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Abstract. The number of students following programming courses is
steadily increasing at the same time as access to computers and networks
is readily available. There is a significant minority of students who – for
a variety of reasons – take advantage of the available technology and
illicitly copy other students’ programming assignments and attempt to
disguise their deception. Software that can help tutors to detect plagia-
rism is therefore of immense assistance in detecting – and so helping to
prevent – such abuse. We design new and efficient algorithm for a basis
to such software. Our algorithm is simple to implement, and provides
very efficient means to detect plagiarized programs. The method is built
over sparse suffix trees that allow efficient similarity queries of a new
program file against all the files in database.

1 Introduction

The numbers of students following computer programming courses are increas-
ing. One consequence of this increase in numbers is a corresponding increase in
the difficulty of detecting isolated instances of students engaging in unacknowl-
edged collaboration or even copying of coursework.

Assessment of programming courses typically involves students writing pro-
grams, either individually or in teams, which are then marked against criteria
such as correctness and style. Unfortunately, it is very easy for students to ex-
change copies of code they have written. A student who has produced working
code may be tempted to allow a colleague to copy and edit their program. This
is discouraged, and is likely to be regarded as a serious disciplinary offense. How-
ever, it is easy for a lecturer to fail to detect plagiarism, especially when class
sizes are measured in hundreds of students.

Automation provides a means with which to address these concerns [14].
Much of the program submission, testing and marking process has the potential
to be automated, since programs are, by definition, stored in a machine-readable
form.

We have developed a new algorithm for efficiently detecting instances of pos-
sible plagiarism. We use a program database that stores all the student program
files seen so far. The database is indexed using sparse suffix trees that allow
efficient similarity queries for a given new file.

1.1 Techniques for plagiarism

It is not feasible to classify all possible methods by which a program can be
transformed into another one of identical (or similar) functionality. However,
two common transformation strategies can be identified.



Lexical changes are those which could, in principle, be performed by a so-
phisticated text editor. They do not require knowledge of the language sufficient
to parse a program. Typical approaches are e.g. rewording, adding or removing
comments; changing the formatting; and modifying identifier names.

A structural change requires the sort of knowledge of a program that would
be necessary to parse it. It is highly language-dependent. Some examples are
replacing loops (e.g. while..do to repeat..until or to for or vice versa);
nested if statements can be replaced by case or switch statements; in some
case the order of some statements can be changed without affecting the meaning
of the program; calls to subroutines may be inlined; and ordering of operands
may be changed (e.g. x < y may become y > x). Our current solution do not
handle structural changes.

Many of these techniques can be circumvented by simply removing all com-
ments and white spaces and tokenizing the program source. The tokenizing pro-
cess may e.g. replace all identifier names with a single token. This simple method
have proved to be very effective in practice [10, 7].

1.2 Previous work

The ability to detect instances of similar programs can be (and usually is) dis-
tilled into being able to decide whether or not a pair of programs are sufficiently
similar to be of interest. There are two principal comparison techniques.

First is to calculate and compare attribute counts [11, 4, 6]. This involves
assigning to each program a single number or a tuple of numbers capturing a
simple quantitative analysis of some program features. Programs with similar
attribute counts are potentially similar programs. This is a very simple method,
but the detection performs poorly in practice [16, 17, 14]. The second and much
better approach is to compare programs according to their structure [12, 9], but
these methods are very complicated.

A system which incorporates sophisticated comparison algorithms is, by its
nature, complex to implement, potentially requiring the programs it examines
to be fully parsed. In educational context, students will not necessarily use a
single programming language throughout their degree course, and any detection
software must be readily upgradeable to handle new languages and packages.
There is, therefore, a need for a relatively simple method of program comparison
which can be updated for a new programming language with minimal effort, and
yet which is sufficiently reliable to detect plagiarism with a high probability of
success.

There are some recent attempts for such methods [7, 10]. They rely on remov-
ing the comments and white spaces and tokenizing the program source code, and
trying to find partial matches (substrings) between two given files. The substring
matching based method is simple to implement, and the detection works well
in practice. The tokenizing does not need full parsing, but simple lexical scan
that transform e.g. all identifier and function names to single tokens, is enough.
We take the same approach. Our algorithm uses suffix trees [15, 13] as an index



structure, or more specifically, sparse suffix trees [5, 8, 1]. This allows us to index
a whole database of tokenized files for efficient queries.

The work by Baker [2, 3] also builds over (generalized) suffix trees, but the
algorithms are more complex, they consider only pair-wise comparison of files,
and the space requirement is larger (their suffix trees are not sparse).

2 Preliminaries

Our problem domain is a set F of files, F = F i, i ∈ [1..f ], which forms our
database. We have also a query file Q that is compared against the database, to
find similarities.

The database will also implicitly encode the similarities between the stored
files, and inserting a new file into the database is almost the same operation as
comparing the query file against the database.

We will assume that each file F i is a tokenized program source code, and
there is a distinct symbol marking the end of each (tokenized) statement of the
program, and there is a unique file id at the end of each program, i.e. the files
look like s1#s2#s3#...sr#i, where sj is a statement, and # is a special symbol
not appearing in any of the statements, and i is the file id. Let the total alphabet
size, including the symbol # be σ. The total size, i.e. the number of symbols in
F i is denoted by |F i|.

We will treat the files as plain strings of symbols, i.e. all the program structure
is ignored. The string v is a prefix and the string w is a suffix of the string u, if
u can be written as vw. We will say that the string v is #–prefix and the string
w is #–suffix of u, if u = vw, and v = x#, i.e. v ends a statement, and w starts
a statement.

3 Preprocessing

In order to do efficient plagiarism detection, we build an index for the set of
files F . For the index we will use a variant of the well–known suffix tree [15, 13],
namely the sparse version of it [5, 8, 1]. That is, we will index only the suffixes
of the files that start a statement. We will denote the (sparse) suffix tree of F
as S(F).

The sparse suffix tree for a file F of length |F | can be built in O(|F |+r logσ r)
average time, where r is the number of #–suffixes. This is possible by a simple
scan through the file; for each #–suffix search its prefix from the suffix tree in
O(logσ r) average time, and into the position of the first mismatch, add a new
branching node, and a new leaf for the suffix. The final sparse suffix tree has
size (number of nodes) O(r). The leaves store the pair (i, j), where i is the file
id, and j is the suffix id, i.e. the suffix starts at statement j. Note that there is
a unique leaf for every suffix of every file.

Note that the above construction does not use or add suffix links, and in the
worst case it requires time O(r|F |). The suffix links can be added in O(r logσ r)



expected time, if needed. It is possible to use the normal suffix tree construction
algorithm, which requires only time O(|F |), and then prune the tree to preserve
only the #–suffixes. There also exists an O(|F |+ r) time worst case time algo-
rithm for sparse suffix tree construction [1]. However, these algorithms are more
complicated.

The initial index could be built using this method. For the subsequent up-
dates of the index we will use a slower method. Typically we want to insert each
new query file in the database also.

4 Searching

We want to find files in the database similar to the query file Q, satisfying the
following conditions:
– The matching file F in the database can be used to cover (tile) Q with blocks

of statements.
– A block of statements is a contiguous sequence of γ statements.
– Blocks of code whose length is Mγ ≥ β can be rearranged, for some integer
M . I.e. the exact or relative locations of the matched blocks can be anything.

– Let N be the total number of blocks in the tiling. Then we require that
γN/r ≥ α, is the necessary condition that plagiarism has occurred.

This is not based on any standard metric (like edit distance), but intuitively
grasps what is our idea of plagiarism.

The matching algorithm searches all the matching prefixes of some of the
#–suffixes of Q from S(F). The prefixes must be at least γ statements long, to
qualify as ’significant’. The resulting list of matches is then parsed to discover
similarities between Q and F .

4.1 Greedy search

We search the query file Q from the sparse suffix tree S(F). We search Q starting
from the root as long as a whole statement matches, or we have matched up to
γ statements, ending in node u. The matching information is entered in a list,
and the search continues from the root with the rest of the query Q.

Let Q = s1#s2#s3#...#sr#, and Q#(i) = si#si+1#...#sr#, i.e. Q#(i) is
the ith sparse suffix of Q. Qi means the ith single character of Q. Similarly we
use the notation Q#(i,j) to denote the string si#...#sj#. In the sparse suffix
tree the path from node v to node u spell out a string, denoted by v, u. The
label of the edge (v, u) is denoted by label(v, u).

Alg. 2 greedily searches the γ–prefixes of the #–suffixes of the given query
Q from the sparse suffix tree. The γ–prefix of the suffix Q#(i) is the string
Q#(i,i+γ−1). In other words, the algorithm searches all non-overlapping sub-
strings of the form Q#(i,j), starting with i = 1, such that j − i + 1 = γ. We
collect the pairs (i, u) in list L, where u is the node where the match ended.

Note that this method may fail to detect plagiarism in some cases, as it
does not search all possible substrings (only non-overlapping strings, selected
greedily). In practice the method should work fairly well, if γ is not too large.



Alg. 1 Search-γ-prefix(v, q, j)

Input: Suffix tree S(F), i.e. node v, a query string q, and length j of matched suffix
Output: The node that matches γ-prefix of q and the length of the prefix.

1 w ← v
2 i← 1
3 while i ≤ |q| do
4 v ← v′ | label(v, v′) = qi
5 if v is undefined then return (w, j)
6 if qi = # then
7 w ← v
8 j ← j + 1
9 if j = γ then return (w, j)
10 i← i+ 1
11 return (w, j)

Alg. 2 Greedy-Search(v,Q, γ)

Input: Suffix tree S(F), i.e. node v, query file Q, and minimum prefix length γ
Output: List describing the common substrings

1 L← {∅}
2 i← 1
3 while i ≤ r do
4 (u, j)← Search-γ-prefix(v,Q#(i), 0)
5 if j = γ then
6 L← L ∪ {(i, u)}
7 i← i+ j
8 else
9 i← i+ 1
10 return L

Analysis of Alg. 2. The running time is dominated by the actual search
process, the list manipulation obviously takes at most O(|Q|) time. The worst
case arises when γ = O(r) (consider e.g. γ = r/2), and no matching prefix is
found under this criterion. The loop in Alg. 2 therefore executes r times. Each
call to Alg. 1 can take O(|q|) time (but this does not guarantee a match, as
γ = O(r)). The total time is therefore at most O(r|Q|) = O(|Q|2). In the best
case each symbol of Q is inspected only once, yielding O(|Q|) time. Clearly the
average time depends on the parameter γ. We would like to minimize γ to allow
fast searching, but on the other hand too small γ gives too many matches.

Let E(γ) be the average length of the string Q#(i,i+γ−1). Let the database
consist of R #–suffixes. In the average case all the strings of length O(logσ R)
appear in the suffix tree. Hence, to find non–trivial matches we must set E(γ) ≥
O(logσ R).

On average the search ends in a node that has O(R/σE(γ)) children. If we
set E(γ) = Θ(logσ R), then on average the search ends in a node that has O(1)



children. In this case the search takes O(|Q|) time, because on average we find a
γ–prefix in each iteration, but the ending node u has O(1) children on average.

Faster algorithm. There is also another way to obtain O(|Q|) query times,
for any γ. This allows free choice of γ without sacrificing search efficiency. This
algorithm uses suffix links. If the search ends in node u, but the length l of
the matched prefix Q#(i,j) was l < γ, we follow the suffix link for node u to
go directly in O(1) time to the node suffixlink(u) that matches Q#(i+1,j), and
resume the search from there. Alg. 3 shows the pseudo-code.

Alg. 3 Greedy-Search-with-suffix-links(v,Q, γ)

Input: Suffix tree S(F), i.e. node v, query file Q, and minimum prefix length γ
Output: List describing the common substrings

1 L← {∅}
2 i← 1; k ← 1; l← 0
3 w ← v
4 while i ≤ r do
5 j ← l
6 (u, l)← Search-γ-prefix(w,Q#(i), l)
7 j ← l − j
8 if l = γ then
9 L← L ∪ {(k, u)}
10 w ← v
11 l← 0
12 k ← k + l
13 i← k
14 else
15 w ← suffixlink(u)
16 k ← k + 1
17 l← l − 1
18 if l < 0 then l← 0
19 if j = 0 then j ← 1
20 i← i+ j
21 return L

Analysis of Alg. 3. Alg. 3 is similar to Alg. 2, except it inspects each symbol
of Q only once, and therefore runs in O(|Q|) time.

4.2 Expanding and pruning the match list

The actual plagiarism detection is the postprocessing of the output of Alg. 2 or
Alg. 3, i.e. the list L.



Expanding. The list entries are of the form (i, u), where u is the node in
S(F) such that Q#(i,i+γ−1) = v, u, and v is the root node. We first expand
the list to associate each i with all the strings contained in the children of u.
If E(γ) ≥ Ω(logσ R), then u is a leaf on average, and therefore corresponds
to only one string. We construct a new list L′ whose entries are of the form
(i, (k, l)), where i is as above, and (k, l) is the pair obtained from one of the
leaves of the children of u, i.e. l is the file id, and k is the suffix id. Therefore
Q#(i,i+γ−1) = F l#(k,k+γ−i). The construction of the list L′ can be done trivially
in time O(|L′|).

Alg. 4 Expand(L)

Input: List L
Output: List L′

1 J ← {∅}
// Expand with the children of u2 while L 6= {∅} do

3 (i, u)← remove-first(L)
4 W ← the set of leaves of u
5 while W 6= {∅} do
6 (k, l)← remove-first(W )
7 J ← J ∪ (i, (k, l))

// Sort into ascending order8 J ← sort(J)
9 (i′, (k′, l′))← remove-first(J)
10 L′ ← (i′, (k′, l′))

// Remove overlapping blocks11 while J 6= {∅} do
12 (i, (k, l))← remove-first(J)
13 if ` 6= `′ then unmarkall
14 if (` 6= `′) or (i = i′ + γ and k = k′ + γ) or (k > k′ + γ) then
15 if ` = `′ and unmarked(i) then
16 L′ ← L′ ∪ (i, (k, l))
17 (i′, (k′, l′))← (i, (k, l))
18 mark(i)
19 return L′

We sort the entries of the list L′ into ascending order using the l values (file
id) as primary, and the k values (suffix id) as secondary comparison keys. This
can be done in O(|L′| log |L′|) time using standard algorithms. The expanding
process is given in Alg. 5. The code first expands the the list, then sorts it, and
finally removes the overlap.

Pruning. The sorted entries (i, (k, l)) of L′ are scanned to find blocks of con-
tiguous increasing values of i that match with the values (k, l). That is, we want
to find a sequence:

(i, (k, l))



(i+ γ, (k + γ − 1, l))
(i+ 2γ, (k + 2γ − 1, l))
...
(i+ (n− 1)γ, (k + (n− 1)γ − 1, l))

This in effect corresponds to finding all the maximal #–prefixes, length of
modulo γ, of the #–suffixes of the given query Q that match one of the files
in S(F). The matching #–prefix q# is said to be maximal if it matches some
suffix in S(F), but q#a does not match for any a ∈ Σ. In other words, the algo-
rithm searches all non-overlapping substrings of the form Q#(i,i+nlγ−1), trying
to maximize integer nl at each step.

We require that the length n of the sequence must be at least β. Upon finding
such a sequence, the file F l gets (n+ 1)γ votes, denoted by V (F l). Finally, after
the whole list is processed, we compute a similarity ratio V (F l)/r for all files
F l, where r is the number of suffixes (i.e. ’statements’) in Q. All files that satisfy
V (F l)/r ≥ α are declared to be similar to the query file. The parameters α, β,
and γ are supplied by the user.

There are two caveats in the scanning algorithm. Firstly, long matching se-
quences in L′ could be broken by swapping just two statements in the middle,
and hence the algorithm may fail to identify a block of similar code. This could
be solved by matching the sequence only approximately. On the other hand, the
parameters β and γ can be used to obtain the same effect. Secondly, any block
of code in the query file should be matched at most once against any single file
in the database (the rationale being that the code is not likely copied several
times in the same file). Alg. 6 shows the pseudo-code (that also fixes the second
problem).

Analysis. The length of the list L is at most O(r/γ), because the matching
block must be at least γ statements long, there are total r statements in Q, and
the matched substrings are non-overlapping. The list L′ has therefore length
O(Cr/γ), where C is the expected number of children for nodes u (where the
greedy search terminated). The dominating part is the sorting process which
takes O(|L′| log2 |L′|) time. Everything else is linear in |L|, independent of the
actual output, the (size of the) list of similar programs.

It is hard to estimate C for any real probability distribution. If all programs
in the database are almost the same, then C = O(R), total number of statements
in S(F), on the other hand, if everything is unique, C = O(1) (depending on γ
also).

If we assume uniform Bernoulli model of probability, then on average the
search terminates in a node that has O(R/σE(γ)) children, where E(γ) is the
expected length of a string of γ statements. This basically depends on the to-
kenization, but we can assume that E(γ) = γ. The length of L′ is therefore
O( rRγσγ ). If we set γ = Θ(logσ R), then |L′| = O(r/ logR). In this case all the
searching, list processing and plagiarism detection takes only O(|Q|) total time



Alg. 5 Prune(L′)

Input: Sorted list L′

Output: Matches.

1 (i′, (k′, l′))← remove-first(L′)
2 n← 1
3 e← false
4 while L′ 6= {∅} do
5 (i, (k, l))← remove-first(L′)
6 if l′ = l then
7 if i = i′ + γ and k = k′ + γ then
8 n← n+ 1
9 else
10 e← true
11 if l′ 6= l or e or L = {∅} then
12 if n ≥ β then
13 V (l′)← V (l′) + n
14 n← 1
15 e← false
16 (i′, (k′, l′)← (i, (k, l))
17 report all files l that satisfy (V (l)/rQ + V (l)/rl)/2 ≥ α

on average. This bound holds for larger γ as well, but |L′| decreases exponen-
tially with γ, so we can regard Θ(logσ R) as an upper bound for useful values
for γ.

5 Conclusions and future work

We have developed a new efficient algorithm for plagiarism detection. Our method
is based on indexing the code database with sparse suffix trees, which allows ef-
ficient retrieval of blocks of code that are similar to the query file. The resulting
algorithm appears to be functionally similar1 to the (on-line) algorithm used in
the already established JPlag system [10], but our (off-line) algorithm is orders
of magnitude faster.

The algorithm is simple to implement, and the index is relatively small com-
pared to the size of the original files. The index needs O(R) additional space,
where R is the total number of statements in all the program files. The high
constant factor in the O(R) bound can be reduced by substituting suffix trees
with suffix arrays. In this case the search times grow by factor O(logσ R).

The main motivation of this work was plagiarism detection. However, there
are also ’positive’ applications for the method. For example, the algorithm could
detect similar blocks of code in some large software system (take e.g. the X-
windows system). The similar code sequences could be substituted by a function
1 Actually, this wasn’t our goal, we designed our method from the scratch, but the

result was accidentally very similar



that achieves the same effect. This would reduce the maintenance, and make
the code more bug resistant. Several other application areas come from the
educational technology and related fields. Are several people doing overlapping
work (co-operative work)? How the work have evolved, as a series of original
publications of the same authors, or which documents of different authors are
related to each other, etc.

One short-coming of our current method is that it can be cheated with struc-
tural changes of the code (see Sec. 1.1). This problem could be solved by trans-
forming the code in some sort of normalized form in preprocessing phase.

In the full paper we include experimental results of the performance of the
new algorithm.
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