed early if we know that the action can occur without assuming some
data race occurs. In Trace 17.6, we cannot perform either write early, because the writes
cannot occur unless the reads see the result of a data race.

17.4.9 Observable Behavior and Nonter minating Executions

For programs that always terminate in some bounded finite period of time,
their behavior can be understood (informally) simply in terms of their alowable
executions. For programs that can fail to terminate in a bounded amount of time,
more subtle issues arise.

The observable behavior of a program is defined by the finite sets of external
actions that the program may perform. A program that, for example, simply prints
"Hello" forever is described by a set of behaviorsthat for any non-negative integer
i, includes the behavior of printing "Hello" i times.

Termination is not explicitly modeled as a behavior, but a program can easily
be extended to generate an additional external action executionTermination that
occurs when al threads have terminated.

We aso define a special  hang action. If behavior is described by a set of
external actions including a hang action, it indicates a behavior where after the
external actions are observed, the program can run for an unbounded amount of
time without performing any additional external actions or terminating. Programs
can hang if al threads are blocked or if the program can perform an unbounded
number of actions without performing any external actions.
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A thread can be blocked in a variety of circumstances, such as when it is
attempting to acquire a lock or perform an external action (such as a read) that
depends on external data. If athread isin such a state, Thread.getState will
return BLOCKED or WAITING.

An execution may result in a thread being blocked indefinitely and the execu-
tion's not terminating. In such cases, the actions generated by the blocked thread
must consist of all actions generated by that thread up to and including the action
that caused the thread to be blocked, and no actions that would be generated by
the thread after that action.

To reason about observable behaviors, we need to talk about sets of observ-
able actions.

If Oisaset of observable actions foran execution E, then set O must be a sub-
set of E's actions, A, and must contain only a finite number of actions, even if A
contains an infinite number of actions. Furthermore, if an action y isin O, and
either hb(x, y) or so(x, y), then xisin O.

Note that a set of observable actions are not restricted to external actions.
Rather, only external actions that are in a set of observable actions are deemed to
be observable external actions.

A behavior B is an alowable behavior of a program P if and only if Bisa
finite set of external actions and either

» There exists an execution E of P, and aset O of observable actionsfor E, and
B isthe set of external actionsin O (if any threads in E end in a blocked state
and O contains all actionsin E, then B may also contain a hang action), or

» There exists aset O of actions such that B consists of a hang action plus all
the externa actionsin O and for all K =|0|, there exists an execution E of P
with actions A, and there exists a set of actions O' such that:

o Both O and O' are subsets of A that fulfill the requirements for sets of
observable actions.

o OOO0OO A
o |0O]=K

o O'—0 contains no external actions
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DiscussIioN

Note that a behavior B does not describe the order in which the external actions in B
are observed, but other (internal) constraints on how the external actions are generated
and performed may impose such constraints.

17.5 Final Field Semantics

Fields declared final are initialized once, but never changed under normal
circumstances. The detailed semantics of final fields are somewhat different from
those of normal fields. In particular, compilers have a great deal of freedom to
move reads of final fields across synchronization barriers and calls to arbitrary or
unknown methods. Correspondingly, compilers are allowed to keep the value of a
final field cached in aregister and not reload it from memory in situations where a
non-final field would have to be reloaded.

Final fields also allow programmers to implement thread-safe immutable
objects without synchronization. A thread-safe immutable object is seen asimmu-
table by all threads, even if adataraceis used to pass references to the immutable
object between threads. This can provide safety guarantees against misuse of an
immutable class by incorrect or malicious code. Final fields must be used cor-
rectly to provide a guarantee of immutability.

An object is considered to be completely initialized when its constructor fin-
ishes. A thread that can only see areference to an object after that object has been
completely initialized is guaranteed to see the correctly initialized values for that
object'sfina fields.

The usage model for final fields is a simple one. Set the final fields for an
object in that object's constructor. Do not write a reference to the object being
constructed in a place where another thread can see it before the object's construc-
tor isfinished. If thisis followed, then when the object is seen by another thread,
that thread will always see the correctly constructed version of that object's final
fields. It will also see versions of any object or array referenced by those final
fieldsthat are at |east as up-to-date as the final fields are.

17.5

573



17.5

574

Final Field Semantics THREADSAND LOCKS

DiscussIioN

The example below illustrates how final fields compare to normal fields.
class FinalFieldExample {
final int x;
int y;
static FinalFieldExample f;
public FinalFieldExample() {
X 3;
y = 4;
}

static void writer() {
f = new FinalFieldExample();

}

static void reader() {
if (f !'= null) {
int 1 f.x; // guaranteed to see 3
int j f.y; // could see 0
}

}
}

The class FinalFieldExample has a final int field x and a non-final int field y. One
thread might execute the method writer(), and another might execute the method
reader().

Because writer() writes f after the object's constructor finishes, the reader() will be
guaranteed to see the properly initialized value for f.x: it will read the value 3. However,
f.y is not final; the reader () method is therefore not guaranteed to see the value 4 for it.

DiscussioN

Final fields are designed to allow for necessary security guarantees. Consider the following
example. One thread (which we shall refer to as thread 1) executes

Global.s = "/tmp/usr".substring(4);

while another thread (thread 2) executes

String myS = Global.s;

if (myS.equals("/tmp"))System.out.printin(myS);

String objects are intended to be immutable and string operations do not perform syn-
chronization. While the String implementation does not have any data races, other code
could have data races involving the use of Strings, and the memory model makes weak
guarantees for programs that have data races. In particular, if the fields of the String class
were not final, then it would be possible (although unlikely) that Thread 2 could initially see
the default value of O for the offset of the string object, allowing it to compare as equal to "/
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tmp". A later operation on the String object might see the correct offset of 4, so that the
String object is perceived as being "/usr". Many security features of the Java program-
ming language depend upon Strings being perceived as truly immutable, even if mali-
cious code is using data races to pass String references between threads.

17.5.1 Semanticsof Final Fields

The semantics for final fields are as follows. Let 0 be an object, and ¢ be a
constructor for o in which f is written. A freeze action on afina field f of o takes
place when c exits, either normally or abruptly.

DiscussIoN

Note that if one constructor invokes another constructor, and the invoked constructor sets a
final field, the freeze for the final field takes place at the end of the invoked constructor.

For each execution, the behavior of readsis influenced by two additional par-
tial orders, the dereference chain dereferences() and the memory chain mc(),
which are considered to be part of the execution (and thus, fixed for any particular
execution). These partial orders must satisfy the following constraints (which
need not have a unigue solution):

» Dereference Chain If an action aisaread or write of afield or element of an
object o by athread t that did not initialize o, then there must exist some read
r by thread t that sees the address of o such that r dereferences(r , a).

* Memory Chain There are several constraints on the memory chain ordering:

o If risaread that sees awrite w, then it must be the case that mc(w, r).
o If r and a are actions such that dereferences(r , a), then it must be the case
that mc(r, a).

o If wisawrite of the address of an object o by athread t that did not initial-
ize 0, then there must exist some read r by thread t that sees the address of o
such that me(r, w).

1751
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Given awritew, afreezef, action a (that is not aread of afinal field), aread ry
of the final field frozen by f and aread r, such that hb(w, f), hb(f, a), mc(a, r1) and
dereferences(r , rp), then when determining which values can be seen by r,, we
consider hb(w, ry) (but these orderings do not transitively close with other hap-
pens-before orderings). Note that the dereferences order is reflexive, and rq can
bethe sameasrs.

For reads of final fields, the only writes that are deemed to come before the
read of the final field are the ones derived through the final field semantics.

17.5.2 Reading Final Fields During Construction

A read of afinal field of an object within the thread that constructs that object
is ordered with respect to the initialization of that field within the constructor by
the usual happens-before rules. If the read occurs after the field is set in the con-
structor, it sees the value the final field is assigned, otherwise it sees the default
vaue.

17.5.3 Subsequent Modification of Final Fields

In some cases, such as deserialization, the system will need to change the final
fields of an object after construction. Final fields can be changed via reflection
and other implementation dependent means. The only pattern in which this has
reasonable semantics is one in which an object is constructed and then the final
fields of the object are updated. The object should not be made visible to other
threads, nor should the final fields be read, until all updatesto the final fields of the
object are complete. Freezes of afinal field occur both at the end of the construc-
tor in which the final field is set, and immediately after each modification of a
final field viareflection or other special mechanism.

Even then, there are anumber of complications. If afinal field isinitialized to
a compile-time constant in the field declaration, changes to the final field may not
be observed, since uses of that final field are replaced at compile time with the
compile-time constant.

Another problem is that the specification allows aggressive optimization of
final fields. Within athread, it is permissible to reorder reads of afinal field with
those modifications of afinal field that do not take place in the constructor.
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DiscussIioN

For example, consider the following code fragment:
class A {
final int x;
AO {
X = 1;
}

int fQO {
return d(this,this);
}
int d(A al, A a2) {
int i = al.x;
g(al);
int j = a2.x;
return j - i;
}
static void g(A a) {
// uses reflection to change a.x to 2
}
}

Inthe d() method, the compiler is allowed to reorder the reads of x and the call to g() freely.
Thus, AQ.f(Q couldreturn-1, 0or 1.

An implementation may provide a way to execute a block of code in a final
field safe context. If an object is constructed within a final field safe context, the
reads of afinal field of that object will not be reordered with modifications of that
final field that occur within that final field safe context.

A final field safe context has additional protections. If athread has seen an
incorrectly published reference to an object that allows the thread to see the
default value of a final field, and then, within a final-field safe context, reads a
properly published reference to the object, it will be guaranteed to see the correct
vaue of the final field. In the formalism, code executed within a final-field safe
context is treated as a separate thread (for the purposes of final field semantics
only).

In an implementation, a compiler should not move an access to a final field
into or out of afinal-field safe context (although it can be moved around the exe-
cution of such a context, so long as the object is not constructed within that con-
text).

One place where use of afinal-field safe context would be appropriateisin an
executor or thread pool. By executing each Runnable in a separate fina field
safe context, the executor could guarantee that incorrect access by one Runnable
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to aobject o won't remove final field guarantees for other Runnables handled by
the same executor.

17.5.4 Write Protected Fields

Normally, final static fields may not be modified. However System.in, Sys-
tem.out, and System. err are final static fields that, for legacy reasons, must be
allowed to be changed by the methods System.setIn, System.setOut and Sys-
tem.setErr. Werefer to these fields as being write-protected to distinguish them
from ordinary final fields.

The compiler needs to treat these fields differently from other final fields. For
example, aread of an ordinary final field is " immune" to synchronization: the bar-
rier involved in alock or volatile read does not have to affect what value is read
from afinal field. Since the value of write-protected fields may be seen to change,
synchronization events should have an effect on them. Therefore, the semantics
dictate that these fields be treated as normal fields that cannot be changed by user
code, unless that user code isin the System class.

17.6 Word Tearing

One implementation consideration for Java virtual machinesisthat every field
and array element is considered distinct; updates to one field or element must not
interact with reads or updates of any other field or element. In particular, two
threads that update adjacent elements of a byte array separately must not interfere
or interact and do not need synchronization to ensure sequential consistency.

Some processors do not provide the ability to write to a single byte. It would
beillegal to implement byte array updates on such a processor by simply reading
an entire word, updating the appropriate byte, and then writing the entire word
back to memory. This problem is sometimes known as word tearing, and on pro-
cessors that cannot easily update a single byte in isolation some other approach
will be required.

DiscussIoN

Here is a test case to detect word tearing:
public class WordTearing extends Thread {

static final int LENGTH = 8;
static final int ITERS = 1000000;
static byte[] counts = new byte[LENGTH];
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static Thread[] threads = new Thread[LENGTH];
final int id;
WordTearing(int i) {

id = 1;

public void run() {
byte v = 0;
for (int i = 0; i < ITERS; i++) {
byte v2 = counts[id];
if (v 1= v2) {

System.err.printin("Word-Tearing found: " +
"counts[" + id
+ "] =" 4+v2 + ", should be " + v);
return;
}
V++;

counts[id] = v;
}
}
public static void main(String[] args) {
for (int i = 0; i < LENGTH; ++1)
(threads[i] = new WordTearing(i)).start(Q);
}
}

This makes the point that bytes must not be overwritten by writes to adjacent bytes

17.7 Non-atomic Treatment of double and Tong

Some implementations may find it convenient to divide a single write action
on a 64-hit long or double value into two write actions on adjacent 32 bit val ues.
For efficiency's sake, this behavior is implementation specific; Java virtua
machines are free to perform writes to long and double values atomically or in two
parts.

For the purposes of the Java programming language memory model, a single
write to a non-volatile long or double value is treated as two separate writes. one
to each 32-bit half. This can result in a situation where a thread sees the first 32
bits of a 64 bit value from one write, and the second 32 bits from another write.
Writes and reads of volatile long and double values are always atomic. Writesto
and reads of references are always atomic, regardless of whether they are imple-
mented as 32 or 64 bit values.

VM implementors are encouraged to avoid splitting their 64-bit values where
possible. Programmers are encouraged to declare shared 64-bit values as volatile
or synchronize their programs correctly to avoid possible complications.
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17.8 Wait Sets and Notification

17.8.1 Wait

Wait actions occur upon invocation of wait(), or the timed forms
wait(long millisecs) andwait(long millisecs, int nanosecs). A call
of wait(long millisecs) with a parameter of zero, or acall of wait(long
millisecs, int nanosecs) with two zero parameters, is equivalent to an invo-
cationof wait().

A thread returns normally from a wait if it returns without throwing an
InterruptedException.

Let thread t be the thread executing the wait method on object m, and let n be
the number of lock actions by t on m that have not been matched by unlock
actions. One of the following actions accurs.

» If nis zero (i.e, thread t does not aready possess the lock for target m) an
I1legalMonitorStateException isthrown.

« If thisis a timed wait and the nanosecs argument is not in the range of O-
999999 or the millisecs argument is negative, an I11egalArgumentExcep-
tion isthrown.

* If thread t isinterrupted, an InterruptedException isthrown and t'sinter-
ruption statusis set to false.

» Otherwise, the following sequence occurs:

1. Thread t is added to the wait set of object m, and performs n unlock actions on
m.

2. Thread t does not execute any further instructions until it has been removed
from m's wait set. The thread may be removed from the wait set due to any
one of the following actions, and will resume sometime afterward.

o A notify action being performed on m in which t is selected for removal
from the wait set.

o A notifyAll action being performed on m.
o Aninterrupt action being performed on t.

o If thisis atimed wait, an internal action removing t from m's wait set that
occurs after at least mi1714secs milliseconds plus nanosecs nanoseconds
elapse since the beginning of this wait action.
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o An internal action by the implementation. Implementations are permitted,
although not encouraged, to perform ““spurious wake-ups' -- to remove
threads from wait sets and thus enable resumption without explicit instruc-
tions to do so. Notice that this provision necessitates the Java coding prac-
tice of using wait only within loops that terminate only when some logical
condition that the thread is waiting for holds.

Each thread must determine an order over the events that could cause it to be
removed from await set. That order does not have to be consistent with other
orderings, but the thread must behave as though those events occurred in that
order.
For example, if athread t isin the wait set for m, and then both an interrupt of
t and a notification of m occur, there must be an order over these events.
If the interrupt is deemed to have occurred first, then t will eventually return
fromwait by throwing InterruptedException, and some other thread in
the wait set for m (if any exist at the time of the notification) must receive the
notification. If the notification is deemed to have occurred first, then t will
eventually return normally from wait with an interrupt still pending.

3. Thread t performs n lock actions on m.

4. If thread t was removed from m'swait set in step 2 due to an interrupt, t'sinter-
ruption statusis set to false and the wait method throws InterruptedExcep-
tion.

17.8.2 Notification

Notification actions occur upon invocation of methods notify and notify-
A11. Let thread t be the thread executing either of these methods on object m, and
let n be the number of lock actions by t on m that have not been matched by
unlock actions. One of the following actions occurs.

e If niszero an I11egalMonitorStateException isthrown. Thisisthe case
where thread t does not already possess the lock for target m.

* If nisgreater than zero and thisisa not1ify action, then, if m'swait set is not
empty, a thread u that is a member of m's current wait set is selected and
removed from the wait set. (There is no guarantee about which thread in the
wait set is selected.) This removal from the wait set enables u's resumption in
await action. Notice however, that u's lock actions upon resumption cannot
succeed until some time after t fully unlocks the monitor for m.

17.8.2
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 If nisgreater than zero and thisisa notifyAl1 action, then al threads are
removed from m's wait set, and thus resume. Notice however, that only one of
them at atime will lock the monitor required during the resumption of wait.

17.8.3 Interruptions

Interruption actions occur upon invocation of method Thread.interrupt,
as well as methods defined to invoke it in turn, such as ThreadGroup.inter-
rupt. Let t bethethread invoking u.interrupt, for somethread u, wheret and u
may be the same. This action causes u's interruption status to be set to true.

Additionaly, if there exists some object m whose wait set contains u, u is
removed from m's wait set. This enables u to resume in a wait action, in which
case thiswait will, after re-locking m's monitor, throw InterruptedException.

Invocations of Thread.isInterrupted can determine athread's interruption
status. The static method Thread.interrupted may be invoked by a thread to
observe and clear its own interruption status.

17.8.4 Interactions of Waits, Notification and Interruption

The above specifications allow us to determine several properties having to do
with the interaction of waits, notification and interruption. If athread is both noti-
fied and interrupted while waiting, it may either:

e return normally from wait, while still having a pending interrupt (in other
works, acall to Thread. interrupted would return true)

* return from wait by throwing an InterruptedException

The thread may not reset its interrupt status and return normally from the call
to wait.

Similarly, notifications cannot be lost due to interrupts. Assume that a set s of
threadsisin the wait set of an object m, and another thread performsa notify on
m. Then either

* at least onethread in s must return normally from wait, or
« al of thethreadsin smust exit wait by throwing InterruptedException
Note that if a thread is both interrupted and woken via notify, and that

thread returns from wait by throwing an InterruptedException, then some
other thread in the wait set must be notified.
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17.9 Sleep and Yield

Thread.sleep causes the currently executing thread to sleep (temporarily
cease execution) for the specified duration, subject to the precision and accuracy
of system timers and schedulers. The thread does not |ose ownership of any moni-
tors, and resumption of execution will depend on scheduling and the availability
of processors on which to execute the thread.

Neither a sleep for a period of zero time nor a yield operation need have
observable effects.

It is important to note that neither Thread.sleep nor Thread.yield have
any synchronization semantics. In particular, the compiler does not have to flush
writes cached in registers out to shared memory beforeacall to Thread.sleep or
Thread.yield, nor does the compiler have to reload values cached in registers
after acal to Thread.sleep or Thread.yield.

DiscussioN

For example, in the following (broken) code fragment, assume that this.done is a non-vol-
atile boolean field:
while (!this.done)
Thread.sleep(1000) ;
The compiler is free to read the field this.done just once, and reuse the cached value

in each execution of the loop. This would mean that the loop would never terminate, even if
another thread changed the value of this.done.

17.9
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CHAPTER 18
Syntax

T HIS chapter presents agrammar for the Java programming language.

The grammar presented piecemeal in the preceding chapters is much better
for exposition, but it is not well suited as a basis for a parser. The grammar pre-
sented in this chapter is the basis for the reference implementation. Note that it is
not an LL(1) grammar, though in many cases it minimizes the necessary look
ahead.

The grammar below uses the following BNF-style conventions:

* [X] denotes zero or one occurrences of X.

 {x} denotes zero or maore occurrences of x.
X | y means one of either x or y.

18.1 The Grammar of the Java Programming L anguage
I dentifier:
IDENTIFIER

Qualifiedl dentifier:
Identifier { . Identifier }

585
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Literal:
IntegerLiteral
FloatingPointLiteral
CharacterLiteral
SringLiteral
BooleanLiteral
NullLiteral

Expression:
Expressionl [ AssignmentOperator Expressionl]]

AssignmentOperator:

Type:
Identifier [ TypeArguments]{ . Identifier [ TypeArguments]} {[1}
BasicType

TypeArguments:
< TypeArgument {, TypeArgument} >
TypeArgument:

Type
? [(extends | super ) Type]

SatementExpression:
Expression

ConstantExpression:
Expression

Expressionl:
Expression2 [ Expression1Rest]
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Expression1Rest:
? Expression : Expressionl

Expression2 :
Expression3 [ Expression2Rest]

Expression2Rest:
{InfixOp Expression3}
Expression3 instanceof Type

InfixOp:
[
&&
I

AN

&

%

Expression3:
PrefixOp Expression3
( Expression| Type ) Expression3
Primary {Selector} {PostfixOp}

Primary:

Par Expression

NonWiIdcardTypeArguments (ExplicitGenericlnvocationSuffix | this
Arguments)

this [Arguments]

super Super Suffix
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The Grammar of the Java Programming Language

Literal

new Creator

Identifier { . Identifier }[ Identifier Suffix]
BasicType{[]} .class

void.class

| dentifier Suffix:
[(1{[]}. class|Expression])
Arguments

SYNTAX

(class | ExplicitGenericlnvocation | this | super Arguments | new

[ NonWildcardTypeArguments] InnerCreator )

ExplicitGenericlnvocation:

NonW IdcardTypeArguments ExplicitGenericl nvocati onSuffix

NonW IdcardTypeArguments:
< TypeList >

ExplicitGenericl nvocationSuffix:
super Super Suffix
Identifier Arguments

PrefixOp:
++

PostfixOp:
++

Selector: Selector:
. Identifier [ Arguments]
. ExplicitGenericlnvocation
. this
. super Super Suffix
. new [ NonWildcardTypeArguments] InnerCreator
[ Expression ]
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Super Suffix:
Arguments
. Identifier [ Arguments]

BasicType:
byte
short
char
int
Tong
float
double
boolean

Arguments:
([Expression{ , Expression}] )

Creator:
[ NonWildcardTypeArguments] CreatedName ( ArrayCreatorRest |
ClassCreatorRest )

CreatedName:
Identifier [ NonWldcardTypeArguments] {. Identifier
[ NonWiIdcardTypeArguments] }

InnerCreator:
Identifier ClassCreator Rest

ArrayCreator Rest:
[ (1{[1} Arraylnitializer | Expression ] {[ Expression ]} {[1})

ClassCreator Rest:
Arguments [ ClassBody]

Arraylnitializer:
{ [Variablelnitializer {, Variablelnitializer} [,]] }

Variablelnitializer:
Arraylnitializer
Expression

Par Expression:

( Expression )

Block:

{ BlockStatements }
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The Grammar of the Java Programming Language

BlockSatements:

{ BlockStatement }

BlockSatement :

Local VariableDeclarationSatement
ClassOr I nterfaceDeclaration
[Identifier :] Statement

Local VariableDeclarationSatement:

[final] Type VariableDeclarators ;

Satement:

Block

assert Expression|[ : Expression] ;

if ParExpression Satement [e1se Statement]
for ( ForControl ) Statement

while ParExpression Satement

do Statement while ParExpression ;

try Block ( Catches| [Catches] finally Block)
switch ParExpression { SwitchBlockSatementGroups }
synchronized ParExpression Block

return [Expression] ;

throw Expression ;

break [Identifier]

continue [ldentifier]

SatementExpression ;
Identifier : Satement

Catches:

CatchClause { CatchClause}

CatchClause:

catch ( FormalParameter ) Block

SwitchBlockSatementGroups:

{ SwitchBlockStatementGroup }

SwitchBlockSatementGroup:

SwitchLabel BlockStatements

SwitchLabel:

case ConstantExpression
case EnumConstantName :
default

SYNTAX
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MoreStatementExpressions:
{ , SatementExpression }

ForControl:
ForVarControl
Forinit; [Expression] ; [ForUpdate]

ForVarControl
[final] [Annotations] Type Identifier ForVarControl Rest

Annotations:
Annotation [ Annotations]

Annotation:
@ TypeName [ ( [Identifier =] ElementValue)]

ElementValue:
Conditional Expression
Annotation
ElementValueArraylnitializer

Conditional Expression:
Expression2 Expression1Rest

ElementValueArraylnitializer:
{ [ElementValueg] [,] }

ElementVal ues:
ElementValue [ ElementVal ues]

ForVar Control Rest:
VariableDeclaratorsRest; [Expression] ; [ForUpdate]
: Expression

Forlnit:
SatementExpression Expressions

Modifier:
Annotation
public
protected
private
static
abstract
final
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The Grammar of the Java Programming Language SYNTAX

native
synchronized
transient
volatile
strictfp

VariableDeclarators:
VariableDeclarator { , VariableDeclarator }

VariableDeclaratorsRest:
VariableDeclaratorRest { , VariableDeclarator }

ConstantDeclarator sRest:
ConstantDeclaratorRest { , ConstantDeclarator }

VariableDeclarator:
Identifier VariableDeclarator Rest

ConstantDeclarator:
Identifier ConstantDeclarator Rest

VariableDeclarator Rest:
{1} [ = Veriablelnitializer]

ConstantDeclarator Rest;
{[1} = Variablelnitializer

VariableDeclaratorld:
Identifier {[1}

CompilationUnit:
[[Annotations] package Qualifiedidentifier ; ] {ImportDeclaration}
{TypeDeclaration}

ImportDeclaration:

import [ static] Identifier { . Identifier}[ . * ];
TypeDeclaration:

ClassOr|nterfaceDeclaration

H

ClassOrInterfaceDeclaration:
{Modifier} (ClassDeclaration | InterfaceDeclaration)

ClassDeclaration:
Normal ClassDeclaration
EnumDeclaration



SYNTAX The Grammar of the Java Programming Language ~ 18.1

Normal ClassDeclaration:
class ldentifier [ TypeParameters] [extends Type] [implements
TypeList] ClassBody

TypeParameters:
< TypeParameter {, TypeParameter} >

TypeParameter:
Identifier [extends Bound]

Bound:
Type{& Type}

EnumDeclaration:
enum ldentifier [1mplements Typelist] EnumBody

EnumBody:
{ [EnumConstants] [,] [EnumBodyDeclarations] }

EnumConstants:
EnumConstant
EnumConstants , EnumConstant

EnumConstant:
Annotations ldentifier [ Arguments] [ ClassBody]

EnumBodyDeclarations:
; {ClassBodyDeclaration}

InterfaceDeclaration:
Normal I nterfaceDeclaration
AnnotationTypeDeclaration

NormalInterfaceDeclaration:
interface ldentifier [ TypeParameters| [extends TypeList]
InterfaceBody
TypeList:
Type{ , Type}
AnnotationTypeDeclaration:
@ interface Identifier AnnotationTypeBody

AnnotationTypeBody:
{ [AnnotationTypeElementDeclarations] }
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AnnotationTypeElementDeclarations:
AnnotationTypeElementDeclaration
AnnotationTypeElementDecl arations AnnotationTypeElementDeclaration

AnnotationTypeElementDeclaration:
{Modifier} AnnotationTypeElementRest

AnnotationTypeElementRest:
Type ldentifier AnnotationMethodOrConstantRest ;
ClassDeclaration
InterfaceDeclaration
EnumDeclaration
AnnotationTypeDeclaration

AnnotationMethodOr ConstantRest:
AnnotationMethodRest
AnnotationConstantRest

AnnotationMethodRest:
() [DefaultValue]

AnnotationConstantRest:
VariableDeclarators

DefaultValue:
default ElementValue

ClassBody:
{ {ClassBodyDeclaration} }

InterfaceBody:
{ {InterfaceBodyDeclaration} }

ClassBodyDeclaration:

[static] Block
{Modifier} MemberDecl

Member Decl:
GenericMethodOr Constructor Decl
MethodOrFieldDecl
void ldentifier VoidMethodDeclarator Rest
Identifier Constructor Declarator Rest
InterfaceDeclaration
ClassDeclaration
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GenericMethodOr Constructor Decl:
TypeParameters GenericMethodOr Constructor Rest

GenericMethodOr Constructor Rest:
(Type| void) Identifier MethodDeclarator Rest
Identifier Constructor Declarator Rest

MethodOrFieldDecl:
Type ldentifier MethodOr FieldRest

MethodOr Fiel dRest:
VariableDecl arator Rest
MethodDeclarator Rest

InterfaceBodyDeclaration:

{Modifier} InterfaceMemberDecl

InterfaceMember Decl:
InterfaceMethodOr FieldDecl
InterfaceGenericMethodDecl
void ldentifier VoidlnterfaceMethodDeclarator Rest
InterfaceDeclaration
ClassDeclaration

InterfaceMethodOrFieldDecl:
Type Identifier InterfaceMethodOrFiel dRest

InterfaceMethodOr Fiel dRest:
ConstantDeclaratorsRest ;
InterfaceMethodDecl arator Rest

MethodDeclarator Rest:
Formal Parameters{[1} [ throws Qualifiedldentifier List] ( MethodBody |

;)
\WoidMethodDeclarator Rest:
Formal Parameters [ throws QualifiedldentifierList] ( MethodBody | ; )

InterfaceMethodDecl arator Rest:
FormalParameters {[]1} [throws QualifiedldentifierList] ;

InterfaceGenericMethodDecl:
TypeParameters (Type | void) Identifier InterfaceMethodDeclarator Rest

\oidlnterfaceMethodDecl arator Rest:
Formal Parameters [ throws QualifiedidentifierList] ;
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Constructor Declarator Rest:
Formal Parameters [ throws QualifiedidentifierList] MethodBody

Qualifiedl dentifier List:
Qualifiedidentifier { , Qualifiedidentifier}

Formal Parameters:
( [Formal ParameterDeclg| )

Formal Parameter Decls:
[final] [Annotations] Type Formal Parameter DeclsRest]

Formal Parameter Decl sRest:
VariableDeclaratorld [ , Formal Parameter Decls]
... VariableDeclaratorld

MethodBody:
Block

EnumConstantName:
Identifier
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A

abrupt completion
See completion, abrupt
abstract modifier
See also declarations; modifiers
and super method invocation, 472
classes
anonymous are never, 429
binary compatibility considerations, 340
declaration of, 173
definition and characteristics, 173
direct superinterface relationship to, 184
enum types must not be, 176, 250
methods
binary compatibility considerations, 352
classes, 215
declaration examples, 209, 266
interfaces, 267
overloading, 268, 269
overriding, 269
semicolon as body of, 223
and super method invocation, 472
access
See also scope
accessihility
determining, 138
term definition, 138
array, 289
expression evaluation order, 483
conflicting, 563
constructor, binary compatibility consider-
ations, 344
of fields, expression evaluation, 435
inheritance of class members, example
default, 192

private, 193
protected, 193
public, 193
interface member names, 263
method, binary compatibility considerations,
350
non-pub 11 c classinstances, through pubTic
superclasses and superinterfaces,
194
overridden methods, using super keyword,
225
qualified
See also field access expressions; method
invocation expressions
term definition, 138

access control

See also security
classes, example, 141
constructors
default, example, 142
private, example, 144
protected, example, 143
public, example, 143
fields
default, example, 142
private, example, 144
protected, example, 143
public, example, 143
methods
default, example, 142
private, example, 144
protected, example, 143
public, example, 143
package names, limited significance of, 154
protected, details of, 139
and qualified names, 138
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term definition, 138
accessible, 443
annotation type, 283
classtype, 184
default for top-level types, 166
member type, 44
package, term definition, 138
single-static import must name atypethat is,
164
single-type import must name atypethat is,
161
type may not be named by static-import-on-
demand if not, 165
type or package may not be named by type-
import-on-demand if not, 163
types, members and constructors, term defi-
nition, 138
acquire
term definition, 561
action
committing, 568
external, 559, 571
final, 561
freeze, 575
hang, 571
inter-thread, 558
lock, 558
observable, 560, 572
read, 558
thread divergence, 559
unlock, 558
algebraic identities
See also expressions; mathematical functions
limits on use of, 417
alphabet
See also syntax
components
See characters
datatypes
See primitive types
term definition, 9
ambiguity
See also names, ambiguous; scope
avoiding, in fields with multiple inheritance,
209
avoiding, in types with multiple inheritance,
238, 270
America, Pierre, 55

annotation(s)
,410
element(s)
names, 129
marker, 282, 285
meta, 158, 175, 214, 241, 264, 272, 278,
364
term definition, 284
names, 128
normal, 282, 285
of package or top-level type, 410
on annotation types, 272
on classes
, 175
on constructors, 241
on enum(s), 250
on interface fields, 264
on interface methods, 267
on interfaces, 261
on local variables, 364
on methods, 214
on packages, 158
single-element, 282, 285
term definition, 281
annotation.Annotation, 271, 272, 273
annotation.ElementType, 278
annotation.Element-
Type.ANNOTATION_TYPE, 272
annotation.ElementType.CONSTRUCTOR
241
annotation.ElementType.FIELD, 250, 264
annotation.ElementType.LOCAL_VARIABLE
, 364
annotation.ElementType.METHOD, 214, 267
annotation.ElementType.PACKAGE, 158
annotation.ElementType.TYPE, 261, 272
and array subtyping, 175
annotation.Inherited, 279
annotation.Retention, 278
annotation.RetentionPolicy
.CLASS, 278
.RUNTIME, 278
.SOURCE, 278
annotation.Target, 158, 214, 241, 250, 261
264, 267, 272, 278, 364
, 175
anonymousclass, 173
Seealso inner class



definite assignment before, 548
determining immediately enclosing instance
when instantiating, 426
example(s), 204, 245
exceptionsin instance initializer, 202, 238,
301
in an explicit constructor invocation, 245
implicitly defined by enum constant, 250
interaction with shadowing of parameter
names, 212
in an interface variable initializer, 265
protected accessibility of superclass con-
structor, 140
supertypes classified as type names, 128
term definition, 424
applicable
by method invocation conversion, 442
term definition, 446
by subtyping, 442
term definition, 445
constructor, 451
potentially, 442, 446
variable arity method, 442
variable-arity method
term definition, 447
argument
See also parameters
lists, evaluation order, 418
values, method invocation conversion con-
text, 99
arithmetic
See also floating point; integers, numbers;
operators; primitive types
integer division, ArithmeticException,
414
operators, numeric promotion, specification,
108
arrays
See also classes; data structures
(chapter), 287
access, 289
expression evaluation order, 483
assignment, expression evaluation order, 513
character, distinguished from strings, 294
Class
objects, 293
obtaining, example, 74
CloneabTle interface implemented by, 292

components
See also variables
assignment, run-time testing, 295, 412,
514,519
default values, 71
initialization, 291
as akind of variable, 69
type declaration, 291
creation, 45, 289
expression evaluation, 432
order, 432
out-of-memory detection, example, 434
elements
are variables in memory model, 558
example, 288
exceptions, ArrayStoreException, 295
indexing of, 289
initialization, 289, 290
initializer(s), 283
length
and data races, 563
members, 125, 292
names, fully qualified, 145
Object as superclass of, 293
origin, 290
variables
declaration, 288
initialization, 288
ASCII characters
See also characters; Unicode character set
Unicode character set relationship to, 14
assert
keyword, 21
statement, 373
can complete normally, 403
definite assignment, 541
assertion(s)
enabling
during initialization, 321
term definition, 373
AssertionError, 376
assignment
See also fields; initidization
array, expression evaluation order, 513, 519
assignable to, term definition, 95
compatible, 283, 410
term definition, 95
compound



evaluation order, 415
operators, evaluation, 518
conversion context, specification, 78, 93
definite, (chapter), 527
expressions
boolean, definite assignment, 533
definite assignment, 533
as statements, 371
operation, to change value of primitive value
, 35
simple operators, evauation, 513

B

backslash (\)
escape sequence, 30
Unicode escape use, 15
backspace
escape sequence, 30
backtrace
of an exception, 401
Bartleby
Project (Columbia University), XXiv
base
See also numbers
permitted in integer literals, 22
Beta, 7
biblical quotations
| Corinthians 14:40, 414
John 3:30, 488
Matthew 6:29, 287
bibliographic references
Dynamic Class Loading in the Java Virtual
Machine, 34, 313
On Variance-Based Subtyping for Parametric
Types, 54, 92
Polling Efficiently on Stock Hardware, 304
Release-to-Release Binary Compatibility in
SOMm, 333
Types and Programming Languages, 91
Unifying Genericity, 55
Wild FJ, 54, 92
binary
compatibility
See also code generation; compile-time er-
rors; exceptions
(chapter), 333

changes that do not break, 334
compatible with, term definition, 339
contrasted with source compatibility, 339
file format, required properties, 335
name
See name, binary
numeric promotion, specification, 110
representation, verification of classes and
interfaces, 312
binary representation, 278
blank final
field
class variable must be assigned by static
initializer, 199
definite [un]assignment of, 538
definite assignment of, 527
instance variable must be assigned by ev-
ery constructor, 199
notation for definite assignment, 532
restrictionsin an inner class, 182
variable
decrementation of, 488
definite unassignment of, 527
incrementation of, 488
notation for definite unassignment, 532
blocks
See also control flow; statements
(chapter), 359
definite assignment, 538
enclosing, 182
in scope of exception handler parameters,
118, 397
in scope of local class, 118, 362
in scope of local variable, 118, 364
specification and execution of, 361
Bobrow, Daniel G., 6
body
See also declarations
class
declarationsin, 189
term definition, 189
constructor, 242
binary compatibility considerations, 354
interface, declarations, 263
method, 223
binary compatibility considerations, 354
Boolean, 5
boolean



See also numbers
literals, term definition and specification, 26
operators, 43
types and values, term definition and specifi-
cation, 43
bootstrap loader
See class loaders, bootstrap
bound(s), 89, 466
lower, 90
isadirect supertype of type variable, 64
type variable(s), 118, 179, 220, 242, 261
binary compatibility, 342, 351
in erasure, 56
term definition, 50
upper, 90, 441
wildcard
explicit, 53
upper, 53
boxing
See see conversion, boxing
brackets ([1)
array type declaration, 44, 287, 364
break statement
See also control flow
definite assignment, 545
as reason for abrupt completion, 360
specification, 388
Burke, Edmund, 359
Burton, Robert, Xxv
but not phrase
grammar notation use, 12
byte type
See also integral types; numbers; primitive
types
value range, 35

C

C, 127
C++,1,2,6
Caesar, Julius, 493
caller

of a statement, term definition, 302
carriagereturn (CR)

escape sequence, 30

handlingin a

character literal, 27

string literal, 28
as aline terminator, not input character, 16
casting
See also conversion
and data races, 563
boolean, 43
checked, 102
compiler-generated, 412
conversion context, 79
specification, 101
floating-point types, 40
integral types, 36
reference types, 102
run-time testing, 412
statically correct, 102
unchecked, 102
to void, not permitted, 371
catch clause, 394
See also control flow; try statement
exception handling role of, 297
exception idiom defined with, 306
scope of parameters, 118, 397
causality
,571
requirements of memory model, 569
Cervantes, Migel de, 101
characters
See also numbers; primitive types; strings
array of, distinguished from strings, 294
char type, 33
Seealsointegral types, numbers; primitive
types
value range, 36
line terminators, 28
literals
escape sequences for, 30
term definition and specification, 26
Unicode character set
composite, contrasted with the Unicode
decomposed characters, 20
handling in package names, 156
lexical grammar use asterminal symbols,
9
relationship to ASCII, 14
checking
See also exceptions, checked; throw
for exception handlers, at compile-time, 299
Christie, Agatha, 360, 372, 442
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circular declaration
of aclass
compile-time error caused by, 185
exampleinvolving alocal class, 362
link-time error caused by, 186

of an interface, compile-time error caused by
, 262

of types, in different compilation units, legal-
ity of, 157

Class class, 48, 283
allowed in annotation type, 273
classliteral, 128

class or interface namein a, 114

isaprimary expression, 420

term definition, 421

classloaders

bootstrap, 330

and class unloading, 330

defining

and enabling assertions, 374
class(es)

See also fields; inheritance; interfaces; meth-
ods; packages; subclasses; super-
classes; superinterfaces

(chapter), 173

abstract, 176

as array component types, 288

binary compatibility considerations, 340
overriding abstract methodsin, 215
uses, 177

accessibility, 138

annotation(s), 281

anonymous

binary name, 335
See anonymous class
binary compatibility considerations, 340
binary representation
binary file format requirements, 338
verification of, 310
body
declarations, binary compatibility consid-
erations, 342
term definition and declarationsin, 189

.class suffix, as name for compiled files,
156

Class objects, associated with arrays, 293

constructors, binary compatibility consider-
ations, 350

declarations, 175
generic, 49
names in extends clause, 128
names in implements clause, 128
specifying direct superclassesin, 184
specifying direct superinterfacesin, 186
term definition, 175
as declared entity, 113
enclosing
lexically, 422, 441
top-level isinitialized dueto assert, 374
exceptions
ClassCastException, 105
Error, 301, 306
Exception, 306
RuntimeException, 301, 306
ThrowabTle, 297, 299, 306
final
binary compatibility considerations, 340
declaration of, 178
finalization of, 340
FP-strict, 411
generic, 173, 184
term definition, 178
inaccessible, accessing members of, 194
inaccessible, accessing members of, example
, 194
initialization, 316
detailed procedure, 319
example, 311
instances
See instance(s)
instantiation, preventing, 240
linking
initialization, 307, 310, 319
preparation, 307, 315, 320
process description, 315
resolution, 310
at virtual machine startup, 310
loading, 312
errors
ClassCircularityError, 313
ClassFormatError, 313
NoClassDefFoundError, 313
process description, 313
at virtual machine startup, 310
local
binary name, 335



Seelocal class
member
See member class
members, 123
declarations, 189
binary compatibility considerations,
342
methods
class, 216
interface, 266
non-static, 216
static, 216
named, 173
names, fully qualified, 145
naming conventions, 147
nested
See nested classes
non-public, in example of qualified names
and access contral, 141
normal, 113, 176
preparation, 315
at virtual machine startup, 310
preventing instantiation of, 177
public
access control in, 138
binary compatibility considerations, 341
in example of qualified names and access
control, 141
referencesto, binary file format requirements
, 335
resolution
exceptions
ITlegalAccessError, 315
IncompatibleClassChangeError
315
InstantiationError, 316
NoSuchFieldError, 316
NoSuchMethodError, 316
process description, 315
at virtual machine startup, 310
scope of, 117, 161
in scope of an imported type, 117, 161
static initializers, 239
binary compatibility considerations, 356
that depend on themselves
See circular declaration, of aclass
that directly depend on areference type
See circular declaration, of aclass

top-level, 317
top-level
Seetop-level class
type declarations, as members of packages,
166
unloading of, 330
variables
default values, 71
specification, 69, 198
verification, at virtual machine startup, 310
wrapper, 2, 497
ClassCastException, 95, 100
classification
reclassification of contextually ambiguous
names, 129
syntactic, of a name according to context,
127
ClassLoader class, 313
Cloneable interface, 85, 98
and array subtyping, 64
code generation
See also binary, compatibility; compile-time
errors, exceptions; optimization
asynchronous exceptions, implications for,
303
initialization, implications for, 321
symbolic reference resolution, implications
of, 315
comments
term definition and specification, 18
Common Lisp, 6
compatibility
See hinary, compatibility
compilation
See also compile-time errors; exceptions;
virtual machine
CompilationUnit goal symbal, syntactic
grammar use, 10
conditional
binary compatibility considerations, 348
if statement reachability handling to sup-
port, 405
exception handlers checked for during, 299
unit, 444
components, package declarations, 158
and default accessibility of top-level types,
166
implicitly startswith import ja-
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va.lang.*, 165
importing typesinto, 161
and name of top-level type, 166
overview, 153
and package membership, 122, 154
and package observability, 160
and scope of an import declaration, 117,
161
term definition and characteristics, 157

compile, 439
compile-time constant

See constants

compile-timeerror, 439

ambiguous typein new, 425

annotation names non-annotation type, 283

annotation type name same as enclosing
types, 272

annotation type with bad Target, 272

declare an enum type abstract, 176, 250

declaring afinaizer in an enum, 251

disallowed return type in annotation type,
273

enum

constant
to declare abstract method, 176, 250

enum constant with bad Target, 158, 175,
198, 211, 214, 241, 250, 261, 264,
267, 364

enum in new, 424

enum type to contain abstract method, 176,
250

explicitly declaring an enum final, 250

in?, 510

in super. ldentifier, 441

inaccessible annotation type, 283

inaccessible type in new, 424

instantiating an enum type, 249

interface attemptsto override fianl method in
Object’, 125, 263

malformed annotation, 281

malformed type declaration specifier, 44

malnamed element in annotation, 137, 283

method annotated with Override does not in
fact override, 279

modifer repeated in interface declaration,
260

no applicable method, 447

non-integral typein array index, 432

non-override equivalent signature, 273
non-reifiable type in array creation, 289,
431
nonsubstitutable return type, 268
referencing atype parameter of an interface
from its fields or type members, 261
referencing non-constant static field in an
enum, 252
repeated annotations of same type, 281
self reference in an annotation type, 274
subclass of Enum, 184
Target, 278
two override-equivalent methods, 267
void method in conditional expression, 510
wildcards in new, 424
compile-timeerrors
See binary, compatibility; errors; exceptions
completion, 360
See also control flow, exceptions
abrupt
break statement, 388
continue statement, 390
disallowed for static initializers, 239
during expression evaluation, 413
for statement, 384
|abeled statements, 371
reasons for, 360, 413
return statement, 392
synchronized statement, 395
throw statement, 393
try statement, 396
try-catch statement, 398
try-catch-finally statement, 399
normal
during expression evaluation, 413
during statement execution, 360
required for instance initializers, 239
required for static initializers, 239
component(s)
See also arrays, components
type
arrays
in variable arity methods, 447
of reifiable array type, 56
type, arrays, 288
conflicts
memory accesses, 563
name



See also hiding; obscuring; scope; shadow-
ing
avoiding through use of syntactic context,
127
throws clause, 225, 268
Conner, Michael, 333
consistency
happens-before, 566
sequential, 560, 563, 578
term definition, 560
constants, 249
Sece also fields; class; final; fields, inter-
face; literals
are always FP-strict, 411
boolean
and definite assignment, 535
characteristics and binary compatibility con-
siderations, 347
compile-time
in enums, 252
compile-time narrowing of
by assignment conversion, implications,
4
not permitted by method invocation con-
version, 100
enum, 114, 249
expressions, 94, 283, 336, 348, 525
may be declared in inner class, 181
named
Seefields; class; final
variable(s), 317, 336, 526
term definition, 71
constraint(s)
type inference
initial, 445, 446, 447, 448, 452, 466
type inferrence
initial, 448, 449
constructor, 451
constructors
See also class(es); execution; initialization;
interfaces; methods
access, 138
binary compatibility considerations, 344
control
default, example, 142
private, example, 144
protected, example, 143
public, example, 143

hidden fields, this keyword use for, 367
accessibility, 139
allow field access through super, 438
annotation(s), 281
anonymous
term definition, 429
anonymous class
cannot have explicitly declared, 429
has anonymous constructor, 429
applicability, 451
are not members, 191
body, 242
binary compatibility considerations, 354
cause afreeze action, 575
completion of happens-before finalize, 325
as components of a class body, 189
declaration(s), 240, 410
binary compatibility considerations, 350
generic, 49
default, 247
definite assignment and unassignment within
, 550
definite assignment of variables before, 538
deleting, binary compatibility considerations
, 350
determining arguments to, 427
each must declare exceptions from instance
initiaizers, 202, 238, 301
enum
constant must not refer to itself, 252
default, 250
must not reference non-constant static
fields, 252
explicit invocation statements, 244
explicit invocations, 138
FP-strict, 411
generic, 127, 242
in an enum, 251
invocation, during instance creation, 322
modifiers, 241
must assign all blank final instance variables,
199
must assign blank final fields, 199
names of, 115, 240
as non-members of aclass, 123
of awildcard, 55
of Object must beinvoked for an object to be
finalizable, 327
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of parameterized types, 55
overloading, 246
binary compatibility considerations, 355
parameters, 240
See also arguments
assignment during instance creation, 322
binary compatibility considerations, 352
definite [un]assignment of, 547
must not be assigned if final, 211
shadowing, 119, 212
specification, 72, 240

private, preventing instantiation with, 178,

248
protected, accessibility of, 139, 140
signature, 241
binary file format requirements, 338
throws clause, binary compatibility consid-
erations, 354
and unreachable statements, 402
when reachable, 403
containment
type argument, 55
context(s)
See also inheritance; scope
conversion, 78
assignment, specification, 93
casting, specification, 101
method invocation, specification, 99
final field safe, 577
reclassification of contextually ambiguous
names, 129
role in determining the meaning of a name,
113, 126
single-threaded, 557
static
See static context
syntactic classification of a name according
to, 127
context-free grammars
See grammars, context-free
continue statement
See also control flow
definite assignment, 545
as reason for abrupt completion, 360
specification, 390
contract
See also binary, compatibility
term definition, 339

control flow

See also compl etion; definite assignment;
exceptions; expressions; statements,
statements, unreachable; threads

booTean expressions use for, 43

break statement, specification, 388

continue statement, specification, 390

deadlock avoidance, multiple lock use for,
396

do statement, specification, 382

for statement, specification, 384

if statement, dangling e1se handling, 368

if-then statement, specification, 372

if-then-else statement, specification, 372

local variable declaration and switch state-
ment, 70

return statement, specification, 392

switch statement, specification, 377

synchronized statement, specification, 395

throw statement, specification, 393

try statement, specification, 396

try-catch statement, specification, 398

try-catch-finally statement, specifica
tion, 399

while statement, specification, 380

conventions

naming, 146
impact on obscuring of names, 122

conversion

See also casting; numbers; promotion
(chapter), 77
assignment, 466
boxing, 78, 93, 95, 99, 101, 486, 488, 511
, 421
in conditional expression, 512
in overload resolution, 442
may cause OutOfMemoryError, 414
term definition, 86
capture, 56, 78, 89, 101, 135, 136, 436,
450, 482, 511
in assignment, 513
casting, 101
contexts
assignment, specification, 93
casting, specification, 101
method invocation, specification, 99
forbidden, specification, 92
identity, 90, 108



in assignment conversion context, 93
in casting conversion context, 101
in method invocation conversion context,
99
specification, 80
kinds of, 80
method invocation, 452
in determining applicability, 442, 446,
447
in method invocations, 99
narrowing
primitive
in assignment conversion context, 94
in casting conversion context, 101
not allowed in method invocation
conversion context, reasons for, 95,
100
reference, in casting conversion context,
101
narrowing primitive, 486, 488
reference
narrowing, 85
widening, 85
string, 101, 497
in assert statements, 375
specification, 87
term definition, 77
unboxing, 37, 41, 78, 93, 95, 99, 101, 108,
110, 372, 375, 379, 381, 382, 385,
486, 488, 490, 492, 500, 503, 506,
507, 508, 509, 510, 512
in conditional expression, 512
in overload resolution, 442
term definition, 88
unchecked, 78, 99, 445, 450
term definition, 89
value set, 92, 486, 488, 489, 500, 503
in assignment conversion, 94
in binary numeric promotion, 110
in casting conversion, 101
in method invocation conversion, 99
in overview, 78
term definition, 92
in unary numeric promotion, 108
value-set, 506
widening, 108
primitive, 93
in assignment conversion context, 93

in binary numeric promotion context,
110
in casting conversion context, 101
in method invocation conversion
context, 99
in unary numeric promotion context,
108
reference, 85, 93
in assignment conversion context, 93
in casting conversion context, 101
in method invocation conversion
context, 99
widening primitive, 108
convertible
to anumeric type, 110, 485, 486, 487, 488,
506
in conditional expression, 511
term definition, 89
to a primitive integral type, 508
to a primitive numeric type, 489, 490, 491,
496, 502, 503
to anintegral type, 432
term definition, 89
to numeric type, 506
creation
See also declaration; initialization
array, 45, 289
expression evaluation
example, 433
order, 432
out-of-memory detection, example, 434
instance, 45
expression evaluation order, 428
expressions as statements, 371
invocation of initializers for instance vari-
ables during, 324
method dispatching during, 324
specification and procedure, 322
object, 45
of an enum constant, 250
term definition, 251

D

Danforth, Scott, 333
dangling else
See also control flow
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handling of, 368
data
See also constants; fields; variables
structures
See arrays, classes; interfaces; primitive
types; vectors
types
Seetypes
values
Seevalues
database
storing packagesin, 153
deadlock, 554
avoidance, multiple lock use for, 396
decimal
See also numbers
base, permitted in integer literals, 22
numerals, specification, 22
declarations
See also body; execution; methods; parame-
ters; statements
class
(chapter), 173
body, 189
member, 189
term definition and specification, 173
constructor, 240
enum, 249
field(s), 196
constantsin interfaces, 264
examples of, 205
interface, examples, 265
identifiersin, kept separate from those in
|abeled statements, 116
import
example, 165
single-type, 161
term definition, 160
type-import-on-demand, 163
instance variable, 69
interface, 260
(chapter), 259
body, 263
members, 263
local variable, definite assignment, 539
method(s), 209
examples of, 230
interface, abstract, 267

modifiers
See

abstract modifier;
final modifier;
native modifier;
private modifier;
protected modifier;
pub1ic modifier;
static modifier;
synchronized modifier;
transient modifier;
volatile modifier

overriding, example, 230

package, in compilation units, 157

scopeof, 117

shadowed, term definition, 119

shadowing, 119

subclass, 184

superclass, 184

superinterface, 186, 261

term definition, 114

type

as members of packages, 166

need not appear before use of thetype, 119

usagein, 65
variable
array, 288
local, 363
execution of, 367
declarator
in scope of local variable, 118, 365, 385,
387
default
access, 224
constructor, 247
enum, 250
keyword
in annotation types, 274
value
for annotations, 274
of avariable, 71
of array component, 432
variable(s), 67
write synchronizes with, 561
definite assignment
See al so exceptions; execution; scope
(chapter), 527
and anonymous classes, 548



of blank final class variables, 199
of instance variables, 199
and local classes, 539
of member types, 549
and parameters, 547
and qualified classinstance creation, 537
requirement for locals and parameters before
an inner class, 182
and static initializers, 549
of variables with respect to nested classes,
538
definite unassignment, 527
See also definite assignment
and incrementing blank finals, 488
hypothetical analysis of, 532
and local classes, 539
of blank final variables
in decrement operator, 488
and qualified classinstance creation, 537
and static initializers, 549
DeMichidl, Linda G., 6
denormalized
| EEE 754 standard, support required for, 41
Deprecated, 280
dereference chain, 575
digits
Java, term definition, 19
direct subtype
term definition, 63
directly depends
class, term definition, 185
discour aged
use of raw types, 59
division
See also arithmetic; numbers
integer divide by zero, indicated by Arith-
meticException, 37, 493
do statement
See also control flow
definite assignment, 543
specification, 382
double
variables
non-atomic treatment, 579
double quote
escape sequence, 30
in string literals, 28
double type

floating-point literal specification, 24
Duff’s device, 378
Dylan, 6

E

Eisenhower, Dwight D., 507
element type
arrays, term definition, 288
Ellis, Margaret A., 6
entity
declared, list of, 114
enum
constant
al provide implementation for abstract
method, 176, 250
term definition, 249
constants, 283
annotations(s), 281
constructor
default, 250
Enum class, 251
keyword, 21
type, 249
type(s)
static when nested, 250
Enum class
subclassing, 184
Epictetus, 264
erasure, 102, 241, 342, 347, 351, 352, 449,
450, 463
, 57
and qualifying type, 337, 338
changes cause warning, 60
of qualifying type, 336
restrictions required due to, 227
signature, 213
term definition, 56
Erngt, Erik, 54, 92
errors
class variable initializers may not refer to
instance variables, 202
Error class, unchecked exceptions as sub-
class of, 222
linking, 307, 314
resolution, 315
verification, 314

609



610

loading, 307, 313

reasons for, 298

semantic, exceptions as mechanism for sig-

naling, 297
unchecked, reasons for, 301
virtual machine, 307
escapes
sequences, for character and string literals,
30
Unicode, specification, 15
evaluation

See also execution; initialization; scope

evaluated, term definition, 409

expressions
additive operators, 496
additive operators for numeric types, 500
array access, 482
array assignment, 513
array creation, 432
assignment operators, 512
bitwise binary operators, 508
bitwise complement, 490
boolean equality operators, 507
boolean logical operators, 508
cast, 490
compound assignment operators, 518
conditional operator, 510
conditional-and operator, 509
conditional-or operators, 509
division, 493
equality operators, 505
field access, 435
instance creation, 428
integer bitwise operators, 508
logical binary operators, 508
logical complement, 490
method invocation, 440
method invocation, order of, 473
multiplication, 492
multiplicative operators, 491
numeric comparison, 503
numeric equality operators, 506
parenthesized, 422
postfix, 486
pre-decrement, 488
pre-increment, 487
primary, 420
reference equality operators, 507

relational operators, 503
remainder, 495
shift operators, 502
simple assignment operator, 513
string concatenation, 497
superclass access, 438
type comparison, 504
unary minus, 489
unary operators, 487
unary plus, 489

literals, 420

order
arguments left-to-right, 418
binary operators, 415
compound assignment, 415
left-hand operand first, 415
left-to-right, 414
operands evaluated before operations, 416
parentheses and precedence respected,

417
result of, term definition, 409

evolution

See also binary, compatibility; reuse

of classes, binary compatibility consider-
ations, 340

of interface, binary compatibility consider-
ations, 356

of packages, binary compatibility consider-
ations, 340

examples

access control, 140
fields, methods, and constructors
default, 142
private, 144
protected, 143
public, 143
arrays, 290
capture conversion, 90
classes, pub1ic and non-public, 141
declarations
fields, 205
import, 165
methods, 230
default-access methods, constructors, and
fields, 142
exceptions, 304
fields
interface, ambiguous inherited, 265



interface, multiply inherited, 266
multiply inherited, 207
re-inheritance of, 209
hiding, 231
vs. overriding, 232
of variables
class, 205
instance, 206
illegal self-referencein annotation, 274
inheritance
accessing members of inaccessible classes
, 194
class members, 192
default access, 192
public, protected, and private
access, 193
multiple, with superinterfaces, 188
with default access, 192
with private access, 193
with protected access, 193
with pub1ic access, 193
methods
abstract declarations, 269
invocation of hidden class, 234
private, 144
protected, 143
public, 143
overloading, 231
overriding, 230
vs. hiding, 232
incorrect, 231
because of throws, 236
large example, 234
wildcards, 52
as components of array types, 53
bounded, 53
exceptions
See also binary, compatibility; compile-time
EITors; errors,
(chapter), 297
asynchronous, causes and handling of, 303
caller, determination of, 302
causes of, 298
checked
constructors, declaringwith throws clause
in method declarations, 221
defining new exception classes as, 306
Exception, 306

in an instance initializer, 202, 238, 301
methods, declaring with throws clausein
method declarations, 221
in astatic initializer, 239
UnsatisfiedLinkException, 316
classes
Error, 299
Exception, 301, 306, 398
RuntimeException, 301
unchecked exceptions found in, 222
Throwable, 297, 299
errors
AbstractMethodError, 352, 353
ClassCircularityError, 186, 341
meaning, 313
ClassFormatError, meaning, 313
Error, 306
ExceptionInInitializerError, 321
3%
I1legalAccessError, 341, 356, 357, 476
meaning, 315
IncompatibleClassChangeError, 348
354, 357, 475
meaning, 315
InstantiationError, meaning, 316
LinkageError, 313, 314
loading and linkage, 307
NoClassDefFoundError, 320
meaning, 313
NoSuchFieldError, 347
meaning, 316
NoSuchMethodError, 350, 357, 475
meaning, 316
OutOfMemoryError, 222, 313, 321, 322
413, 428, 432, 434
StackOverflowError, 477
UnsatisifedLinkError
meaning, 316
VerifyError, 353, 357
meaning, 314
VirtualMachineError, 307
example, 304
handlers
compile-time checking, 299
how established, 297
in try statements, 397
handling of, 302
asynchronous, 303
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run-time testing, 412
hierarchy, 306
NegativeArraySizeException, 413, 432
never thrown for
assignment conversions, 95
information loss due to narrowing primi-
tive conversions, 84
information loss sue to widening primitive
conversions, 81
widening reference conversions, 85
NulTPointerException, 245
parameters
See also variables
declaration, 397
description, 70
initial value, 72
scope, 118, 397
precise, 303
RuntimeException, 515
synchronization integrated with mechanism
for handling, 298
thrown for, narrowing reference conversions,
85
uncaughtException method, when invoked
, 298
unchecked, 306
unchecked runtime
ArithmeticException, 416, 495
ArrayIndexOutOfBoundsException
514, 519
ArrayStoreException, 295, 413, 514
518
ClassCastException, 412, 491, 514
casting conversion reguirements that
can result in, 105
IndexOutOfBoundsException, 290,413
483
Nul1PointerException, 291, 302, 413
476, 479, 483, 484, 513, 514, 519
RuntimeException, 306, 515

execution

See also declarations; evaluation; initializa-
tion; linking; loading

(chapter), 309

of statements for their effect, 359

execution(s)

described by atuple, 567

happens-before edgesin, 562

legal, 562
non-terminating, 560
order, 560

well formed, 568

exit

virtual machine, criteriafor, 331

exponent

See value set

expressions

See also fields; methods; statements
(chapter), 409
abrupt completion of, as reason for abrupt
statement completion, 361
additive operators
evaluation, 496
for numeric types, evaluation, 500
array
access, evaluation, 482
assignment, evaluation, 513, 519
creation, evaluation of, 431
assignment
conversion, 93
definite assignment, 527, 533
operators, evaluation, 512
as statements, 371
bitwise
binary operators, evaluation, 508
complement, evaluation, 490
boolean
operators
I, definite assignment, 534
& &, definite assignment, 533
?, definite assignment, 534
||, definite assignment, 534
assignment, definite assignment, 535
constant, definite assignment, 533
equdlity, evaluation, 507
logical, evaluation, 508
cast, evaluation, 490
compound, assignment operators, eval uation,
518
conditional
and operator & &, evaluation, 509
operator ?:
definite assignment, 535
evaluation, 510
or operator ||, evaluation, 509
definite assignment and, 533



division, evaluation, 493
equality operators, evaluation, 505
field access, evaluation, 435
instance creation
evaluation of, 423
as statements, 371
integer bitwise operators, evaluation, 508
logical
comparison operators, evaluation, 508
complement !, evaluation, 490
method invocation
evaluation, 440
evaluation order, 473
as statements, 371
multiplication *, evaluation, 492
multiplicative operators *,/, %, evaluation,
491
names
context in which anameis classified as,
128
qualified, meaning of, 135
simple, meaning of, 134
numeric
comparison, evaluation, 503
equality operators, evaluation, 506
operators
++, definite assignment, 536
--, definite assignment, 536
precedence, evaluation, 417
parenthesized
evaluation of, 422
evaluation of, precedence effect of, 417
post-decrement --
evaluation of, 486
as statements, 371
postfix, evaluation, 485
post-increment ++
evaluation of, 485
as statements, 371
pre-decrement --
evaluation of, 488
as statements, 371
pre-increment ++
evaluation of, 487
as statements, 371
primary, evaluation of, 420
Seealso
array’s, access expressions;

arrays, creation;
expressions, parenthesized;
fields, access expressions;
instance, creation;
literals;
methods, invocations;
this keyword
reference equality operators ==, !=, evalua-
tion, 507

relational operators <, >, <=, >=, evaluation,

503
remainder operator %, evaluation, 495
run-time checks of, 411

semantics and evaluation rules, (chapter),
409

shift operators <<, >>, >>>, evaluation, 502

simple assignment operator =, evaluation,
513
statements
definite assignment, 538
specification, 368
string concatenation +, evaluation, 497
superclass access, evaluation, 438
type
vs. class of object, 73

comparison instanceof, evaluation, 504

how determined, 73
usagein, 65
unary
minus -, evaluation, 489
operators, evaluation, 487
plus +, evaluation, 489
values, variable as, 410
extends clause
See also classes; implements; object-ori-
ented concepts
in class declaration, specifying direct super-
classes with, 184
in interface declaration, 261

F

Feeley, Mark, 304
fields
access control
default, example, 142
private, example, 144
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protected, example, 143
public, example, 143
access expressions, evaluation, 435
annotations, 281
are variables in memory model, 558
of an array, 125, 292
of aclass
binary compatibility considerations, 345
declarations, 196
examples of, 205
final, 199
binary compatibility considerations,
347
volatile declaration not permitted for,
201
multiply inherited, example of, 207
non-static
default values, 71
explicit constructors not permitted to
use, 244
hiding example, 206
initializers for, 202
initialization of, 201
invocation of initializersduring instance
creation, 323
specification, 69
re-inheritance of, example, 209
static
binary compatibility considerations,
349, 356
and final, binary compatibility
considerations, 347
hiding of, example, 206
initialization of, 201, 239
initialization of, during the preparation
phase of linking, 315
specification, 69
term definition and declaration, 198
transient, 199
binary compatibility considerations,
350
volatile, 199
declarations
binary compatibility considerations, 358
as declared entity, 113
final
semantics of, 575
hidden

accessing with
super keyword, 438, 439
this keyword, 367
initializer, 410
of an interface
ambiguous inherited, example, 265
binary compatibility considerations, 358
declarations, 264
examples, 265
initialization, 265
during the preparation phase of linking,
315
multiply inherited example, 266
public by default, 264
names, naming conventions, 150
pub1ic, by default in interface declaration,
263
referencesto, binary file format requirements
, 335
references, active use, 318
shadowing, 119
write-protected, 578

fifth dimension, 433
files

binary, format, 334
systems, storing packagesin, 153

Finagle's Law, 297
final modifier

See also declarations; modifiers
anonymous class is always implicitly, 429
classes
binary compatibility considerations, 340
declaration of, 178
enum typeisimplicitly, 250
exception parameter
may not be assigned, 398
fields
binary compatibility considerations, 347
declaration and use, 199, 264
final by default in, interface declaration,
264
not allowed with volatile, 201
formal parameters, 210
methods
binary compatibility considerations, 353
declaration and use, 217
not permitted in interface method declara-
tions, 267



reasons why constructors cannot be, 241

finalization

See also exceptions; linking
enum instances may not undergo, 251
finalizable, as object attribute, 326
finalize method, as member of Object
class, 48
finalized, as object attribute, 327
finalizer method calls, unordered nature of,
329
finalizer-reachable, as object attribute, 326
finalizers
may not be declared in enums, 251
finally clause, exception handling use,
303
implementing, 326
of instances, 325
implementation procedures, 326
float type, 37
See al so floating-point
floating-point
See also arithmetic; numbers; types
algebraic identities, limits on use of, 417
float type, floating-point literal specifica-
tion, 24, 35
literals
largest and smallest, 26
term definition and specification, 26
operations, 40
required behavior, 41
types and values, term definition and specifi-
cation, 37
flow analysis
See also security
conservative, required for definite assign-
ment of local variables, 527

for statement

basic, 384

can complete normally, 404
definite assignment, 543
enhanced, 384

can complete normally, 404

full description, 387
Forlnit part

initialization by, 385

scope of local variable declared in, 118
header, local variable declaration in, 366
in scope of alocal variable, 118, 385, 387

specification, 384
form feed
escape sequence, 30
Forman, Ira, 333
forward reference
compile-time error in
initializers, 203
to types allowed before declaration, 119
FP-strict
actual arguments, 212
and addition, 501
annotation element values are aways, 274
and casts, 491
classes, 178
classes, interfaces, methods, constructors
and initializers, 411
compile-time constant is always, 526
constructors, 241
and division, 494
expression
term definition, 411
interfaces, 261
methods, 218
overriding, 225
and multiplication, 492
and return statement, 393
value set conversion within, 92
Franklin, Benjamin, 309

G

Gabrid, Richard P, 6
generic(s)
annotation types cannot be, 271
class(es), 49
term definition, 178
constructor(s), 49
term definition, 242
declaration(s), 2
interface(s), 49, 189
method(s), 49, 445, 446, 448, 450
term definition, 220
method(s) or constructor(s), 127
getClass(Q
treated specialy, 48
Gilbert, W. S,, 257
glb, 90, 466
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goal symbols
CompilationUnit, 157
syntactic grammar use, 10
Input, lexical grammar use, 9
Goldberg, Adele, 7
goto statement
See |abeled statements
gradual underflow
See al so exceptions; floating-point; IEEE
754 standard; numbers
support required for, 41
grammars
See also languages; lexical; semantics
(chapter), 9
context-free, term definition, 9
difficulties with, as given in body of Java
Language Specification, 585

i statement, dangling e1se handling, 368

lexical

(chapter), 13

term definition, 9
notation, 10
syntactic, term definition, 10

H

Hammer stein, Oscar, 11, 171
Hansen, Christian Plesner, 54, 92
happens-before

, 561

constructor completion, 325
Harbison, Samuel, 7
heap

memory, 558
heap pollution, 95, 100, 410

, 67,68
hexadecimal

See also numbers

base, permitted in integer literals, 22

numerals, specification, 22
hiding

See also scope

by class methods, 225

of field declarations, in superclasses and

superinterfaces, 196
of fields, 174
bypassing using super, 439

term definition, 196
hidden class methods, invocation of, exam-
ple, 234
of interface field declarations, in superinter-
faces, 264
of interface fields, term definition, 264
of interface member type declarations, 270
of interface member types, term definition,
270
of interfaces, 259
of member types, term definition, 237
method
example, 231
impact on checked exceptions, 222
requirements, 225
of methods, 174
vs. overriding, example, 232
of types, by member types, 174
of variables
class, example of, 205
instance, example of, 206
hierarchy
exception, 306
Higginson, Thomas Wentworth, 264
Hoare,C.A.R.,, 1, 7
horizontal tab
escape sequence, 30
host
and creation, storage and observability of
packages and compilation units, 155
may not restrict packages in a database, 167
and observable compilation units, 157
optional restriction on packagesin afile sys-
tem, 167
hypothetical analysis
of definite unassignment, 532

identifiers

See also fields; names; scope; variables

characteristics of those that are not names,
115

in type declaration specifier, 44

in labeled statements, distinguished from
those in declarations, 116

term definition and specification, 19



identity
conversion
in assignment conversion context, 93
in casting conversion context, 101
in method invocation conversion context,
99
specification, 80
|EEE 754 standard, 7
See also numbers
floating-point
conversion of numbersto, 25
types conformance to, 37
if statements
See also statements
dangling e1se, handling of, 369
definite assignment, 541
if-then statement, specification, 372
if-then-else statement, specification, 372
specification, 372
I gar ashi, Atsushi, 54, 55, 92
implement
See also classes; extends clause; interfaces
implements clause, 261
class declaration, specifying direct super-
interfaces with, 186
term definition, 124, 187
implicit
cast(s), 412
import
See also packages; scope
automatic, 165
declarations
example, 165
single-type, 161
term definition, 160
type-import-on-demand, 163
imported types
as declared entity, 114
scopeof, 117
as part of acompilation unit, 157
single-static
and shadowing, 120, 164
single-type
may not declare top-level type in same
compilation unit, 168
namesin, 130
scope, 117, 161
and shadowing, 119, 161

static
on-demand, 127, 137, 161, 444
and shadowing, 120, 165
names, 130
single, 127, 130, 137, 160, 444
scope, 117, 161
static-import-on-demand
scope, 117, 161
type-import-on-demand, 129
scope, 117, 161
and shadowing, 120, 163
type-on-demand, 160
namesin, 130
indexing
of arrays, 289
inexact results
See also numbers
rounding behavior, 41
infinity
See also numbers
representation of, 26
signed, produced by floating-point overflow,
41
inheritance
See also object-oriented concepts; scope
in class
examples of, 192
of members, 190
of members, with public, protected,
and private access, examples, 193
with default access, example, 192
of fields
in class declarations
multiply inherited from interfaces,
example of, 207
reinheritance of, example of, 209
in interface declarations
ambiguous inherited, example, 265
multiply inherited, example, 266
of members, 123
of methods
in class declarations, 224
ininterface declarations, 267
multiple
See al so superinterfaces
example, 188
term definition, 123
initialization
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See also control flow; linking
of arrays
in creation, to default value, 432, 69
using array initializers, 290
of classes, 316
detailed procedure, 319
of classes and interfaces, when it occurs,
317
complete
term definition, 573
detailed procedure, 319
of fields
in classes, 202
in interfaces, 265
of for statement, 384
of interfaces, 316
detailed procedure, 319
of classes
creating enum constants, 250
for variables, array, 290
initializers
See also creation; execution
array
in array creation expression, 432
arrays, 289
executing, in Test class exampleinitiaiza-
tion, 311
for fields, 410
in class, 202
ininterface, 265
instance
Seeinstance initializer
enum
constant must not refer to itself, 252
FP-strict, 411
instance variable, 246
lacking in ablank final, 71
local variable

in scope of alocal variable, 118, 385, 387

static, 201, 239, 410
binary compatibility considerations, 356
static
FP-strict, 411
variable
FP-strict, 411
in scope of local variable, 118, 364
for variables
class, 201

during class or interface initialization,
201
instance, 202
during instance creation, 323

inner class

See also nested class

anonymous classis aways, 429

of another class, 182

direct, 182

every loca classisan, 361

inaqualified class instance creation expres-
sion, 425

and qualified super method invocation, 472

qualified superclass constructor invocation
of, 244

as superclass of an anonymous class, 427

term definition, 181

input

See alsofiles

elements, term definition, 17

Input goal symbol, lexical grammar use, 9
tokens, 17

instanceinitializer, 173

allows field access through super, 438
anonymous class, 430
as components of a class body, 189
containing athrow statement, 394
definite assignment of variables before, 538
enum

must not reference non-constant static

fields, 252

execution during constructor invocation, 246
is not amember, 191
may not contain areturn statement, 392
must be able to complete normally, 239
overview, 174
term definition, 238
and unreachabl e statements, 402
when reachable, 403

instance(s)

See also classes; interfaces; object-oriented
concepts
creation, 45, 322
constructor
invocation by creation expressions, 240
parameter assignment during, 322
usein, 240
expression evaluation, 423



order, 428
expressions as statements, 371
expressions cannot use wildcards, 56
invocation of initializers for instance vari-
ables during, 323
method dispatching during, 324
enclosing
determining immediate, 425
with respect to superclass, 245
with respect to superclass of an
anonymous class, 426
immediate asfirst argument to constructor,
428
immediately, 182
with respect to aclass, 182
nth lexical used when evaluating method
invocation, 473
nth lexically, 182, 422, 473
restrictions on references to, 245
finalization of, 325
implementation procedures, 326
initializer
Seeinstanceinitializer
instanceof operator
testing expression types with, 412
testing expressions with, 412
instantiation
preventing, with private constructors,
178, 248
methods
See methods, non-static
variables
Seefields, class, non-static

instanceof operator

testing expression types with, 412

instantiation

term definition, 424
integers
See also arithmetic; integral types, numbers
converting to boolean values, 43
literals

longest permitted, 23

term definition and specification, 21
operations, 36
integral types
See also arithmetic; numbers; types
byte type, 35
char type, 36

int type, 35

long type, 35

short type, 35

values and operations, 35
interfaces

See also class(es); fields; methods; packages;

subclasses; superclasses; superinter-
faces
abstract methods, 266
accessibility, 138
annotation(s), 281
as array element types, 288
binary compatibility considerations, 356
binary representation
binary file format requirements, 334
verification, 314
body, declarations, 263
and checked exceptionsin initializers, 301
Cloneable
implemented by arrays, 292
declarations, 260
(chapter), 259
generic, 49
namesin extends clause, 128
normal, 260
as declared entity, 113
dependent on a reference type
term definition, 262
directly dependent on areference type
term definition, 262
fields
declarations, 264
examples, 265
inheritance
ambiguous, 265
multiply, 266
initialization, 265
FP-strict, 411
generic, 189
term definition, 261
initidization, 316
detailed procedure, 319
java.io.Serializable
implemented by arrays, 292
linking, process description, 314
loading, 312
process description, 313
members, 124
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binary compatibility considerations, 357
declarations, 263
inheritance from superinterfaces, 124,
263
names, access to, 263
methods
declarations, examples, 269
overloading, 268
example, 269
overriding, 267
example, 269
names
fully qualified, 145
naming conventions, 146
normal, 113, 259
preparation of, 315
public
binary compatibility considerations, 356
declaration, 260
referencesto, binary file format requirements
, 338
in scope of imported type, 117, 161
Serializable, implemented by arrays, 292
superinterfaces
binary compatibility considerations, 341
of aclass, 186
declaration of, 186
direct, 262
that depend on themselves, 262
unloading of, 330
interruption
of threads, 582
inter section types
See types, intersection
invocation
alternate constructor, 244
constructor
determining arguments to, 427
expression evaluation, 428
expression evaluation, order, 430
language constructs that result in, 240
generic, 184
of hidden class methods, example, 234
method
conversion, 99
expression evaluation, 440
order, 473
how chosen, 411

of ageneric interface, 189
superclass constructor, 244
iteration
See also control structures
continue statement, specification, 390
do statement, specification, 382
for statement, specification, 384
whi Te statement, specification, 380

J

Java
digits, term definition, 19
. java suffix, as name for source files, 156
java packageis alwaysin scope, 160
java.lang
example, 155
may be named in a type-import-on-de-
mand, 163
pub1i c type names automatically import-
ed from, 153, 158
java.lang package
pub1ic type names automatically import-
ed from, 165
public typesdefined in, list of, 165
|etters, term definition, 19
Java programming language
See also grammars; languages, lexical;
semantics; syntax
java.io.Serializable interface, 85, 98
and array subtyping, 64
java.lang.ref, 328

K

Keene, SonyaE., 6
Kelvin, Lord (William Thompson), 409
Kernighan, Brian W., 7
keywords

default

in annotation types, 274

list of, 21

astoken, 10
Kiczales, Gregor, 6



L

|labeled statements
identifiersin, kept separate from those in
declarations, 116
specification, 370
language
See also grammars; lexical; semantics; syn-
tax
Beta, 7
C 127
C++,1,27
Common Lisp, 6
Dylan, 6
Mesa, 5, 7
Modula-3, 3, 7
POOL, 55
Smalltalk-80, 7
term definition, 9
left-hand side
term definition, 9
length
of array, 291
not part of type, 288
letters
See also Unicode character set
Java, term definition, 19
lexical
See also semantics; syntax
grammar, term definition, 9
structure (chapter), 13
trandations, stepsinvolved in, 14
Liang, Sheng, 34, 313
lineterminators, term definition, 16
linefeed (LF)
escape sequence, 30
handlingin a
character literal, 27
string literal, 28
as aline terminator, not input character, 28
linking, 314
See al so exceptions; execution; initialization;
loading; run-time
classes, process description, 314
errors, 307
interfaces, process description, 314
in Test class example, at virtual machine
startup, 310

literals
See also constants; fields; variables
boolean, term definition and specification,
26
character
escape sequences for, 30
term definition and specification, 26
class, 283
evaluation of, 420
floating-point
largest and smallest permitted, 26
term definition and specification, 24
hexdecimal, 23
integer
largest and smallest permitted, 23
term definition and specification, 22
null, term definition and specification, 30
string
escape sequences for, 30
term definition and specification, 28
term definition and specification, 21
astoken, 10
loading
See also ClassLoader class; execution;
linking
classes, 312
errors, 307
interfaces, 312
process, 313
in Test class example, at virtual machine
startup, 310
local class, 150, 173
declaration is part of ablock, 361
and definite [un]assignment, 539
determining immediately enclosing instance
when instantiating, 426
example(s), 182, 362
interaction with shadowing of parameters,
212
requirements for normal completion, 403
scope, 118, 362
as superclass of anonymous class being
instantiated, 427
term definition, 361
local variables
See also scope; variables
declarations
definite assignment, 539
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statements, 363
declarators and types, 364
definite assignment, required for, 527
initial value, 72
naming conventions, 151
restrictions on use in an inner class, 182
scope, 118, 364
shadowing, 119
specification, 70
locks
See also monitors; synchronization; threads
(chapter), 553
acquisition and release
by synchronized networks, 218
by synchronized statement, 395
Tong type, 35
See also integral types, numbers
integer literal specification, 24
value range, 35
variables
non-atomic treatment, 579
lub, 511
Ivalue
See variables, value of expression

M

Madsen, OleLehrmann, 7
magnitude
loss of information about, possibility of in
narrowing primitive conversion, 82
Marx, Groucho, 190, 307, 535
mathematical functions
See arithmetic; numbers
Matthew, St., 287
Maybury, William, 7
member, 237
member class, 114, 146, 173, 174
See also member type
can have same name as a method, 210
canonical name of, 146

determining immediately enclosing instance

when instantiating, 426
example(s), 181, 183, 245, 247, 362
fully qualified name of, 145
and pub1ic modifier, 175

as superclass of anonymous class being
instantiated, 427
term definition, 237

member interface, 114, 145, 146, 174, 237

See also member type

can have same name as a method, 210
canonical name of, 146

example(s), 181

fully qualified name of, 145
implicitly static, 181, 238

inner class may not declare, 181

term definition, 237

member type, 130, 132, 237, 259

See also nested type

binary name of, 335

and definite assignment, 549

in interfaces, 270

inherited by interfaces, 261

and the meaning of a qualified type name,
132

members

See also class(es); fields; interfaces; methods
accessibility, 139
arrays, 125, 292
classes, 123, 190
binary compatibility considerations, 342
declarations, 189
inaccessible, accessing, example, 194
inheritance, examples, 192
private, inheritance examples, 193
inheritance and, 123
interfaces, 124, 263
binary compatibility considerations, 357
declarations, 263
inheritance, 124, 263
names, access to, 263
Object class, 48
of apackage, 122, 153
of atype variable, 50
of awildcard, 55
of an enum, 251
of an intersection type, 62
of parameterized types, 55
of apackage, 122, 154
protected accessihility of, 139
reference type, as declared entity, 113
static, restricted in inner classes, 181
of superclasses, accessing with super, 438



term definition, 122
type, 44
memory
chain, 575
exceptions
OutOfMemoryError, 321, 322
heap, 558
OutOfMemoryError, 222
shared, 558
memory model
and finalization, 328
causality requirements of, 569
hardware, 553
Java programming language, 553
term definition, 557
Mesa, 5, 7
meta-annotation(s)
See annotation(s), meta
method(s), 209
abstract
in enum constant, 176, 250
abstract
binary compatibility considerations, 352
in classes, 214
ininterfaces
overloading, 268
, 266
access control
default, example, 142
private, example, 144
protected, example, 143
public, example, 143
access, binary compatibility considerations,
344
accessible, and method invocation, 442
annotation(s), 281
applicable, 450
arity
fixed
see method(s), fixed arity, 443
variable
see method(s), variable arity, 442
of array, 125, 292
body, 223
binary compatibility considerations, 354
class
See methods, static
classes, 209

abstract, 214
binary compatibility considerations, 350
body
declarations, 223
with no executable code, 223
constructors compared with, 240
declarations, 209
examples of, 230
final, 217
hidden, invocation of, 234
hiding by, 225
modifiers, 214
native
declarations, 218
semicolon as body of, 223
private, asimplicitly final, 217
signature, 212
strictfp, declaration, 218
synchronized, declaration, 218
void, expression return statement not per-
mitted in, 223
with same signature, inheriting, 228
declarations, 209
binary compatibility considerations, 350
generic, 49
as declared entity, 113
definite [un]assignment of blank final fields
before, 538
definite assignment of variables before, 538
descriptor, 442
dispatching during instance creation, 324
enum
implicitly declared, 251
equals, asmember of Object class, 48
final, 217
binary compatibility considerations, 353
finalize, as member of Object class, 48
fixed arity
evaluating arguments of, 474
term definition, 212
when more specific, 448
FP-strict, 411
generic, 127, 220, 446
in an interface, 267
term definition, 220
getClass, asmember of Object class, 48
hashCode, as member of Object class, 48
hiding of, 225
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inheritance
in arrays, 125, 292
in classes, 224
in interfaces, 124, 263
instance
See method(s), non-static
of interfaces
declarations, 266, 269
overloading, 268, 269
overriding, 267, 269
semicolon as body of, 223
invocation
See also access control
conversion, 99
expression evaluation, 440
order, 440
expressions as statements, 371
how chosen, 411
qualifying type of
See qualifying type, of amethod
invocation
as members of aclass, 123
method table creation during preparation
phase of linking, 310
most-specific, 447
names
context in which aname s classified as,
127
naming conventions, 149
qualified, meaning of, 137
simple, meaning of, 137
native, 218
binary compatibility considerations, 354
non-static
instance method as name for, 216
overriding by, 224
notify, asmember of Object class, 48
notifyAl1l, as member of Object class, 48
overloading, 229
binary compatibility considerations, 355
example, 231
overriding, 225
binary compatibility considerations, 356
examples, 230, 231, 232, 234, 269
parameters
See also arguments; variables
binary compatibility considerations, 352
definite [un]assignment of, 547

description, 69
formal
unaffected by memory model, 558
initial value, 72
is assigned when final, 211
must not be assigned if final, 211
shadowing, 119, 212
specification of, 210
private, in example of qualified names and
access control, 144
public, interfaces, declarations, 267
referencesto, binary file format requirements
, 336
result type, binary compatibility consider-
ations, 352
scope of formal parameters, 118, 212
shadowing, 119
signatures, 212
static, binary compatibility considerations,
354
stop, as asynchronous exception cause, 298
synchronized, 554
synchronized, 218
binary compatibility considerations, 354
throws clause, binary compatibility consid-
erations, 354
toString, as member of Object class, 48
uncaughtException
exception handling use, 303
when invoked, 298
and unreachable statements, 402
variable arity, 442, 443, 446
evaluating arguments of, 474
term definition, 212
when more specific, 448
virtual
invocations
semantics not effected by data races,
563
void
relationship with conditional expressions,
511
wait
as member of Object class, 48, 580
when reachable, 403

Mitchell, James G., 7
modifiers

See also declarations



class, 175
constructor, 241
declaration
See
abstract modifier;
final modifier;
private modifier;
protected modifier;
pub1ic modifier;
static modifier;
strictfp modifier;
synchronized modifier;
transient modifier
field, 197
interface, 260
method, 214
Modula-3, 3, 7
M gller-Peder sen, Birger, 7
monitor
, 554
lock action on, 558
Moon, David A., 6

N

named class
exceptionsin instance initializer, 202, 238,
301
named type, 260
names
See also identifiers; scope; Unicode charac-
ter set
(chapter), 113
ambiguous
handling of, 126, 129
reclassification of, 129
binary
implementation keeps track of typesusing
, 167
term definition, 335
canonical, 114
is binary name of top-level type, 335
and single-static imports, 164
and single-type imports, 161
and static-import-on-demand, 165
term definition, 146
and type-import-on-demand, 163

class
naming conventions, 147
conflicts
See also hiding
avoiding
in fields with multiple inheritance, 207
through context use, 127
through naming conventions, 146
constants, naming conventions, 150
conventions, 146
impact on name obscuring, 122
expression
context in which anameis classified as,
130
qualified, meaning of, 135
simple, meaning of, 134
fields, naming conventions, 150
fully qualified
of atop-level type, 166
interface
member, access to, 263
naming conventions, 147
meaning of, determining, 126
method, 210
context in which anameis classified as,
129
naming conventions, 149
qualified, meaning of, 137
simple, meaning of, 137
package
in compilation units, 157
context in which anameis classified as,
130
limited significance for access control,
154
naming conventions, 147
qualified, meaning of, 132
scope, 160
simple, meaning of, 131
unique, 169
importance of, 170
parameters, naming conventions, 151
qualified
access control and, 138
fully, 145
term definition, 113
resolving references to, during resolution
phase of linking, 310

625



626

restrictions, types and subpackages, 154
rules on being the same
class members, 123
fields, 123
interface fields, 125
simple, 44, 335
class cannot have same as enclosing class,
175
interface cannot have same as enclosing
class, 260, 272
of an element, 137, 283
term definition, 115
as subset of identifiers, 115
syntactic
categories, 126
classification of according to context, 127
term definition, 115
type
qualified, meaning of, 132
simple, meaning of, 132
variables, local, naming conventions, 151
NaN (Not-a-Number)
See also numbers
and addition, 500
comparison results, 41
and division, 493
and multiplication, 492
predefined constants representing, 26
preventing use of algebraic identitiesin
expression evaluation, 417
term definition and specification, 37
narrowing
See also conversion; numbers
primitive conversions
in assignment conversion context, 94
in casting conversion context, 101
not allowed in method invocation conver-
sion context, reasons for, 100
reference conversions, specification, 85
native modifier
See also declarations; modifiers
methods
binary compatibility considerations, 354
declaration, 218
semicolon as body of, 223
reasons why constructors cannot be, 241
nested class, 173, 174
See also nested type

and definite [un]assignment of variables,
538
inner classisa, 181
interaction with shadowing of parameters,
212
local classisa, 361
may declare static membersif non-inner,
181
name hides same name in enclosing scopes,
190
term definition, 173
nested interface, 173, 174, 259
See also nested type, 173
term definition, 259
nested type
declaration
in scope of a class member, 118, 190
declarations
included in scope of interface members,
118, 263
in scope of an interface member, 118, 263
enum
implicitly static, 250
Newton, Sir Isaac, 1
non-publ-ic
classes, in example of qualified names and
access control, 141
nonterminal symbols
See also grammars
definition of, notation for, 10
term definition, 9
NoSuchFieldError
and enum binary compatibility, 356
notation
See also hames, naming conventions
grammar, 10
null, 283
literal, term definition and specification, 30
qualifying a superclass constructor invoca-
tion, 245
type
in conditional expression, 511
literal as source code representation of the
value of, 21
term definition and specification, 34
Nul1PointerException, 95
numbers
See also arithmetic; precision; types



conversions of and to
See conversions
errorsin handling
See exceptions
manipulating
See arithmetic operators
numeric promotion
binary, 110
specification, 108
term definition, 78
unary, 108
primitive types
See
byte type;
char type;
double type;
float type;
floating-point;
int type
integers,
integral type;
Tong type;
short type
related types
See boolean; characters; strings
Nygaard, Kristen, 7

O

Object class, 47, 98, 125, 263, 273, 293,
326, 466
and array subtyping, 64
cannot have extends clause, 184
object-oriented concepts
See class(es); encapsulation; fields; inherit-
ance; method(s); objects
objects
Class, array, 293
fields that reference, final modifier effect
on changesto, 71, 199
finalization attributes, 326
operations on references to, 46
reachable, finalization implication, 326
reference
See references
state
impact of changes, 46

transient fields not part of, 199
term definition and specification, 45
unreachable, finalization implications, 327
obscured
declaration, term definition, 122
label, 117
by labels, 370
of labels, 370
observable
all compilation unitsin java and java.lang
are, 158
compilation unit
determined by host, 155
term definition, 157
package
and meaning of qualified package name,
132
term definition, 160
octal
See also numbers
base, permitted in integer literals, 22
numerals, specification, 23
one of phrase
grammar notation use, 12
operators
See also constructors; expressions; initializa-
tion; methods; numbers
arithmetic, numeric promotion, specification,
108
assignment, as only way to change the value
of aprimitive variable, 35
binary, evaluation order, 414
boolean, 43
compound assignment, evaluation order, 415
floating-point, 40
signed infinity produced by overflow, 41
signed zero produced by underflow, 41
integer
divide, divide by zero exception thrown by
, 37
overflow not indicated by, 37
underflow not indicated by, 37
integral, 36
list of, 31
operands evaluated before, 416
precedence, in expression evaluation, 417
on reference types, 46

627



628

remainder, divide by zero exception thrown
by, 37
string concatenation
constructor invocation by, 240
creating new instances with, 45
opt subscript
grammar notation use, 10
optimization
during
preparation phase of linking, 315
resolution phase of linking, 315
final method inlining, 217
finalization, 326
reachable objects reduction, 326
linking
initialization phase of, 321
resol ution strategies, 314
optional symbol
term definition, 10
order
evaluation
argument lists left-to-right, 418
binary operators, 415
compound assignment, 415
left-hand operand first, 415
operands eval uated before operations, 416
of other expressions, 419
parentheses and precedence respected,
417
execution, 560
field initialization, at run-time, 265
finalizer invocations, implications of no
ordering imposition, 329
of floating-point values, 39
happens-before, 561
of occurrence, of initialization of types, 316
partial, 568, 575
restrictions of, 555
program, 558, 560, 561, 562, 567
synchronization, 561, 567
total, 560, 567
origin
of arrays, 290
OutOfMemoryError, 95, 314, 430
output
Seefiles
over flow
See also arithmetic; exceptions; numbers

floating-point operators, signed infinity pro-
duced by, 41
not indicated by integer operators, 37
overloading
See al so object-oriented concepts; inherit-
ance; methods
of abstract interface methods
declarations, 268
example, 269
of constructors, 246
binary compatibility considerations, 355
of methods, 229
binary compatibility considerations, 355
example, 231
term definition, 124, 229
Override annotation, 279
overriding
See also object-oriented concepts; scope
examples, 231, 232, 234, 269
incorrect, 231
incorrect because of throws, example, 236
large example, 234
methods
abstract
inabstract classes, 215
of non-abstract instance methods,
215
binary compatibility considerations, 356
ininterfaces, 267
example, 269
instance, 224
requirementsin, 225
term definition, 124

P

packages
(chapter), 153
and overriding, 224
annotation(s), 281, 410
binary compatibility considerations, 340
canonical name of, 146
declarations
in compilation units, 158
shadowing, 160
as declared entity, 113
host support for, 155



importing all pub1ic typesfrom a, 163
members of, 122, 154
named, in compilation units, 158
names
context in which anameis classified as,
127
fully qualified, 145
naming conventions, 147
qualified, meaning of, 132
simple, meaning of, 131
unique, importance of, 169
observable, 160
scope of, 117
shadowing, 119
storing in a
database, 157
file system, 155
term definition, 154
unnamed
compilation units belonging to, 157
in compilation units, uses and cautions,
159
and fully qualified name of top-level type,
166
parameterized type, 57
parameters
See also modifiers; variable
annotation(s), 281
constructor, 240
assignment during instance creation, 322
binary compatibility considerations, 352
description, 69
initial value, 72
as declared entity, 113
definite [un]assignment of, 547
exception
description, 70
initial value, 72
scope, 118, 397
exception handler
unaffected by memory model, 558
method
binary compatibility considerations, 352
description, 69
initial value, 72
specification of, 210
must not be assigned if finaTl, 211
names, naming conventions, 151

scope, 118, 212
shadowing, 119, 212
to an external action, 559
type
formal, 89, 240
of aconstructor, 242
Partridge, Eric, 173
Pavic, Milorad, XXixX
Peirce, Charles, 527
performance
See optimization
Perlis, Alan, Xxvii
Pierce, Benjamin, 91
platfor m-dependent
native methods are, 218
pointers
See references
polling
for asynchronous exceptions, 304
precedence
See also expressions
of operators, in expression evaluation, 417
precise
term definition, 303
precision
See also numbers
possible loss of
in narrowing primitive conversions, 82
in widening primitive conversions, 81
preparation
of classes, 315
of interfaces, 315
in Test class example, at virtual machine
startup, 310
preventing
instantiation, 248
with private constructors, 178
primitive
See also numbers
conversion
narrowing
in assignment conversion context, 94
in casting conversion context, 101
not allowed in method invocation
conversion context, reasons for, 100
widening
in assignment conversion context, 93
in binary numeric promotion context,
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in casting conversion context, 101
in method invocation conversion
context, 99
in unary numeric promotion context,
108
types
as array element types, 288
changing value of variables, 35
fully qualified name for, 145
literal as source code representation of the
value of, 21
term definition and specification, 35
variables of, specification, 67

private modifier

See also declarations; modifiers
access
determining, 139
inheritance of class members, example,
193
cannot be used for local classes, 362
class, pertains only to member, 175
constructors
access control, example, 144
preventing instantiation with, 178
default constructor of an enumis, 250
fields, access control, example, 144
inheritance with, example, 193
and interfaces, 260
members not inherited, 190
methods
abstract not permitted with, 214
access control, example, 144
in example of qualified names and access
control, 144
asimplicitly final, 217
overriding and hiding not possible with,
228
preventing instantiation by declaring con-
structors as, 248
top-level type may not use, 169
productions
term definition, 9
promotion
See also numbers
(chapter), 77
binary, 486, 488, 491, 500, 502, 503, 506,
508, 511

numeric, 108
binary, 110
specification, 110
specification, 108
term definition, 78
unary, 108
specification, 108
unary, 489, 490, 502
in array index, 432, 482
protected modifier
See also declarations; modifiers
access, 139
cannot be use for local classes, 362
class, pertains only to member, 175
constructors, access control, example, 143
fields, access control, example, 143
inheritance with, example, 193
and interfaces, 260
methods, access control, example, 143
top-level type may not use, 169
provably distinct
parameterized types, 52
type arguments, 54
public modifier
See also declarations; modifiers
access, 138
inheritance of class members, example,
193
cannot be used for local classes, 362
classes
access control in, 138
binary compatibility considerations, 341
in example of qualified names and access
control, 141
pertains only to top-level and member, 175
constructors, access control, example, 143
fields
access control, example, 143
interface, implicit in declaration, 264
implicit for interface member types, 270
inheritance with, example, 193
interfaces
binary compatibility considerations, 356
declarations, 260
methods
access control, example, 143
in interfaces, implicit in declaration, 267



superclasses, accessing instances of non-
public subclasses through, 194

superinterfaces, accessing instances of non-
public subclasses through, 194

Q

qualified
See also access; scope
access, term definition, 138
classinstance creation, 424
and definite [un]assignment, 537
class instance creation expression, 116
protected accessibility of constructor,
140
protected accessibility of superclass
constructor, 140
names
access control and, 138
expression, meaning of, 135
fully, 145
method, meaning of, 137
not permitted with parameters, 212
package, meaning of, 132
term definition, 113
type, meaning of, 132
super, 244
superclass constructor invocation, 244
and protected accessibility, 140
qualifying type
of aconstructor invocation
term definition, 337
of afield reference
term definition, 335
of amethod invocation
as compile-timeinformation stored for use
at run-time, 472
term definition, 336

R

race(s)
data, 556, 560, 573
and happens-before relation, 562
term definition, 563
Raper, Larry, 333

raw type
term definition, 57
reachable
See also scope
objects
finalization implications, 326
term definition, 326
recursive
term definition, 10
redundant
type-import-on-demand, 163
references
See also expressions; types
conversions
narrowing, 85
widening, 85
in assignment conversion context, 93
in casting conversion context, 101
in method invocation conversion
context, 99
to fields, active use, 318
forward
permitted in
class type usage, 169
interface type usage, 260
object, value of array variables as, 288
operations, 46
symbolic
binary file format requirements, 335
resolution, 315
term definition, 45
types
array, 288
class
Seeclass
criteriafor determining when two are the
same, 49
interface
Seeinterface
member name, scope of, 118
member, as declared entity, 113
specification, 44
in class declaration, 175
in interface declaration, 259
variables, specification, 67
reflection, 317
reifiable
array component type must be, 291
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type
term definition, 56
reifiable type
term definition, 56
release
term definition, 561
release-to-release compatibility
See binary, compatibility
representation
binary, classes and interfaces, verification of,
314
resolution
late, in class and interface linking, 314
lazy, 311
name conflicts
avoiding with multiply inherited fields,
207
avoiding with multiply inherited types,
237,270
context use in avoiding, 127
static, in class and interface linking, 314
symboalic references, 315
in Test class example, at virtual machine
startup, 310
return statement
definite assignment, 545
instance initializer, 239
as reason for abrupt completion, 360
specification, 392
return-type-substitutable, 268
term definition, 220
reuse, software
See binary, compatibility
right-hand side
term definition, 9
Ritchie, DennisM ., 7
Robson, David, 7
rounding
IEEE 754 standard default mode, support
required for, 41
round to nearest, term definition, 41
round toward zero, term definition, 41
run-time
checks of expressions, 411
errors
See exceptions
RuntimeException class
unchecked exceptions found in, 222

state, linking binary objectsinto, 314
type, 73
validity checks, casting conversion require-
ments, 104
Runtime class, 331

S

scope
See also declarations; inheritance; names;
object-oriented concpets
of declarations, 117
formal parameter, 212, 118, 212
of alocal class, 118, 362
of local variable declared by for statement
, 118, 385, 387
member, 118, 190, 263
overview, 113
package, 160
parameters
formal, 212
shadowing rules, 119
of atop-level type, 117, 166
types declared by an import declaration,
117, 161
exception parameters, 397
in, term definition, 117
initializer execution relative to issues of,
202, 203, 239
of alocal class, 362
in method invocation expressions, 440
of names
of exception handler parameters, 118, 397
local variables, 70, 118, 364
parameters
formal, 118, 212
of aclass' type parameter, 118, 179, 220,
242, 261
of names
nested classes, variables and definite
[un]assignment, 538
term definition, 117
type initialization order restrictions, 317
security
See also access control; exceptions; types;
virtual machine



internal symbolic reference table, rolein
maintaining, 312
type systems, verification importance to, 342
SecurityManager class, 313
semantics
See also grammars; lexical; syntax
errorsin, exceptions as mechanism for sig-
naling at run-time, 297
expressions, (chapter), 409
names
context role, 127
determining, 126
expressions, 134
methods, 137
package, 131
types, 132
verifying during linking process, 314
semicolon (;)
as method body, 223
separators
list of, 31
astoken, 10
sequences
escape, for character and string literals, 30
shadowed, 444
shadowing
absence of by statement labels, 370
of declarations, 119
by package declarations, 160
of exception parameters, 397
of labels, 370
of local classes, 362
by local variables, 367
of local variables, 365
by member types, 237
of members by local variables, 366
of methods, 119
by anested class, 190
package, 160
of packages, 119
parameters, 212
by single-static import, 120, 164
by single-type import, 119, 161
by static-import-on-demand, 120, 165
by type-import-on-demand, 120, 163
of types, 119
of variables, 119
Shelley, Percy Bysshe, 495

short type
See also integral types; numbers
valuerange, 35
side effects
See also expressions
from expression eva uation, reasons for, 409
signature(s)
of constructors, 241
of methods, 212
, 269, 352, 442
methods with same, inheriting, 228
override-equivalent, 124, 212, 267, 273,
449
term definition, 214
simple names
See also identifiers; names
expression, meaning of, 134
method, meaning of, 137
package, meaning of, 131
term definition, 115
type, meaning of, 132
single quote(’)
escape sequence, 30
sleep
thread, 583
Smalltalk-80, 7
sorting
Unicode, reference for details on, 20
sour ce code
compatibility, compared with binary compat-
ibility, 339
transformations that preserve binary compat-
ibility, 335
squar e brackets ([1)
inarray
type declaration, 288
variable declaration, 289
stack trace
of an exception, 401
startup
virtual machine, 309
State
not shared by primitive values, 35
object
impact of changes, 46
transient fields not part of persistent,
199
statements
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See also constructors; control flow; expres-
sions; initializers; methods
(chapter), 359
assert
specification, 373
break
definite assignment, 545
specification, 388
completion of
abrupt, reasons for, 360
normal, reasons for, 360
continue
definite assignment, 545
specification, 390
definite assignment, 538
do
definite assignment, 543
specification, 382
empty
definite assignment, 538
specification, 370
expression
definite assignment, 540
specification, 371
for
definite assignment, 543
specification, 384
general specification, 368
if
dangling e1se handling, 369
definite assignment, 541
if-then, specification, 372
if-then-else, specification, 372
labeled
definite assignment, 540
specification, 370
local variable declarations
execution of, 367
specification, 364
return
definite assignment, 545
specification, 392
switch
definite assignment, 541
specification, 377
synchronized
definite assignment, 545
specification, 395

throw
definite assignment, 545
specification, 393
try
definite assignment, 545
try-catch, specification, 398
try-catch-finally, specification, 399
unreachable, conservative flow analysis
detection of, 402
while
definite assignment, 542
specification, 380
static
restrictions in inner classes, 181
static context, 181, 471
and method invocation, 472
and qualified superclass constructor invoca-
tion, 245
staticinitializer
definite [un]assignment within, 549
definite assignment of variables before, 538
inner class may not declare, 181
may not contain a return statement, 392
must assign all blank final class variables,
199
not member, 191
overview, 174
and unreachabl e statements, 402
when reachable, 403
and checked exceptions, 301
static modifier
See al so declarations; modifiers
anonymous classis never, 429
class, pertains only to member, 175
for fields, 198
declaring class variables using, 198
cannot be used for local classes, 362
initialization of, 201
binary compatibility considerations, 349
creating during the preparation phase of
linking, 315
default initialization of during the prepara-
tion phase of linking, 315
implicit in interface member declarations,
264
initialization of, 239
initializers, 239
for methods



declaring class methods with, 216
hiding by, 225
not permitted in interface method declara-
tions, 267
implicit for interface member types, 270
initializers
as components of aclass body, 189
and interfaces, 260
on nested enums, 250
reason why constructors do not use, 241
top-level type may not use, 169
store
array, exception, 294
storing
packages
in adatabase, 157
in afile system, 155
strictfp modifier
constructors cannot be declared, 241
example(s), 418
for classes, 175
semantics, 178
and FP-strict expressions, 411
has no effect on method override, 225
interfaces, 260
methods may not be, 267
semantics, 261
methods, 214
semantics, 218
and widening conversion, 81
string(s)
See also characters; numbers; primitive types
allowed in annotation type, 273
character arrays are not the same as, 294
concatenation operator (+)
constructor invocation by, 240
creating new instances with, 45
conversion
context specification, 101
specification, 92
literals
escape sequences for, 30
interning of, 29
term definition and specification, 28
String class, 283
creating instances, with string concatena-
tion operator, 46
literal as source code representation of the

value of, 21
specification, 48
string literal as reference to an instance of,
28
Stroustrup, Bjarne, 6
subclasses
See also class(es); interfaces; superclasses,
superinterfaces
declaration, 184
direct, extending classes with, 184
relationship to direct subclass, 185
subpackage, 153
as package member, 122, 154
and package observability, 160
subsignature, 224, 225, 268
term definition, 213
subtype
class, of two different parameterizations of
the same interface, 189
subtyping
in determining applicability, 442
in determining applicablity, 445
sufficient
set of synchronization edges
term definition, 562
super keyword
accessing
overridden methods with, 225
superclass members with, in expression
evaluation, 438
binary compatibility considerations, 341
not permitted in
class variableinitialization, 202
explicit constructor invocation, 243
interface field declarations, 265
permitted
ininstanceinitializers, 239
permitted in instance variable initialization,
202
super class(es)
See also classes; fields; interfaces; methods;
packages; subclasses; superinterfaces
accessing fields with super, expression eval-
uation, 438
of array isObject, 293
binary compatibility considerations, 341
direct
declaration, with extends clause, 184
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of an enum, 251
term definition, 184
extending classes with, 184
pub1i ¢, accessing instances of non-public
subclasses through, 194
superinterface(s)
See also classes; fields; interfaces; methods;
packages; subclasses
binary compatibility considerations, 341,
357
direct
declaration, with impTements clause, 186
term definition, 187
of interface, declaration, 261
pubic, accessing instances of non-public
subclasses through, 194
term definition, 186
supertype, 63
SuppressWarnings, 89, 280
Sweet, Richard, 7
switch
block, term definition, 377
switch statement
See also statements
definite assignment, 541
local variable declaration specification,
impact on, 70
specification, 377
symbolic references
binary file format requirements, 336
resolution, 315
symbols
See also identifiers; name; variables
goa
CompilationUnit, 10
Input, 9
term definition, 9
nonterminal
notation for definition of, 10
term definition, 9
optional, term definition, 10
terminal, term definition, 9
synchronization
, 554
See also locks; threads
correct, 563
exception mechanism integration with, 298
initialization implications of, 319

locks
use by synchronized methods, 218
use by synchronized statement, 395
order, 561
sufficient
set of edges, 562
synchronized modifier
See also modifiers
in method declarations, 218
methods, binary compatibility consider-
ations, 354
reason why constructors do not use, 241
synchronized statement, 554
definite assignment, 545
specification, 395
volatile fields used for, with threads, 199
synchronized-with
term definition, 561
syntactic
See also lexical; semantics
classification, of a name according to context
, 127
System class, 331
err field iswrite protected, 578
in field is write protected, 578
out field iswrite protected, 578

T

term definition
abrupt completion, 360, 414
access, 113
accessible, 138
control, 138
qualified, 138
acquire, 561
activation frame, 477
alphabet, 9
ambiguous member, 265
annotation, 281
type
element, 273
annotation type, 270
anonymous class, 424
applicable, 442
applicable by method invocation conversion,
446



applicable by subtyping, 445 final, 178

applicable variable-arity method, 447 initialization, 316, 317
array, 287 inner, 181
components, 69, 287 inner of another class, 182
element type, 287 local, 361
type, 287 modifiers, 175
element, 287 of object, 73
empty, 287 runtime exception, 301
initializer, 290 same, 49
length of, 287 strictfp, 178
type, 287 unloading, 330
assertion, 373 variables, 198
assignable to, 95 commensurate, 283
assignment, 93, 515 comments, 18
compatible with, 95 end-of-line, 18
associated labels, 377 traditional, 18
binary compatibility, binary, 339
compatibility, 339 compilation unit, 157
numeric promotion, 110 observable, 157
blank final, 71 compile-time
block, 361 declaration, 471
enclosing, 182 type, 67
body compile-time type(s)
of class, 189 same, 49
of constructor, 242 complete
of interface, 263 abruptly, 360, 413
of method, 223 normally, 360, 402, 413
bound completely initialized object, 573
of atype variable, 50 component, 287
boxing conversion, 86 of array, 69, 287
break binary compatibility with, 339 type of array, 287
break target, 388 constant
caller, 302 expression
can complete normally, 402 compile-time, 525
capture conversion, 89 constructor(s), 240
cast operator, 101, 487 anonymous, 429
catch clause, 297, 396 default, 247
caught, 297, 393 parameter, 69, 240
checked exceptions, 299 signature, 241
class(es), 173, 175 contain, 359
abstract, 176 immediately, 359
body, 189 context
declaration, 175 static, 181
depends on areference type, 185 context of conversion, 78
direct inner, 181 continue target, 391
directly depends on areference type, 185 contract, 339
error, 301 control
exception, 301 access, 138
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conversion
contexts, 78
conversion(s), 77
assignment, 93
casting, 101
identity, 80
method invocation, 99
primitive
narrowing, 82
widening, 80
reference
narrowing, 85
widening, 85
string, 497
value set, 92
convertible to a numeric type, 89
convertible to an integral type, 89
correctly synchronized, 563
creating
enum
constant, 251
datarace, 563
declaration(s), 114
array variable, 288
class, 173
variable, 69
compile-time, 471
constructor, 240
field, 196, 264
import, 160
instance variable, 69
interface, 263
local variable, 70
statement, 363
method, 209
package, 158
parameter
exception, 70
method, 69
shadowed, 119
single-static import, 164
single-type import, 161
static-import-on-demand, 165
top-level type, 166
type-import-on-demand, 163
declarator, 364
default
constructor, 247

value, 71
definite assignment, 527
definitely assigned
after, 530
when false, 530
when true, 530
before, 530
definitely unassigned after, 530

definitely unassigned after when false, 530
definitely unassigned after when true, 530

definitely unassigned before, 530
direct
extension, 259
subclass, 184
subtype, 63
superclass, 184
superinterface, 186, 261
directly implement, 259
dynamic method lookup, 476
dynamically enclosed, 302
element, 287
type, 287
empty
array, 287
statement, 370
enclosed, dynamically, 302
erasure, 56
error classes, 301
escape
sequence, character and string, 30
Unicode, 15
evaluation
evaluated, 409
expression, result of, 409
order, 414
exception
caler of, 302
caught, 297
checked, 299
classes, 299
checked, 299
runtime, 301
unchecked, 299
handler, 397
parameter, 70
polling for, 304
precise, 303
thrown, 297



unchecked, 301
executed, 409
exit of virtual machine, 331
expression, 409
constant, 525
statement, 371
extension, direct, 259
field, 196, 264
declaration, 196
final, 199, 264
non-static, 198
static, 198, 264
transient, 199
volatile, 199
finalizable, 327
finalization
object, 325
finalized, 327
finalizer, 325
finalize-reachable, 327
fixed arity method, 212
formal parameter, 210, 240
FP-strict expression, 411
frame activation, 477
generic
interface, 261
goal symbol, 9
gradual underflow, 41
grammar
context-free, 9
lexical, 9
handler of exception, 397
handles, 302
hide, 225
afield, 196
an interface field, 264
an interface member type, 270
amember type, 237
identifier, 19
immediately contain, 359
implement, 124, 187, 224
directly, 259
implemented, 206
import
on demand, 163, 165
single static, 164
singletype, 161
in scope, 117

inexact, 41
infinities, 37
inherited, 123, 206
inherits, 224
initializer
array, 290
static, 239
variable, 201
input elements, 17
instance
of class, 45
immediately enclosing, 182
immediately enclosing with respect to a
class, 182
initializer, 238
lexically enclosing, 182
method, 216
variables, 198
instantiation, 424
interface(s)
abstract, 261
body, 263
initialization, 316
same, 49
strictfp, 261
top-level, 259
intersection type, 62
invocation
alternate constructor, 244
superclass constructor, 244
iteration statements, 390
Java
digits, 19
letters, 19
keyword, 21
label, 370
associated, 377
language, 9
|eft of, to the, 17
left-hand side, 9
length of array, 287
line terminator, 16
linking, 314
literal, 21
boolean, 26
character, 26
floating-point, 24
integer, 22
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null, 30
string, 28
loading, 312
local variable, 70
declaration statement, 363
lookup
dynamic method, 476
loss of precision, 81
maximally specific, 449
member class, 237
member interface, 237
members, 122
ambiguous, 265
dynamic lookup, 476
memory model, 557
meta-annotation, 284
method(s), 209
abstract, 214, 267
applicable, 442
body, 223
class, 216
final, 217
hidden, 225
instance, 216
interface, 267
lookup, dynamic, 476
more specific, 449
most specific, 442, 447, 449
native, 218
non-static, 216
overloaded, 229
parameter, 69
static, 216
synchronized, 218
modifiers
class, 175
constructor, 241
field, 197
interface, 260
method, 214
more specific, 448
most specific, 447, 449
name(s), 115
ambiguous, 126
canonical, 146
contextually ambiguous, 129
expression, 129, 130
method, 129

package, 130

qualified, 115

simple, 115

type, 130

unique package, 169
NaN (Not-a-Number), 37
narrowing

primitive conversion, 82

reference conversion, 85
nested class, 173
non-static

field, 198

method, 216
nonterminal, 9
normal completion, 360, 413, 414
numeric promotion, 108
object(s), 45

classof, 73

target, 476
obscured declaration, 122
observable

package, 160
operators, 31

additive, 496

assignment, 512

bitwise, 508

cast, 491

equality, 505

logical, 508

multiplicative, 491

relational, 503

shift, 502

unary, 487
order of evaluation, 414
ordered, 39
overload, 229, 269
override-equivalent, 214
package(s)

accessible, 138

unique names, 169
parameter, 210

constructor, 69, 240

exception handler, 70, 397

formal, 210, 240

method, 69, 211
pointer, 45
polling for exceptions, 304
precise exception, 303



precision, loss of, 81
preparation, 315
primitive conversion
narrowing, 82
widening, 80
productions, 9
promotion
numeric, 108
binary, 110
unary, 108
qualified
access, 138
name, 115
qualifying type
of afield, 335
of amethod invocation, 336
raw type, 57
reachable, 326, 359, 402
reason, 298, 360, 413
recursive, 10
reference, 45
conversion
narrowing, 85
widening, 85
target, 473
types, 44
reifiable type, 56
release, 561
resolution, 315
late, 314
lazy, 314
result, 409
return-type-substitutable, 220
right of, to the, 17
right-hand side, 9
round
to nearest, 41
toward zero, 41
runtime exception classes, 301
run-time type(s)
same, 49
same
class, 49
compile-time type, 49
interface, 49
run-time class, 49
run-timeinterface, 49
run-time type, 49

scope, 117
separator, 31
sequentially consistent, 560
signature, 241
simple name, 115
specific

maximally, 449

more

strictly, 449

most, 447, 449
statements, 359

empty, 370

expression, 371

iteration, 390

labeled, 370

local variable declaration, 363

unreachable, 402
static

field, 198

import

on demand, 165

initializers, 239

method, 216

resolution, 314
strictly more specific, 449
strongly typed, 33
subclass, 185

direct, 184
subinterface, 262
subsignature, 213
sufficient

set of synchronization edges, 562
superclass, 185

direct, 184
superinterfaces, 187, 262

direct, 186, 261
symbol

goal, 9

nonterminal, 9

optional, 10

terminal, 9
synchronized-with, 561
target

break, 389

continue, 391

object, 476

reference, 473
termina symbol, 9
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thead returns normally, 580
thread, 553
thrown, 297, 298
throws clause, 221
token, 9, 17
top-level class, 173
type declaration specifier, 44
type parameters, 178
type(s), 34, 73
boolean, 35
compile-time, 67
floating-point, 35, 37
import
on demand, 163
integral, 35
null, 34
numeric, 35
primitive, 35
reference, 44
typed
strongly, 33
unary numeric promotion, 108
unboxing conversion, 88
unchecked conversion, 89
unchecked exception, 299
classes, 299
underflow
gradual, 41
unfinalized, 327
Unicode escapes, 15
unique package name, 169
unloading of classes, 330
unordered, 40
unreachable, 402
unreachable object, 327
value
default, 71
of expression, 410
value set
double, 38
double-extended-exponent, 38
float, 38
float-extended-exponent, 38
variable arity method, 212
variable(s), 67
class, 69, 198
final, 71
instance, 69, 198

local, 70
verification, 314
virtual machine exit, 331
visible, 120
white space, 18
widening
primitive conversion, 80
terminal symbol
term definition, 9
terminators
line
carriage return and linefeed characters as,
28
term definition, 28
Test
program, how to run, 5
this keyword
accessing hidden fields with, 367
evaluation of, 421, 422
during instance creation, 322
not permitted
in class variableinitialization, 202
in explicit constructor calls, 242
ininterface field declarations, 265
permitted
ininstance initializers, 239
in instance variable initialization, 202
qualified, 114
Thompson, William (Lord Kelvin), 409
Thorup, Kresten Krab, 55
threads
See also synchronization
(chapter), 553
action, inter-, 558
blocked, 571
divergence
action, 559
initialization implications of multiple, 319
interruption of, 582
locks acquisition and release, by synchro-
nized statement, 395
return normally
term definition, 580
semantics
intra-, 557
sleep, 583
synchronized modifier, methods, declara-
tion, 218



termination and virtual machine exit, 331
volatile fields use with, 199
yield, 583
throw
See also control flow; exceptions
throw statement
definite assignment, 545
as reason for abrupt completion, 360
specification, 393
Throwable class, 179
throws clause, 239
of an anonymous constructor, 430
checked exception classes named in, 299
constructors, 242
binary compatibility considerations, 354
incorrect overriding because of, example,
236
methods, 221
binary compatibility considerations, 354
relation to instance initializers, 202, 238,
301
tokens
See also grammars
term definition, 9, 17
top-level class, 130, 145, 146
accessibility of, 138
canonical name of, 146
enables or disables assertions, 374
as package member, 122, 154
and private access, 139, 144
and pub1ic modifier, 175
term definition, 173
top-level interface, 145
canonical name of, 146
as package member, 122, 154
term definition, 259
top-level type
binary name of, 335
fully qualified name of, 166
as part of acompilation unit, 157
scope, 117, 166
Torgersen, Mads, 54, 55, 92
transient modifier
See also declarations; modifiers
fields, 199
binary compatibility considerations, 350
trandations
lexical, stepsinvolvedin, 14

try statements
See also control flow; exceptions; statements
definite assignment, 545
exception handling role of, 302
scope of parameters to exception handlers,
118, 397
specification, 396
try-catch statement, specification, 398
try-catch-finally statement, specifica-
tion, 399
types
Seealso arrays, classes; interfaces; primitive,
types
(chapter), 33
annotation(s), 4, 113, 158, 175, 241, 259,
264, 267, 283, 358, 364
declaration(s), 260
element(s)
names, 129
term definition, 273
term definition, 270
argument values, method invocation conver-
sion context, 99
argument(s), 44, 424
containment, 55
explicit, 445, 446, 447
inference
See types, inference
provably distinct, 54
array, 283
allowed in annotation types, 273
canonica name of, 146
erasure of, 56
members of, 125
syntax and specification, 288
when reifiable, 56
binary compatibility considerations, 339
boolean
Boolean literal specification, 26
term definition and specification, 43
char
character literal specification, 26
classes
members of, 123
naming conventions, 147
non-parameterized, 85
commensurate, 274
term definition, 283



compile-time, 73
datavalues relation to, 34
declaration(s)
as members of packages, 166
enclosing, 473
enum, 249
generic, 89
specifier, 44
term definition, 73
doube, floating-point literal specification,
24
elements, of array, 287
enum, 3, 113, 241, 242, 247, 283
allowed in annotation type, 273
binary compatibility, 356
direct superclass of, 184
in switch, 377
may not be instantiated, 424
must not be declared abstract, 176, 250
nested
implicitly static, 250
erasure
See erasure
existential
relation to wildcards, 54
expression
assignment conversion, 93
how determined, 73
of expressions, 410
float, floating-point literal specification, 24
floating-point, term definition and specifica-
tion, 37
imported
as declared entity, 114
scopeof, 117, 161
importing al pub1ic static membersfrom g,
165
importing, compilation units, 158
inference, 220, 242, 445, 446, 447, 448
not required for wildcards, 54
of unresolved type arguments, 466
process defined, 451
infinite, 465
int, integer literal specification, 22
integral, 35, 89
interface
implicationsfor variables and expressions,
73

members of, 124
naming conventions, 147
interfaces
non-parameterized, 85
intersection, 336
, 336
direct supertypes, 64
glb(), 90
term definition, 62
local variables, declaration of, 364
Tong, integer literal specification, 22
member, 44
name(s), 44
context in which anameis classified as,
129
qualified, meaning of, 132
simple, meaning of, 132
named, 160
nested
enum
implicitly static, 250
erasure of, 56
non-reifiable, 412
null, 90, 504, 506
term definition and specification, 34
numeric, 89
in conditional expression, 511
of aconditional expression, 511
of members and constructors of araw typw,
59
parameter(s), 114, 261
, 357
cannot be referenced in a static method,
216
explicit, 444
formal, 213
binary compatibility, 342, 350
of amethod, 220
names of, 113
term definition, 178
parameter, method invocation conversion
context, 99
parameterized, 89, 90, 103, 127, 178, 347
and heap pollution, 68
caststo, 102
direct superinterfaces, 262
erasure of, 56
in classliterals, 421



members and constructors, 55
reifiable, 56
primitive, 88, 283
allowed in annotation types, 273
arereifiable, 56
as array element types, 288
do not share state, 35
fully qualified name, 145
in classliterals, 421
term definition and specification, 35
variables, specification, 67
qualifying
See qualifying type
raw, 89, 99, 103
, 57, 68
arereifiable, 56
reference, 88, 89, 431
as array element types, 288
criteriafor determining when two are the
same, 49
in conditional expression, 511
member
as declared entity, 113
specifying with
class declaration, 173
interface declaration, 260
term definition and specification, 44
variables, specification, 67
reifiable, 56, 504
in arrays, 289, 431
run-time, 73
substitution(s), 262
term definition, 73
term definition and specification, 34
top-level
annotations, 410
usage, 65
in declarations and expressions, 65
of variable
how determined, 73
variable(s), 173, 178, 220, 242, 261, 347,
441
are declared entities, 114
disalowed in catch clauses, 397
erasure of, 56
fresh, 90
in classliterals, 421
may not be a subtype of two invocations of

same interface, 50
members, 50
names in extends clause, 127
term definition, 49
where used, 65

U

unary
numeric promotion, specification, 108
unassignment
definite
See definite unassignment
unboxing
See conversion, unboxing
unchecked
cast, 102
conversion
See conversion, unchecked
exceptions, 306
warning(s)
, 412
and type soundness, 67
under flow
floating-point operators, signed zero pro-
duced by, 41
integer operators, not indicated by, 37
unfinalized
as object attribute, 326
term definition, 327
Unicode character set
See also characters
character sequences, represented by
instances of class String, 48
composite characters, contrasted with the
Unicode decomposed characters, 20
escapes, 14, 15
specification for handling, 15
term definition, 15
use when suitable font not available, 16
handling in package names, 156
lexical grammar use in terminal symbols, 9
sorting, reference for details on, 20
translation of raw stream, 14
writing any character in, using ASCII char-
actersin escapes, 15
unloading
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See also linking; loading
of classes and interfaces, 330
of interfaces, 330
unlock
term definition, 554
unqualified
classinstance creation
and definite [un]assignment, 537
class instance creation expression, 128
unreachable
See also exceptions
objects
finalization implications, 327
term definition, 327
statements, conservative flow analysis detec-
tion of, 402
term definition, 327

Vv

value
return, specifying method with no, 210
value set
and contents of local variables, 364
double
term definition, 38
double-extended-exponent
term definition, 38
float
term definition, 38
float-extended-exponent
term definition, 38
and FP-strict expressions, 411
and return statement, 393
values
See also assignment; initialization; primitive,
types; variable
(chapter), 33
booTean, term definition and specification,
43
data, relation to types, 34
expressions, variables as, 410
floating-point, term definition and specifica
tion, 37
integral, term definition and specification, 35
primitive, term definition and specification,
35

reference
Sce references
relation to types, 34
variables
initial and default, 71
variables, 409
See also data structures; fields; identifiers;
scope
(chapter), 33
assignment conversion, 93
constant, 71
doubTe
non-atomic treatment of, 579
initializer
instance
, 252
local, 364
annotation(s), 281
never retained, 278
declaration statements, 363
as declared entity, 113
definite assignment, declarations, 539
description, 70
naming conventions, 151
scope of, 118, 385, 387
shadowing of names by, 367
unaffected by memory model, 558
Tong
non-atomic treatment of, 579
memory model terminology, 558
primitive type
changing value of, 35
specification, 67
read of, 558
reference type, specification, 67
term definition and specification, 67
type of, how determined, 73
values
of expressions, 410
held by different types, summary of, 33
initial and default, 71
volatile
read of, 558
write of, 558
write of, 558
verification
See also security



of binary representation, of classes and inter-
faces, 314
type safety dependence on existence and use
of, 342
Viroli, Mirko, 54, 55, 92
virtual machine
See also exceptions; optimization
class file format specified in, 334
errors, 307
exception handling by, 297
exit, criteriafor, 331
startup, 309
visible, 117
method
and meaning of method invocation, 440
term definition, 120
void keyword
See also methods
casting to, not permitted, 371
methods
expression return statement not permitted
in, 223
in conditional expression, 510
no return value specified by, 210
volatile
read, 558, 568
volatile modifier
fields, 199
final declaration not permitted for, 201

wW

wait, 580
warning(s)
deprecated, 280
suppression of, 280
mandatory, 89
unchecked, 60, 67, 89, 222, 225, 268, 412
suppression of, 280
while statement
See also control flow
definite assignment, 542
specification, 380
white space
term definition, 18
widening
See also conversions

primitive conversion
in assignment conversion context, 93
in binary numeric promotion context, 110
in casting conversion context, 101
in method invocation conversion context,
99
in unary numeric promotion context, 108
reference conversion, 85
in assignment conversion context, 93
in casting conversion context, 101
in method invocation conversion context,
99
wildcard(s), 424
capture, 90
type of members, 55
unbounded, 89, 102
in reifiable types, 56
word tearing
, 578
write
of afield, 327

Y

yield
thread, 583

Z

zero
See also exceptions; numbers
divide by, exceptions thrown by integer
divide and remainder operators, 37
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text is Lucida Sans Typewriter; for code fragments in chapter titles, section titles,
and first-level index entries, Lucida Sans Typewriter Bold is used. In every case it
isset at 85% of the nominal size of the surrounding Times text; for example, in the
body it is 85% of 11 point.

Learning hath gained most by those books by which the printers have lost.
—Thomas Fuller (1608-1661), Of Books

Some said, “ John, print it”; otherssaid, “ Not so”
Some said, “ It might do good” ; others said, “ No”
—John Bunyan (1628-1688), Pilgrim’s Progress—Apol ogy for his Book

'T is pleasant, sure, to see one’s namein print;
A book's a book, although there’s nothing in 't.
—Lord Byron (1788-1824)
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	Implementations should use the \uxxxx notation as an output format to display Unicode characters ...
	3.4 Line Terminators

	Lines are terminated by the ASCII characters CR, or LF, or CR LF. The two characters CR immediate...
	The result is a sequence of line terminators and input characters, which are the terminal symbols...
	3.5 Input Elements and Tokens

	This process is specified by the following productions:
	White space (§3.6) and comments (§3.7) can serve to separate tokens that, if adjacent, might be t...
	As a special concession for compatibility with certain operating systems, the ASCII SUB character...
	Consider two tokens x� and y� in the resulting input stream. If x� precedes y�, then we say that ...
	3.6 White Space
	3.7 Comments
	• Comments do not nest.

	3.8 Identifiers

	Letters and digits may be drawn from the entire Unicode character set, which supports most writin...
	A “Java letter” is a character for which the method Character.isJavaIdentifierStart(int) returns ...
	The Java letters include uppercase and lowercase ASCII Latin letters A–Z (\u0041–\u005a), and a–z...
	The “Java digits” include the ASCII digits 0-9 (\u0030–\u0039).
	Two identifiers are the same only if they are identical, that is, have the same Unicode character...
	Identifiers that have the same external appearance may yet be different. For example, the identif...
	Unicode composite characters are different from the decomposed characters. For example, a LATIN C...
	3.9 Keywords
	3.10 Literals
	3.10.1 Integer Literals


	An integer literal may be expressed in decimal (base 10), hexadecimal (base�16), or octal (base 8):
	An integer literal is of type long if it is suffixed with an ASCII letter L or l (ell); otherwise...
	A decimal numeral is either the single ASCII character 0, representing the integer zero, or consi...
	A hexadecimal numeral consists of the leading ASCII characters 0x or 0X followed by one or more A...
	An octal numeral consists of an ASCII digit 0 followed by one or more of the ASCII digits 0 throu...
	Note that octal numerals always consist of two or more digits; 0 is always considered to be a dec...
	The largest decimal literal of type int is 2147483648 (). All decimal literals from 0 to 21474836...
	The largest positive hexadecimal and octal literals of type int are 0x7fffffff and 017777777777, ...
	A compile-time error occurs if a decimal literal of type int is larger than 2147483648 (), or if ...
	The largest positive hexadecimal and octal literals of type long are 0x7fffffffffffffffL and 0777...
	A compile-time error occurs if a decimal literal of type long is larger than 9223372036854775808L...
	3.10.2 Floating-Point Literals

	A floating-point literal has the following parts: a whole-number part, a decimal or hexadecimal p...
	For decimal floating-point literals, at least one digit, in either the whole number or the fracti...
	A floating-point literal is of type float if it is suffixed with an ASCII letter F or f; otherwis...
	The elements of the types float and double are those values that can be represented using the IEE...
	The details of proper input conversion from a Unicode string representation of a floating-point n...
	The largest positive finite float literal is 3.4028235e38f. The smallest positive finite nonzero ...
	A compile-time error occurs if a nonzero floating-point literal is too large, so that on rounded ...
	A compile-time error occurs if a nonzero floating-point literal is too small, so that, on rounded...
	Predefined constants representing Not-a-Number values are defined in the classes Float and Double...
	3.10.3 Boolean Literals

	A boolean literal is always of type boolean.
	3.10.4 Character Literals

	A character literal is always of type char.
	As specified in §3.4, the characters CR and LF are never an InputCharacter�; they are recognized ...
	It is a compile-time error for the character following the SingleCharacter or EscapeSequence to b...
	It is a compile-time error for a line terminator to appear after the opening ' and before the clo...
	3.10.5 String Literals

	A string literal is always of type String (§4.3.3). A string literal always refers to the same in...
	As specified in §3.4, neither of the characters CR and LF is ever considered to be an InputCharac...
	It is a compile-time error for a line terminator to appear after the opening " and before the clo...
	Each string literal is a reference (§4.3) to an instance (§4.3.1, §12.5) of class String (§4.3.3)...
	• Literal strings within the same class (§8) in the same package (§7) represent references to the...
	3.10.6 Escape Sequences for Character and String Literals

	It is a compile-time error if the character following a backslash in an escape is not an ASCII b,...
	3.10.7 The Null Literal
	3.11 Separators
	3.12 Operators


	chapter �4
	Types, Values, and Variables
	1. At run-time, classes and interfaces are loaded by the Java virtual machine using class loaders...
	2. Type arguments and type variables (§4.4) are not reified at run-time. As a result, different p...

	4.1 The Kinds of Types and Values
	4.2 Primitive Types and Values
	4.2.1 Integral Types and Values
	• For byte, from –128 to 127, inclusive

	4.2.2 Integer Operations
	• The comparison operators, which result in a value of type boolean:

	4.2.3 Floating-Point Types, Formats, and Values
	Table 4.1 Floating-point value set parameters

	4.2.4 Floating-Point Operations
	• The comparison operators, which result in a value of type boolean:

	4.2.5 The boolean Type and boolean Values
	• The relational operators == and != (§15.21.2)
	• The if statement (§14.9)


	4.3 Reference Types and Values
	4.3.1 Objects
	• Field access, using either a qualified name (§6.6) or a field access expression (§15.11)

	4.3.2 The Class �Object
	public class Object {

	4.3.3 The Class String
	4.3.4 When Reference Types Are the Same
	• They are both class or both interface types, are defined by the same class loader, and have the...


	4.4 Type Variables
	4.5 Parameterized Types
	• They are invocations of distinct generic type declarations.
	4.5.1 Type Arguments and Wildcards
	4.5.1.1 Type Argument Containment and Equivalence
	• ? extends T <= ? extends S if T <: S


	4.5.2 Members and Constructors of Parameterized Types
	• Let m be a member or constructor declaration in C, whose type as declared is T. Then the type o...


	4.6 Type Erasure
	• The erasure of a parameterized type (§4.5) G<T1, ... ,Tn> is |G|.

	4.7 Reifiable Types
	• It refers to a non-generic type declaration.

	4.8 Raw Types
	• The name of a generic type declaration used without any accompanying actual type parameters.
	• An invocation of a method or constructor of a raw type generates an unchecked warning if erasur...

	4.9 Intersection Types
	• For each Ti, , let Ci be the most specific class or array type such thatTi <: Ci Then there mus...
	• For , if Tj is a type variable, then let ITj be an interface whose members are the same as the ...
	• Then the intersection type has the same members as a class type (§8) with an empty body, direct...

	4.10 Subtyping
	4.10.1 Subtyping among Primitive Types
	4.10.2 Subtyping among Class and Interface Types
	• the direct superclasses of C.
	• D<U1,...,Uk> is a direct supertype of C<F1,...,Fn>, and theta is the substitution [F1 := T1, .....

	4.10.3 Subtyping among Array Types
	• If S and T are both reference types, then S[] >1 T[] iff S >1 T.


	4.11 Where Types Are Used
	• Imported types (§7.5); here the type Random, imported from the type java.util.Random of the pac...
	• Class instance creations (§15.9); here a local variable r of method gausser is initialized by a...
	• Array creations (§15.10); here the local variable val of method gausser is initialized by an ar...

	4.12 Variables
	4.12.1 Variables of Primitive Type
	4.12.2 Variables of Reference Type
	4.12.2.1 Heap Pollution

	4.12.3 Kinds of Variables
	1. A class variable is a field declared using the keyword static within a class declaration (§8.3...
	2. An instance variable is a field declared within a class declaration without using the keyword ...
	3. Array components are unnamed variables that are created and initialized to default values (§4....
	4. Method parameters (§8.4.1) name argument values passed to a method. For every parameter declar...
	5. Constructor parameters (§8.8.1) name argument values passed to a constructor. For every parame...
	6. An exception-handler parameter is created each time an exception is caught by a catch clause o...
	7. Local variables are declared by local variable declaration statements (§14.4). Whenever the fl...

	4.12.4 final Variables
	4.12.5 Initial Values of Variables
	• Each class variable, instance variable, or array component is initialized with a default value ...

	4.12.6 Types, Classes, and Interfaces
	• The local variable p of the method main of class Test has type Point and is initially assigned ...



	Chapter �5
	Conversions and Promotions
	• A conversion from type Object to type Thread requires a run-time check to make sure that the ru...
	• Identity conversions
	• Assignment conversion (§5.2, §15.26) converts the type of an expression to the type of a specif...
	5.1 Kinds of Conversion
	5.1.1 Identity Conversions
	5.1.2 Widening Primitive Conversion
	• byte �to� short, int, long, float, or� double

	5.1.3 Narrowing Primitive Conversions
	1. In the first step, the floating-point number is converted either to a long, if T� is long, or ...
	2. In the second step:

	5.1.4 Widening and Narrowing Primitive Conversions
	• byte �to� char

	5.1.5 Widening Reference Conversions
	5.1.6 Narrowing Reference Conversions
	• From any reference type S� to any reference type T�, provided that S�� is a proper supertype (§...

	5.1.7 Boxing Conversion
	• From type boolean to type Boolean
	• If p is a value of type boolean, then boxing conversion converts p into a reference r of class ...

	5.1.8 Unboxing Conversion
	• From type Boolean to type boolean
	• If r is a reference of type Boolean, then unboxing conversion converts r into r.booleanValue()

	5.1.9 Unchecked Conversion
	5.1.10 Capture Conversion
	• If Ti is a wildcard type argument (§4.5.1) of the form ? then Si is a fresh type variable whose...

	5.1.11 String Conversions
	5.1.12 Forbidden Conversions
	5.1.13 Value Set Conversion
	• If the value is an element of the float-extended-exponent value set, then the implementation ma...
	• If the value is of type float and is not an element of the float value set, then the implementa...


	5.2 Assignment Conversion
	• an identity conversion (§5.1.1)
	• A narrowing primitive conversion may be used if the type of the variable is byte, short, or cha...
	• If v is of type float and is an element of the float-extended-exponent value set, then the impl...
	• An OutOfMemoryError as a result of a boxing conversion.
	• The value of �veclong� cannot be assigned to a �Long� variable, because �Long� is a class type ...

	5.3 Method Invocation Conversion
	• an identity conversion (§5.1.1)
	• If an argument value of type float is an element of the float-extended-exponent value set, then...

	5.4 String Conversion
	5.5 Casting Conversion
	• an identity conversion (§5.1.1)
	• S� <: T.
	• If S� is a class type:
	• The cast is statically known to be correct. No run time action is performed for such a cast.
	• The cast is a completely unchecked cast. No run time action is performed for such a cast.

	5.6 Numeric Promotions
	5.6.1 Unary Numeric Promotion
	• If the operand is of compile-time type Byte, Short,  Character, or Integer it is subjected to u...
	• Each dimension expression in an array creation expression (§15.10)

	5.6.2 Binary Numeric Promotion
	• If any of the operands is of a reference type, unboxing conversion (§5.1.8) is performed. Then:
	• If either operand is of type double, the other is converted to double.
	• The multiplicative operators *, / and % (§15.17)



	chapter �6
	Names
	6.1 Declarations
	• A package, declared in a package declaration (§7.4)

	6.2 Names and Identifiers
	• In declarations (§6.1), where an identifier may occur to specify the name by which the declared...

	6.3 Scope of a Declaration
	• Its own initializer
	6.3.1 Shadowing Declarations
	• any top level type named n declared in another compilation unit of p.
	• any static type named n imported by a static-import-on-demand declaration in c.
	• any top level type (§7.6) named n declared in another compilation unit (§7.3) of p.
	• a class Test
	• The expression “x” in the invocation of print refers to (denotes) the value of the local variab...

	6.3.2 Obscured Declarations

	6.4 Members and Inheritance
	6.4.1 The Members of Type Variables, Parameterized Types, Raw Types and Intersection Types
	6.4.2 The Members of a Package
	6.4.3 The Members of a Class Type
	• Members inherited from its direct superclass (§8.1.4), if it has one (the class Object has no d...

	6.4.4 The Members of an Interface Type
	• Those members declared in the interface.

	6.4.5 The Members of an Array Type
	• The public final field length, which contains the number of components of the array (length may...


	6.5 Determining the Meaning of a Name
	6.5.1 Syntactic Classification of a Name According to Context
	• In a package declaration (§7.4)
	• In a single-type-import declaration (§7.5.1)
	• As the qualifying expression in a qualified superclass constructor invocation (§8.8.7.1)
	• Before the “(” in a method invocation expression (§15.12)
	• To the left of the “.” in a qualified TypeName
	• To the left of the “.” in a qualified ExpressionName

	6.5.2 Reclassification of Contextually Ambiguous Names
	• If the AmbiguousName is a simple name, consisting of a single Identifier:
	• The simple name org is reclassified as a PackageName (since there is no variable or type named ...

	6.5.3 Meaning of Package Names
	6.5.3.1 Simple Package Names
	6.5.3.2 Qualified Package Names

	6.5.4 Meaning of PackageOrTypeNames
	6.5.4.1 Simple PackageOrTypeNames
	6.5.4.2 Qualified PackageOrTypeNames

	6.5.5 Meaning of Type Names
	6.5.5.1 Simple Type Names
	6.5.5.2 Qualified Type Names

	6.5.6 Meaning of Expression Names
	6.5.6.1 Simple Expression Names
	6.5.6.2 Qualified Expression Names
	• If Q� is a package name, then a compile-time error occurs.
	• If Q� is a type name that names a class type (§8), then:


	6.5.7 Meaning of Method Names
	6.5.7.1 Simple Method Names
	6.5.7.2 Qualified Method Names


	6.6 Access Control
	6.6.1 Determining Accessibility
	• A package is always accessible.

	6.6.2 Details on protected Access
	6.6.2.1 Access to a protected Member
	• If the access is by a qualified name Q�.Id�, where Q� is an ExpressionName, then the access is ...

	6.6.2.2 Qualified Access to a protected Constructor
	• If the access is by a superclass constructor invocation super(. . .) or by a qualified supercla...


	6.6.3 An Example of Access Control
	• The class type PointVec is not public and not part of the public interface of the package point...
	• The methods move, getX, and getY of the class Point are declared public and so are available to...

	6.6.4 Example: Access to public and Non-public Classes
	6.6.5 Example: Default-Access Fields, Methods, and Constructors
	6.6.6 Example: public Fields, Methods, and Constructors
	6.6.7 Example: protected Fields, Methods, and Constructors
	6.6.8 Example: private Fields, Methods, and Constructors

	6.7 Fully Qualified Names and Canonical Names
	• The fully qualified name of a primitive type is the keyword for that primitive type, namely boo...
	• The fully qualified name of the type long is “long”.

	6.8 Naming Conventions
	6.8.1 Package Names
	• If a package name is obscured by a field declaration, then import declarations (§7.5) can usual...

	6.8.2 Class and Interface Type Names
	6.8.3 Type Variable Names
	6.8.4 Method Names
	• Methods to get and set an attribute that might be thought of as a variable V� should be named g...

	6.8.5 Field Names
	• If a field name obscures a package name, then an import declaration (§7.5) can usually be used ...

	6.8.6 Constant Names
	• Constant names normally have no lowercase letters, so they will not normally obscure names of p...

	6.8.7 Local Variable and Parameter Names
	• Acronyms, that is the first letter of a series of words, as in cp for a variable holding a refe...
	• b for a byte



	chapter �7
	Packages
	7.1 Package Members
	• The package java has subpackages awt, applet, io, lang, net, and util, but no compilation units.
	• Because the package java.awt has a subpackage image, it cannot (and does not) contain a declara...

	7.2 Host Support for Packages
	7.2.1 Storing Packages in a File System
	7.2.2 Storing Packages in a Database

	7.3 Compilation Units
	• A package declaration (§7.4), giving the fully qualified name (§6.7) of the package to which th...

	7.4 Package Declarations
	7.4.1 Named Packages
	7.4.1.1 Package Annotations

	7.4.2 Unnamed Packages
	7.4.3 Observability of a Package
	• A compilation unit containing a declaration of the package is observable.

	7.4.4 Scope of a Package Declaration

	7.5 Import Declarations
	7.5.1 Single-Type-Import Declaration
	• any top level type named n declared in another compilation unit of p.

	7.5.2 Type-Import-on-Demand Declaration
	7.5.3 Single Static Import Declaration
	• any static type named n imported by a static-import-on-demand declaration in c.
	• any top level type (§7.6) named n declared in another compilation unit (§7.3) of p.

	7.5.4 Static-Import-on-Demand Declaration
	7.5.5 Automatic Imports
	7.5.6 A Strange Example

	7.6 Top Level Type Declarations
	• The type is referred to by code in other compilation units of the package in which the type is ...

	7.7 Unique Package Names
	• If the domain name contains a hyphen, or any other special character not allowed in an identifi...


	chapter �8
	Classes
	8.1 Class Declaration
	8.1.1 Class Modifiers
	8.1.1.1 abstract Classes
	• C explicitly contains a declaration of an abstract method (§8.4.3).

	8.1.1.2 final Classes
	8.1.1.3 strictfp Classes

	8.1.2 Generic Classes and Type Parameters
	8.1.3 Inner Classes and Enclosing Instances
	8.1.4 Superclasses and Subclasses
	• The class Point is a direct subclass of Object�.
	• A� is the direct subclass of C�.
	• The class Point is a superclass of class ColoredPoint.
	• C directly depends on T.

	8.1.5 Superinterfaces
	• I� is a direct superinterface of C�.
	• The interface Paintable is a superinterface of class PaintedPoint.

	8.1.6 Class Body and Member Declarations

	8.2 Class Members
	• Members inherited from its direct superclass (§8.1.4), except in class Object, which has no dir...
	• For a field, its type.
	• An error occurs because ColoredPoint has no constructor declared with two integer parameters, a...
	8.2.1 Examples of Inheritance
	8.2.1.1 Example: Inheritance with Default Access
	8.2.1.2 Inheritance with �public �and �protected
	8.2.1.3 Inheritance with �private
	8.2.1.4 Accessing Members of Inaccessible Classes


	8.3 Field Declarations
	8.3.1 Field Modifiers
	8.3.1.1 static Fields
	8.3.1.2 final Fields
	8.3.1.3 transient Fields
	8.3.1.4 volatile Fields

	8.3.2 Initialization of Fields
	• If the declarator is for a class variable (that is, a static field), then the variable initiali...
	8.3.2.1 Initializers for Class Variables
	8.3.2.2 Initializers for Instance Variables
	8.3.2.3 Restrictions on the use of Fields during Initialization
	• The usage occurs in an instance (respectively static) variable initializer of C or in an instan...


	8.3.3 Examples of Field Declarations
	8.3.3.1 Example: Hiding of Class Variables
	8.3.3.2 Example: Hiding of Instance Variables
	8.3.3.3 Example: Multiply Inherited Fields
	8.3.3.4 Example: Re-inheritance of Fields


	8.4 Method Declarations
	8.4.1 Formal Parameters
	8.4.2 Method Signature
	• They have the same number of formal parameters (possibly zero)

	8.4.3 Method Modifiers
	8.4.3.1 abstract Methods
	8.4.3.2 static Methods
	8.4.3.3 final Methods
	8.4.3.4 native Methods
	8.4.3.5 strictfp Methods
	8.4.3.6 synchronized Methods

	8.4.4 Generic Methods
	8.4.5 Method Return Type
	• If R1 is a primitive type, then R2 is identical to R1.

	8.4.6 Method Throws
	• Exceptions that are represented by the subclasses of class Error, for example OutOfMemoryError,...

	8.4.7 Method Body
	8.4.8 Inheritance, Overriding, and Hiding
	8.4.8.1 Overriding (by Instance Methods)
	1. C is a subclass of A.
	2. The signature of m1 is a subsignature (§8.4.2) of the signature of m2.
	3. Either

	8.4.8.2 Hiding (by Class Methods)
	8.4.8.3 Requirements in Overriding and Hiding
	• m1 and m2 have the same name.
	• The two methods have the same name, id
	• the two methods have the same name, id

	• If the overridden or hidden method is public, then the overriding or hiding method must be publ...

	8.4.8.4 Inheriting Methods with Override-Equivalent Signatures
	• If one of the inherited methods is not abstract, then there are two subcases:


	8.4.9 Overloading
	8.4.10 Examples of Method Declarations
	8.4.10.1 Example: Overriding
	8.4.10.2 Example: Overloading, Overriding, and Hiding
	8.4.10.3 Example: Incorrect Overriding
	8.4.10.4 Example: Overriding versus Hiding
	8.4.10.5 Example: Invocation of Hidden Class Methods
	8.4.10.6 Large Example of Overriding
	8.4.10.7 Example: Incorrect Overriding because of Throws


	8.5 Member Type Declarations
	8.5.1 Modifiers
	8.5.2 Static Member Type Declarations

	8.6 Instance Initializers
	8.7 Static Initializers
	8.8 Constructor Declarations
	8.8.1 Formal Parameters and Formal Type Parameter
	8.8.2 Constructor Signature
	8.8.3 Constructor Modifiers
	8.8.4 Generic Constructors
	8.8.5 Constructor Throws
	8.8.6 The Type of a Constructor
	8.8.7 Constructor Body
	8.8.7.1 Explicit Constructor Invocations
	• Alternate constructor invocations begin with the keyword this (possibly prefaced with explicit ...
	• First, if the constructor invocation statement is a superclass constructor invocation, then the...


	8.8.8 Constructor Overloading
	8.8.9 Default Constructor
	• If the class being declared is the primordial class Object, then the default constructor has an...

	8.8.10 Preventing Instantiation of a Class

	8.9 Enums
	/**


	chapter �9
	Interfaces
	9.1 Interface Declarations
	9.1.1 Interface Modifiers
	9.1.1.1 abstract Interfaces
	9.1.1.2 strictfp Interfaces

	9.1.2 Generic Interfaces and Type Parameters
	9.1.3 Superinterfaces and Subinterfaces
	• I directly depends on T.
	• K� is a direct superinterface of I�.

	9.1.4 Interface Body and Member Declarations
	9.1.5 Access to Interface Member Names

	9.2 Interface Members
	• Those members declared in the interface.

	9.3 Field (Constant) Declarations
	9.3.1 Initialization of Fields in Interfaces
	9.3.2 Examples of Field Declarations
	9.3.2.1 Ambiguous Inherited Fields
	9.3.2.2 Multiply Inherited Fields


	9.4 Abstract Method Declarations
	9.4.1 Inheritance and Overriding
	1. I is a subinterface of J.
	2. The signature of m1 is a subsignature (§8.4.2) of the signature of m2.
	• m1 and m2 have the same name.

	9.4.2 Overloading
	9.4.3 Examples of Abstract Method Declarations
	9.4.3.1 Example: Overriding
	9.4.3.2 Example: Overloading


	9.5 Member Type Declarations
	9.6 Annotation Types
	• Annotation type declarations cannot be generic.
	9.6.1 Predefined Annotation Types
	9.6.1.1 Target
	9.6.1.2 Retention
	• If m has an element whose value is annotation.RetentionPolicy.SOURCE, then a Java compiler must...

	9.6.1.3 Inherited
	9.6.1.4 Override
	9.6.1.5 SuppressWarnings
	9.6.1.6 Deprecated
	• The use is within an entity that itself is is annotated with the annotation @Deprecated; or



	9.7 Annotations
	• T is an array type E[] and either:


	chapter �10
	Arrays
	10.1 Array Types
	• Arrays with an interface type as the component type are allowed. The elements of such an array ...

	10.2 Array Variables
	10.3 Array Creation
	10.4 Array Access
	10.5 Arrays: A Simple Example
	10.6 Array Initializers
	10.7 Array Members
	• The public final field length, which contains the number of components of the array (length may...

	10.8 Class Objects for Arrays
	10.9 An Array of Characters is Not a String
	10.10 Array Store Exception

	ChaptEr �11
	Exceptions
	11.1 The Causes of Exceptions
	• An abnormal execution condition was synchronously detected by the Java virtual machine. Such co...

	11.2 Compile-Time Checking of Exceptions
	11.2.1 Exception Analysis of Expressions
	11.2.2 Exception Analysis of Statements
	11.2.3 Exception Checking
	• E is a checked exception type
	• E2 <: E1

	11.2.4 Why Errors are Not Checked
	11.2.5 Why Runtime Exceptions are Not Checked

	11.3 Handling of an Exception
	• If within a method, then the caller is the method invocation expression (§15.12) that was execu...
	11.3.1 Exceptions are Precise
	11.3.2 Handling Asynchronous Exceptions
	• An invocation of the stop methods of class Thread or ThreadGroup


	11.4 An Example of Exceptions
	11.5 The Exception Hierarchy
	11.5.1 Loading and Linkage Errors
	• The loading process is described in §12.2.

	11.5.2 Virtual Machine Errors


	chapter �12
	Execution
	12.1 Virtual Machine Start-Up
	12.1.1 Load the Class Test
	12.1.2 Link Test: Verify, Prepare, (Optionally) Resolve
	12.1.3 Initialize Test: Execute Initializers
	12.1.4 Invoke Test.main

	12.2 Loading of Classes and Interfaces
	• Given the same name, a good class loader should always return the same class object.
	12.2.1 The Loading Process
	• ClassCircularityError: A class or interface could not be loaded because it would be its own sup...


	12.3 Linking of Classes and Interfaces
	12.3.1 Verification of the Binary Representation
	• VerifyError: The binary definition for a class or interface failed to pass a set of required ch...

	12.3.2 Preparation of a Class or Interface Type
	12.3.3 Resolution of Symbolic References
	• IllegalAccessError: A symbolic reference has been encountered that specifies a use or assignmen...


	12.4 Initialization of Classes and Interfaces
	12.4.1 When Initialization Occurs
	• T is a class and an instance of T is created.

	12.4.2 Detailed Initialization Procedure
	• This Class object is verified and prepared but not initialized.
	1. Synchronize (§14.19) on the Class object that represents the class or interface to be initiali...
	2. If initialization is in progress for the class or interface by some other thread, then wait on...
	3. If initialization is in progress for the class or interface by the current thread, then this m...
	4. If the class or interface has already been initialized, then no further action is required. Re...
	5. If the Class object is in an erroneous state, then initialization is not possible. Release the...
	6. Otherwise, record the fact that initialization of the Class object is now in progress by the c...
	7. Next, if the Class object represents a class rather than an interface, and the superclass of t...
	8. Next, determine whether assertions are enabled (§14.10) for this class by querying its definin...
	9. Next, execute either the class variable initializers and static initializers of the class, or ...
	10. If the execution of the initializers completes normally, then lock this Class object,�label i...
	11. Otherwise, the initializers must have completed abruptly by throwing some exception�E�. If th...
	12. Lock the Class object, label it erroneous, notify all waiting threads, release the lock, and ...


	12.4.3 Initialization: Implications for Code Generation

	12.5 Creation of New Class Instances
	• Loading of a class or interface that contains a String literal (§3.10.5) may create a new Strin...
	1. Assign the arguments for the constructor to newly created parameter variables for this constru...
	2. If this constructor begins with an explicit constructor invocation of another constructor in t...
	3. This constructor does not begin with an explicit constructor invocation of another constructor...
	4. Execute the instance initializers and instance variable initializers for this class, assigning...
	5. Execute the rest of the body of this constructor. If that execution completes abruptly, then t...


	12.6 Finalization of Class Instances
	12.6.1 Implementing Finalization
	12.6.1.1 Interaction with the Memory Model
	• An object B is definitely reachable at di from static fields if there exists a write w1 to a st...
	• a reads or writes an element of X
	• X must not be definitely reachable at di from static fields,
	• X must be marked as unreachable at di,


	12.6.2 Finalizer Invocations are Not Ordered

	12.7 Unloading of Classes and Interfaces
	• Static variables (whose state would be lost).

	12.8 Program Exit
	• All the threads that are not daemon threads terminate.
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	Binary Compatibility
	• Reimplementing existing methods, constructors, and initializers to improve performance.
	13.1 The Form of a Binary
	• The class or interface must be named by its binary name, which must meet the following constrai...
	• If it is a class and is not class Object, then a symbolic reference to the erasure of the direc...

	13.2 What Binary Compatibility Is and Is Not
	• Addition of more methods overloading a particular method name does not break compatibility with...

	13.3 Evolution of Packages
	13.4 Evolution of Classes
	13.4.1 abstract Classes
	13.4.2 final �Classes
	13.4.3 public��Classes
	13.4.4 Superclasses and Superinterfaces
	13.4.5 Class Formal Type Parameters
	13.4.6 Class Body and Member Declarations
	13.4.7 Access to Members and Constructors
	13.4.8 Field Declarations
	• The new field is less accessible than the old one.

	13.4.9 final �Fields and Constants
	13.4.10 static ��Fields
	13.4.11 transient �Fields
	13.4.12 Method and Constructor Declarations
	• The new method is less accessible than the old one.

	13.4.13 Method and Constructor Formal Type Parameters
	• If the type parameter is used as the type of a field, the effect is as if the field was removed...

	13.4.14 Method and Constructor Parameters
	13.4.15 Method Result Type
	13.4.16 abstract ��Methods
	13.4.17 final ���Methods
	13.4.18 native ���Methods
	13.4.19 static� ��Methods
	13.4.20 synchronized ���Methods
	13.4.21 Method and Constructor Throws
	13.4.22 Method and Constructor Body
	13.4.23 Method and Constructor Overloading
	13.4.24 Method Overriding
	13.4.25 Static Initializers
	13.4.26 Evolution of Enums

	13.5 Evolution of Interfaces
	13.5.1 public �Interfaces
	13.5.2 Superinterfaces
	13.5.3 The Interface Members
	13.5.4 Interface Formal Type Parameters
	13.5.5 Field Declarations
	13.5.6 Abstract Method Declarations
	13.5.7 Evolution of Annotation Types
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	Blocks and Statements
	14.1 Normal and Abrupt Completion of Statements
	• The break (§14.15), continue (§14.16), and return (§14.17) statements cause a transfer of contr...
	• A break with no label

	14.2 Blocks
	14.3 Local Class Declarations
	14.4 Local Variable Declaration Statements
	14.4.1 Local Variable Declarators and Types
	14.4.2 Scope of Local Variable Declarations
	14.4.3 Shadowing of Names by Local Variables
	14.4.4 Execution of Local Variable Declarations

	14.5 Statements
	if (door.isOpen())

	14.6 The Empty Statement
	14.7 Labeled Statements
	14.8 Expression Statements
	14.9 The if Statement
	14.9.1 The if–then Statement
	• If the value is true, then the contained Statement is executed; the if–then statement completes...

	14.9.2 The if–then–else Statement
	• If the value is true, then the first contained Statement (the one before the else keyword) is e...


	14.10 The assert Statement
	• If the value is true, no further action is taken and the assert statement completes normally.

	14.11 The switch Statement
	• Every case constant expression associated with a switch statement must be assignable (§5.2) to ...
	• If one of the case constants is equal to the value of the expression, then we say that the case...
	• If execution of the Statement completes abruptly because of a break with no label, no further a...

	14.12 The while Statement
	• If the value is true, then the contained Statement is executed. Then there is a choice:
	14.12.1 Abrupt Completion
	• If execution of the Statement completes abruptly because of a break with no label, no further a...


	14.13 The do Statement
	• If execution of the Statement completes normally, then the Expression is evaluated. If the resu...
	14.13.1 Abrupt Completion
	• If execution of the Statement completes abruptly because of a break with no label, then no furt...

	14.13.2 Example of do statement

	14.14 The for Statement
	• The basic for statement.
	14.14.1 The basic for Statement
	14.14.1.1 Initialization of for statement
	• Its own initializer

	14.14.1.2 Iteration of for statement
	• If the Expression is present, it is evaluated. If the result is of type Boolean, it is subject ...

	14.14.1.3 Abrupt Completion of for statement
	• If execution of the Statement completes abruptly because of a break with no label, no further a...


	14.14.2 The enhanced for statement
	for (I #i = Expression.iterator(); #i.hasNext(); ) {
	T[] a = Expression;


	14.15 The break Statement
	14.16 The continue Statement
	14.17 The return Statement
	14.18 The throw Statement
	• The exception is not a checked exception (§11.2)—specifically, one of the following situations ...

	14.19 The synchronized Statement
	14.20 The try statement
	• E2 <: E1
	14.20.1 Execution of try–catch
	• If execution of the try block completes normally, then no further action is taken and the try s...

	14.20.2 Execution of try–catch–finally
	• If execution of the try block completes normally, then the finally block is executed, and then ...


	14.21 Unreachable Statements
	• whether a statement is reachable
	• The block that is the body of a constructor, method, instance initializer or static initializer...
	• HYPOTHETICAL: An if–then statement can complete normally iff at least one of the following is t...
	• ACTUAL: An if–then statement can complete normally iff it is reachable. The then–statement is r...
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	Expressions
	15.1 Evaluation, Denotation, and Result
	• A variable (§4.12) (in C, this would be called an lvalue)
	• The declaration of some (class or interface) type that is being declared: in a field initialize...

	15.2 Variables as Values
	15.3 Type of an Expression
	15.4 FP-strict Expressions
	15.5 Expressions and Run-Time Checks
	• Method invocation (§15.12). The particular method used for an invocation o.m(...) is chosen bas...
	• In a cast, when the actual class of the object referenced by the value of the operand expressio...

	15.6 Normal and Abrupt Completion of Evaluation
	• A class instance creation expression (§15.9), array creation expression (§15.10), or string con...

	15.7 Evaluation Order
	15.7.1 Evaluate Left-Hand Operand First
	15.7.2 Evaluate Operands before Operation
	15.7.3 Evaluation Respects Parentheses and Precedence
	15.7.4 Argument Lists are Evaluated Left-to-Right
	15.7.5 Evaluation Order for Other Expressions
	• class instance creation expressions (§15.9.4)


	15.8 Primary Expressions
	15.8.1 Lexical Literals
	• The type of an integer literal that ends with L or l is long; the type of any other integer lit...

	15.8.2 Class Literals
	• The named type is a type variable (§4.4) or a parameterized type (§4.5) or an array whose eleme...

	15.8.3 this
	15.8.4 Qualified this
	15.8.5 Parenthesized Expressions
	• the choice of value set (§4.2.3) for the value of an expression of type float or double.


	15.9 Class Instance Creation Expressions
	• Unqualified class instance creation expressions begin with the keyword new. An unqualified clas...
	15.9.1 Determining the Class being Instantiated
	• If the class instance creation expression is an unqualified class instance creation expression,...
	• If the class instance creation expression is an unqualified class instance creation expression,...

	15.9.2 Determining Enclosing Instances
	• If C is an anonymous class, then:
	• If S is a local class (§14.3), then let O be the innermost lexically enclosing class of S. Let ...

	15.9.3 Choosing the Constructor and its Arguments
	• First, the actual arguments to the constructor invocation are determined.

	15.9.4 Run-time Evaluation of Class Instance Creation Expressions
	15.9.5 Anonymous Class Declarations
	15.9.5.1 Anonymous Constructors
	• If S is not an inner class, or if S is a local class that occurs in a static context, then the ...


	15.9.6 Example: Evaluation Order and Out-of-Memory Detection

	15.10 Array Creation Expressions
	15.10.1 Run-time Evaluation of Array Creation Expressions
	15.10.2 Example: Array Creation Evaluation Order
	15.10.3 Example: Array Creation and Out-of-Memory Detection

	15.11 Field Access Expressions
	15.11.1 Field Access Using a Primary
	• If the identifier names several accessible member fields of type T�, then the field access is a...

	15.11.2 Accessing Superclass Members using super

	15.12 Method Invocation Expressions
	15.12.1 Compile-Time Step 1: Determine Class or Interface to Search
	• If the form is MethodName, then there are three subcases:

	15.12.2 Compile-Time Step 2: Determine Method Signature
	15.12.2.1 Identify Potentially Applicable Methods
	• The name of the member is identical to the name of the method in the method invocation.

	15.12.2.2 Phase 1: Identify Matching Arity Methods Applicable by Subtyping
	• If m is a generic method, then let F1 ... Fn be the types of the formal parameters of m and let...
	• For , either:

	15.12.2.3 Phase 2: Identify Matching Arity Methods Applicable by Method Invocation Conversion
	• If m is a generic method, then let F1 ... Fn be the types of the formal parameters of m, and le...
	• For , the type of ei, Ai, can be converted by method invocation conversion (§5.3) to Si.

	15.12.2.4 Phase 3: Identify Applicable Variable Arity Methods
	• If m is a generic method, then let F1 ... Fn, where , be the types of the formal parameters of ...
	• For , the type of ei, Ai, can be converted by method invocation conversion to Si.

	15.12.2.5 Choosing the Most Specific Method
	• The declared types of the parameters of the first member method are T1�,�. . . ,�Tn�.
	• One member method has n� parameters and the other has k parameters, where . The types of the pa...
	• If all the maximally specific methods have override-equivalent (§8.4.2) signatures, then:

	15.12.2.6 Method Result and Throws Types
	• If unchecked conversion was necessary for the method to be applicable then the throws clause is...

	15.12.2.7 Inferring Type Arguments Based on Actual Arguments
	• Type expressions are represented using the letters A, F, U, V and W. The letter A is only used ...
	• If F does not involve a type parameter Tj then no constraint is implied on Tj.
	• If U is not one of the type parameters of the method, then U is the type inferred for Tj. Then ...

	15.12.2.8 Inferring Unresolved Type Arguments
	• If the method result occurs in a context where it will be subject to assignment conversion (§5....
	• the constraint S >> R’, provided R is not void; and

	15.12.2.9 Examples
	15.12.2.10 Example: Overloading Ambiguity
	15.12.2.11 Example: Return Type Not Considered
	15.12.2.12 Example: Compile-Time Resolution

	15.12.3 Compile-Time Step 3: Is the Chosen Method Appropriate?
	• If the method invocation has, before the left parenthesis, a MethodName of the�form Identifier,...
	• If the method invocation has, before the left parenthesis, a MethodName of the�form TypeName.Id...
	• The name of the method.

	15.12.4 Runtime Evaluation of Method Invocation
	15.12.4.1 Compute Target Reference (If Necessary)
	• If the first production for MethodInvocation, which includes a MethodName, is involved, then th...
	• If the second production for MethodInvocation, which includes a Primary, is involved, then ther...

	15.12.4.2 Evaluate Arguments
	15.12.4.3 Check Accessibility of Type and Method
	• If T� �is in the same package as C�, then T� is accessible.
	• If m� �is public, then m�� is accessible. (All members of interfaces are public (§9.2)).

	15.12.4.4 Locate Method to Invoke
	• If the invocation mode is interface or virtual, then S �is initially the actual run-time class ...
	1. If class S contains a declaration for a non-abstract method named m with the same descriptor (...
	2. Otherwise, if S has a superclass, this same lookup procedure is performed recursively using th...


	15.12.4.5 Create Frame, Synchronize, Transfer Control
	15.12.4.6 Example: Target Reference and Static Methods
	15.12.4.7 Example: Evaluation Order
	15.12.4.8 Example: Overriding
	15.12.4.9 Example: Method Invocation using super


	15.13 Array Access Expressions
	15.13.1 Runtime Evaluation of Array Access
	• First, the array reference expression is evaluated. If this evaluation completes abruptly, then...

	15.13.2 Examples: Array Access Evaluation Order

	15.14 Postfix Expressions
	15.14.1 Expression Names
	15.14.2 Postfix Increment Operator ++
	15.14.3 Postfix Decrement Operator --

	15.15 Unary Operators
	15.15.1 Prefix Increment Operator ++
	15.15.2 Prefix Decrement Operator --
	15.15.3 Unary Plus Operator +
	15.15.4 Unary Minus Operator -
	• If the operand is NaN, the result is NaN (recall that NaN has no sign).

	15.15.5 Bitwise Complement Operator ~
	15.15.6 Logical Complement Operator !

	15.16 Cast Expressions
	15.17 Multiplicative Operators
	15.17.1 Multiplication Operator *
	• If either operand is NaN, the result is NaN.

	15.17.2 Division Operator /
	• If either operand is NaN, the result is NaN.

	15.17.3 Remainder Operator %
	• If either operand is NaN, the result is NaN.


	15.18 Additive Operators
	15.18.1 String Concatenation Operator +
	15.18.1.1 String Conversion
	• If T� is boolean, then use new Boolean(x�).

	15.18.1.2 Optimization of String Concatenation
	15.18.1.3 Examples of String Concatenation

	15.18.2 Additive Operators (+ and -) for Numeric Types
	• If either operand is NaN, the result is NaN.


	15.19 Shift Operators
	15.20 Relational Operators
	15.20.1 Numerical Comparison Operators <, <=, >, and >=
	• If either operand is NaN, then the result is false.
	• The value produced by the < operator is true if the value of the left-hand operand is less than...

	15.20.2 Type Comparison Operator instanceof

	15.21 Equality Operators
	15.21.1 Numerical Equality Operators ==�and !=
	• If either operand is NaN, then the result of == is false but the result of != is true. Indeed, ...
	• The value produced by the == operator is true if the value of the left-hand operand is equal to...

	15.21.2 Boolean Equality Operators ==�and !=
	15.21.3 Reference Equality Operators ==�and !=

	15.22 Bitwise and Logical Operators
	15.22.1 Integer Bitwise Operators &, ^, and |
	15.22.2 Boolean Logical Operators &, ^, and |

	15.23 Conditional-And Operator &&
	15.24 Conditional-Or Operator ||
	15.25 Conditional Operator ?�:
	• If the second and third operands have the same type (which may be the null type), then that is ...
	• If the value of the first operand is true, then the second operand expression is chosen.

	15.26 Assignment Operators
	15.26.1 Simple Assignment Operator =
	• If the left-hand operand expression is a field access expression (§15.11) e.f, possibly enclose...

	15.26.2 Compound Assignment Operators
	short x = 3;
	short x = 3;
	• First, the left-hand operand is evaluated to produce a variable. If this evaluation completes a...
	• First, the array reference subexpression of the left-hand operand array access expression is ev...


	15.27 Expression
	15.28 Constant Expression
	• Literals of primitive type and literals of type String (§3.10.5)
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	Definite Assignment
	• whether a variable is definitely assigned before a statement or expression;
	• whether a variable is definitely assigned after the expression when true;
	• whether a variable is definitely unassigned after the expression when true;
	• V� is definitely assigned and is not definitely unassigned. (The flow analysis rules prove that...
	• V� is definitely assigned after an empty statement iff it is definitely assigned before the emp...
	16.1 Definite Assignment and Expressions
	16.1.1 Boolean Constant Expressions
	• V� is [un]assigned after any constant expression whose value is true when false.
	• V� is [un]assigned after any constant expression whose value is true when true iff V� is [un]as...

	16.1.2 The Boolean Operator &&
	• V� is [un]assigned after a && b when true iff V� is [un]assigned after b when true.

	16.1.3 The Boolean Operator ||
	• V� is [un]assigned after a || b when true iff V� is [un]assigned after a when true and V� is [u...

	16.1.4 The Boolean Operator !
	• V� is [un]assigned after !a when true iff V� is [un]assigned after a when false.

	16.1.5 The Boolean Operator ?�:
	• V� is [un]assigned after a ? b : c when true iff V� is [un]assigned after b when true and V� is...

	16.1.6 The Conditional Operator ?�:
	• V� is [un]assigned after a ? b : c iff V� is [un]assigned after b and V� is [un]assigned after c.

	16.1.7 Other Expressions of Type boolean
	• V� is [un]assigned after e when true iff V� is [un]assigned after e.

	16.1.8 Assignment Expressions
	• V� is definitely assigned after the assignment expression iff either

	16.1.9 Operators ++ and --
	• V� is definitely assigned after ++a, --a, a++, or a-- iff either a is V� or V� is definitely as...

	16.1.10 Other Expressions
	• If the expression has no subexpressions, V� is [un]assigned after the expression iff V� is [un]...
	• y is the leftmost immediate subexpression of x and V� is [un]assigned before x.


	16.2 Definite Assignment and Statements
	16.2.1 Empty Statements
	16.2.2 Blocks
	• A blank final member field V is definitely assigned (and moreover is not definitely unassigned)...
	• �V� is definitely unassigned before B.
	1. The assignment occurs in dead code, and V is vacouusly definitely assigned. In this case, the ...
	2. V was already assigned by an earlier expression prior to e. In this case the current assignmen...


	16.2.3 Local Class Declaration Statements
	16.2.4 Local Variable Declaration Statements
	• V� is [un]assigned after a local variable declaration statement that contains no variable initi...

	16.2.5 Labeled Statements
	• V� is [un]assigned after a labeled statement L�:S� (where L� is a label) iff V� is [un]assigned...

	16.2.6 Expression Statements
	• V� is [un]assigned after an expression statement e; iff it is [un]assigned after e.

	16.2.7 if� Statements
	• V� is [un]assigned after if (e) S� iff V� is [un]assigned after S� and V� is [un]assigned after...
	• V� is [un]assigned after if (e) S� else T� iff V� is [un]assigned after S� and V� is [un]assign...

	16.2.8 assert� Statements
	• V is definitely [un]assigned before e1 iff V is definitely [un]assigned before the assert state...

	16.2.9 switch� Statements
	• V� is [un]assigned after a switch statement iff all of the following are true:
	• V� is [un]assigned before the first block-statement of the first block-statement- group in the ...

	16.2.10 while� Statements
	• V� is [un]assigned after while (e) S� iff V� is [un]assigned after e when false and V� is [un]a...

	16.2.11 do� Statements
	• V� is [un]assigned after do S� while (e); iff V� is [un]assigned after e when false and V� is [...

	16.2.12 for� Statements
	• V� is [un]assigned after a for statement iff both of the following are true:
	16.2.12.1 Initialization Part
	• If the initialization part of the for statement is a local variable declaration statement, the ...

	16.2.12.2 Incrementation Part
	• If the incrementation part of the for statement is empty, then V� is [un]assigned after the inc...


	16.2.13 break, continue, return, and throw� Statements
	• By convention, we say that V� is [un]assigned after any break, continue, return, or throw state...

	16.2.14 synchronized� Statements
	• V� is [un]assigned after synchronized (e) S� iff V� is [un]assigned after S�.

	16.2.15 try� Statements
	• V� is [un]assigned before the try block iff V� is [un]assigned before the try statement.
	• V� is definitely assigned after the try statement iff at least one of the following is true:


	16.3 Definite Assignment and Parameters
	• A formal parameter V� of a method or constructor is definitely assigned (and moreover is not de...

	16.4 Definite Assignment and Array Initializers
	• V� is [un]assigned after an empty array initializer iff it is [un]assigned before the empty arr...

	16.5 Definite Assignment and Enum Constants
	• V is definitely assigned before the declaration of a class body of an enum constant with no arg...
	• V� is [un]assigned before y iff it is [un]assigned after the argument to the left of y
	• V� is [un]assigned before the first argument to an enum constant iff it is [un]assigned before ...

	16.6 Definite Assignment and Anonymous Classes
	16.7 Definite Assignment and Member Types
	16.8 Definite Assignment and Static Initializers
	• V is definitely unassigned (and moreover is not definitely assigned) before the leftmost enum c...
	• V is definitely assigned (and moreover is not definitely unassigned) before every enum constant...

	16.9 Definite Assignment, Constructors, and Instance Initializers
	• V is definitely unassigned (and moreover is not definitely assigned) before the leftmost instan...
	• V is definitely assigned (and moreover is not definitely unassigned) after an alternate constru...
	• V is definitely assigned (and moreover is not definitely unassigned) before the block that is t...
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	Threads and Locks
	17.1 Locks
	17.2 Notation in Examples
	17.3 Incorrectly Synchronized Programs Exhibit Surprising Behaviors
	Trace 17.1 : Surprising results caused by statement reordering - original code
	Trace 17.2 : Surprising results caused by statement reordering - valid compiler transformation
	• there is a write in one thread,
	Trace 17.3 : Surprising results caused by forward substitution
	Trace 17.4 : Surprising results caused by forward substitution


	17.4 Memory Model
	17.4.1 Shared Variables
	17.4.2 Actions
	• Read (normal, or non-volatile). Reading a variable.
	• t - the thread performing the action

	17.4.3 Programs and Program Order
	• w comes before r in the execution order, and

	17.4.4 Synchronization Order
	• An unlock action on monitor m synchronizes-with all subsequent lock actions on m (where subsequ...
	• The write of the default value (zero, false or null) to each variable synchronizes-with the fir...

	17.4.5 Happens-before Order
	• If x and y are actions of the same thread and x comes before y in program order, then hb(x, y).
	• An unlock on a monitor happens-before every subsequent lock on that monitor.

	• r is not ordered before w (i.e., it is not the case that hb(r, w), and
	Trace 17.5 Behavior allowed by happens-before consistency, but not sequential consistency. May ob...


	17.4.6 Executions
	• P - a program

	17.4.7 Well-Formed Executions
	1. Each read sees a write to the same variable in the execution. All reads and writes of volatile...
	2. Happens-before order is a partial order. Happens-before order is given by the transitive closu...
	3. The execution obeys intra-thread consistency. For each thread t, the actions performed by t in...
	4. The execution is happens-before consistent (§17.4.6).
	5. The execution obeys synchronization-order consistency. For all volatile reads r in A, it is no...

	17.4.8 Executions and Causality Requirements
	• Sets of actions C0, C1, ... such that
	1. Ci is a subset of Ai
	2. hbi |Ci = hb |Ci
	3. soi |Ci = so |Ci
	4. Vi |Ci = V |Ci
	5. Wi |Ci-1 = W |Ci-1
	6. For any read r in Ai - Ci-1 , we have hbi(Wi(r), r)
	7. For any read r in (Ci - Ci-1), we have Wi(r) in Ci-1 and W(r) in Ci-1
	8. Let sswi be the swi edges that are also in the transitive reduction of hbi but not in po. We c...
	9. If y is in Ci, x is an external action and hbi(x, y), then x in Ci.
	Trace 17.6 Happens-Before consistency is not sufficient



	17.4.9 Observable Behavior and Nonterminating Executions
	• There exists an execution E of P, and a set O of observable actions for E, and B is the set of ...
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	17.5.1 Semantics of Final Fields
	• Dereference Chain If an action a is a read or write of a field or element of an object o by a t...

	17.5.2 Reading Final Fields During Construction
	17.5.3 Subsequent Modification of Final Fields
	17.5.4 Write Protected Fields

	17.6 Word Tearing
	17.7 Non-atomic Treatment of double and long
	17.8 Wait Sets and Notification
	17.8.1 Wait
	• If n is zero (i.e., thread t does not already possess the lock for target m) an IllegalMonitorS...
	1. Thread t is added to the wait set of object m, and performs n unlock actions on m.
	2. Thread t does not execute any further instructions until it has been removed from m's wait set...
	3. Thread t performs n lock actions on m.
	4. If thread t was removed from m's wait set in step 2 due to an interrupt, t's interruption stat...


	17.8.2 Notification
	• If n is zero an IllegalMonitorStateException is thrown. This is the case where thread t does no...

	17.8.3 Interruptions
	17.8.4 Interactions of Waits, Notification and Interruption
	• return normally from wait, while still having a pending interrupt (in other works, a call to Th...
	• at least one thread in s must return normally from wait, or
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	• [x] denotes zero or one occurrences of x.
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