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Abstract
In this work, we describe a speaker identification system that
uses multiple supplementary information sources for computing
a combined match score for the unknown speaker. Each speaker
profile in the database consists of multiple feature vector sets
that can vary in their scale, dimensionality, and the number of
vectors. The evidence from a given feature set is weighted by its
reliability that is set ina priori fashion. The confidence of the
identification result is also estimated. The system is evaluated
with a corpus of 110 Finnish speakers. The evaluated feature
sets include mel-cepstrum, LPC-cepstrum, dynamic cepstrum,
long-term averaged spectrum of /A/ vowel, and F0.

1. Introduction
Speaker individuality is a complex phenomenon, where differ-
ent supplementary information sources contain a part of evi-
dence of the speaker identity. The individual speaker char-
acteristics occur both at the lexical, segmental and prosodic
levels [11]. At the lexical level [15] this is reflected, for in-
stance, in usage of certain word patterns. At the segmental
level, speaker differences occur at the acoustic differences of
phoneme realizations that arise from physiology and anatomy
of the voice production organs. Prosodic speaker characteris-
tics are reflected in the usage of pitch, stress and timing.

Extraction of individual characteristics is realized by mea-
suringacoustic parametersor featuresfrom the speech signal.
Commonly used features in automatic speaker recognition sys-
tems include mel-cepstrum, LPC-cepstrum [1], line spectral fre-
quencies [10], subband processing [6], dynamic cepstral param-
eters [14], and prosodic parameters [15].

Spectral parameters alone, especially the cepstrum with its
variants, have shown good performance in speaker recognition.
However, cepstrum carries only one source of evidence. To
achieve better recognition accuracy, several supplementary in-
formation sources should be used.

The idea of using multiple features in speaker recognition
is not new. A well-known data fusion strategy is to concate-
nate the cepstral vectors with their delta- and delta-delta cepstra
into a long feature vector [1]. Also the fundamental frequency
has been used in addition with the cepstral vectors to improve
recognition accuracy. In general, vector concatenation is termed
asclassifier input fusion[12].

Although classifier input fusion is simple to implement and
works reasonably well, it has a few shortcomings. Firstly, the
feature space formed by concatenation of different features is
somewhat superficial. The higher the dimensionality of the
space becomes, the less and less effect a single feature has to
the overall match score. Also, fusion becomes difficult if the
feature is missing (e.g. F0 for unvoiced sounds) or it should be
computed with a different frame rate.

Another way of performing data fusion is to combine differ-
ent classifiers. Inclassifier output fusion, each individual data
source is modeled separately, and the outputs of the individual
classifier scores are combined to give the overall match score.
For instance, output fusion of the cepstral and delta-cepstral fea-
tures has been performed using VQ codebooks [14] and Gaus-
sian mixture models [12] as the individual classifiers.

Slomka & al. [12] compared input and output fusion for
the mel-cepstrum and corresponding delta features. They found
out that the output fusion performed consistently better. Fur-
thermore, they demonstrated that the computational complexity
for the input fusion is higher than that of the output fusion.

Classifier output fusion is, with to many respects, a flexible
combination strategy. For instance, it enables the same data
source to be modeled by several different classifiers. In [9], a
committee of five learning vector quantization (LVQ) networks
with different network structures was applied. The combination
was done with majority voting rule.

The main objective of this paper is to design the fusion strat-
egy such that evidences from diverse data sets could be com-
bined in a coherent way. Problems arise when the data sources
differ in (1) the number of features (dimensionality), (2) the
number of measurements, (3) the scales. Furthermore, a model
that works well for one data source might not be good to model
another feature. Thus, each individual feature stream should be
modelled with the most suitable model for that stream. The pro-
posed classifier is invariant to different scales of feature sets,
their dimensionality, and the number of measurements. For
each feature set, ana priori weight is set based on the reliability
of the feature set.

This work was carried out in co-operation with the De-
partment of Phonetics at the University of Helsinki as a part
of larger speaker recognition project [5]. To be reliable in,
for instance, realistic forensic uses, speaker recognition should
be based on many parameters instead of only spectral parame-
ters. Forensic speech samples often suffer from different types
of noises and distortions, and therefore, supplementary identity
cues should be used to give a joint decision. The combination
of supplementary evidences from diverse feature sets, however,
is not a straightforward task. In this paper, we report the struc-
ture of the fusion system we designed for the use of this project.
The experiments show that using multiple feature sets together
improves recognition accuracy.

2. The structure of the system
The structure of the proposed data fusion system is shown in
Fig. 1. The profile of each of the registered� speakers� ��� � � � 	� 
 
 
 � � , consists of� distinct models,
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 ����. Each of the models consists of a set
of feature vectors. For each model, there is a correspond-
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Figure 1:Structure of the proposed system.

ing sub-classifieror expert. Given an unknown speaker pro-
file � � �� � � 
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 �, each of the experts� computes a
match score����� �� � �� for each speaker

�
. The match score���� � �� � �� indicates the degree of similarity (or dissimilarity)

between point sets�� and
�� ���.

The individual expert outcomes����� �� � �� � � � 	� 
 
 
 � �
are weighted bya priori weights� �� � that indicate the re-
liability of the expert. The weighted match scores from the
different experts are then combined into a single match score���� �	
	�� �� � � ����

that indicates the degree of similarity (or
dissimilarity) between the speakers� and

� ���
. The decision

is given by returning the ID number of the most similar speaker
to� . The confidence of the decision is also estimated based on
the spread of the distribution of the match scores from different
speakers.

2.1. Sub-classifiers

For simplicity, we will use dissimilarity-based classifiers for all
feature sets. For each speaker, the individual feature sets are
modeled by codebooks [10, 6, 13] generated by clustering the
feature vectors of that feature set by randomized local search
algorithm [3].

Dissimilarity of point sets sets�� and
�� ��� is computed

by the average quantization distortion:
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Euclidean norm. The match score for the sub-classifier is com-
puted as normalized distortion:
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In other words, the distortion of each speaker within the sub-
classifier is normalized by the sum of the distortions from all
speakers within that sub-classifier. This ensures that( )���� � �� � �� ) 	

. In this way, the outputs of the individual
classifiers are in the same order of magnitude regardless of the
dimensionality or the number of vectors.

2.2. Fusion strategy

There are several options for combining the outputs from the
sub-classifiers [2, 7]. Kittler & al. [7] compared several com-
monly used fusion criteria in the context of of probabilistic clas-
sifiers. Their theoretical and experimental results indicated that
the sum ruleis most resilient to estimation errors. Therefore,
we define the combination rule as the weighted sum:
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where� �� � is the weight for the feature set� . The weights
are normalized such that

#

� & � � �� � � 	

, which allows the
weights to be interpreted as relative importances. For instance,
if there are two feature sets and we set� �	� � ( 
* and� �*� � ( 
+, then the second set gets four times more weight in
the fusion compared to the first one.

2.3. Decision and confidence estimation

The identification decision is the speaker
�,

which produces the
smallest combined score:
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We also estimate theconfidenceof the decision. Intuitively, one
should expect high confidence if the selected speaker is very
distinctive, i.e. the scores for all other speakers are significantly
higher. On the other hand, if there exists another speaker that is
close to

�,
, the decision is more uncertain. Based on this idea,

we define the confidence as

� � 	  �����2 34
�����2 34"

�
(5)

where �����2 34 and ���� �2 34" are the scores for the nearest
and second nearest speakers, respectively.

2.4. Determination of the weights

We consider two ways of determining the weights in Eq. (3).
In the first approach, we apply a separability criterion for the
within- and between-speaker distance scores within each fea-
ture set. The separability of the distributions is computed by the
Fisher’s criterion [4]:

5 � �67  68 �"9 "7 : 9 "8
�

(6)

where67 � 6 8 and 9 "7 � 9 "8 are the means and variances of the
two distributions, respectively. The Fisher’s criterion gives a
high value if the two distribution are well-separated.

In the second approach, we use exhaustive search to find the
optimum weight combination. In other words, the performance
of the system is evaluated for every weight combination, and
the best weight combination is selected. For a small number of
feature sets this approach can be applied.



Table 1: Summary of the data sets.
Dimensionality Vectors Range

MFCC 16 499 [-102.9, 48.4]
�

-MFCC 16 499 [-12.7,13.4]
� �

-MFCC 16 499 [-5.5, 6.5]
LFCC 20 1990 [-18.1,48.4]
LTAS 513 1 [-25.6, 57.6]

F0 1 469 [57.9, 323.0]

3. Experiments
3.1. Corpus description

The test material consists of 110 native Finnish speakers from
various dialect regions in Finland [5]. The recordings were done
in a silent environment by a professional reporter C-cassette
recorder. The data was digitized using 44.1 kHz sampling fre-
quency with 16 bits per sample. All speakers read the same
material which was divided into training and evaluation sets of
length 10 seconds both.

3.2. Acoustic measurements

The original acoustic measurements as provided by the Uni-
versity of Helsinki consisted of four data sets [5]: fundamen-
tal frequency (F0), long-term averaged spectrum (LTAS) for
vowel /A/ , linear frequency cepstral coefficients (LFCC) and
mel-cepstral coefficients (MFCC). We furthermore added the
dynamic cepstrum parameters (

�
-MFCC,

� �
-MFCC) due to

their popularity in automatic speaker recognition systems.
The data sets are summarized in Table 1. From this table,

we can see that input fusion would be impossible due to the
diversity of the data sets. The fusion system enables using arbi-
trary feature sets together.

3.3. Sub-classifier performance

First, the performances of each feature set alone were evaluated.
After some experimentation, we fixed the model sizes as fol-
lows. For MFCC, LFCC,

�
-MFCC and

� �
-MFCC the mod-

els consist of 100 code vectors. For F0, the model consists of
5 code vectors. For LTAS, the model consists of, by definition,
one long vector containing 513 averaged subband outputs from
different instances of /A/ vowels.

The performances of the individual data sets are summa-
rized in Table 2 for segment length 1.8 seconds. Both the identi-
fication error rate and average confidence for the correctly clas-
sified speakers are shown.

We found out that in general increasing the model size and
the test segment length improves recognition results. An excep-
tion was F0, for which the behaviour was somewhat inconsis-
tent with respect both to the model size and to the test segment
length. From the six sets, MFCC and LTAS performed best and
F0 worst.

Notice that the confidences do not go in parellel with the
recognition rates. For instance, F0 gives poor identification re-
sult but the confidence for the correctly classifier speakers is
higher than that of MFCC, for instance.

3.4. Fusion of data sources

Since the fundamental idea of the fusion is that the classifiers
could complement each others results, the fusion of correlated
classifiers is not reasonable. In other words, if two classifiers

Table 2: Performances of the subclassifiers.
Error rate Avg. confidence

MFCC 6.36 % 0.14
�

-MFCC 52.72 % 0.05
� �

-MFCC 46.36 % 0.04
LFCC 46.36 % 0.10
LTAS 5.45 % 0.53

F0 93.64 % 0.35

misclassify the same speakers, there is little gain in combining
their outputs; in fact, the results may even get worse. To attack
this potential problem, we computed the correlations between
the classifier score outputs which are listed in Table 3.

We can see from Table 3 that LFCC is highly correlated
with MFCC. This is an expected result, since both of them de-
scribe essentially the same quantity, spectral shape. Also, dy-
namic cepstral parameters are highly correlated with each other,
which can be explained by the method they are computed:

� �
-

MFCC is merely a differenced version of
�

-MFCC.
From the six data sets, LTAS and F0 are least correlated

with the other feature sets. Based on these observations, we
selected MFCC, LTAS and F0 for the evaluation of data fusion.
The results for a test segment of length 1.8 seconds for the two
best sub-classifiers and the fusion are compared in Table 4. It
can be seen that by combining the data sets, the error rate is
halved. This shows that the fusion strategy works as designed.

3.5. Weight selection

Next we study the effect of the weight selection. The results
for equal weights, Fisher’s criterion, and exhaustive search are
compared in Fig. 2 for different input segment lengths.

Figure 2 indicates that the selection of weights has some
importance. With exhaustive search, we can find the opti-
mum weight combination for given model size and test segment
length. However, this is computationally intensive approach
and furthermore, the weights computed in this way do not give
any insight into data sets themselves. Thus, the Fisher’s crite-
rion seems more appropriate choice for practical use. Both of
these approaches outperform the equal weights case, which sug-
gests that the feature sets, indeed, have unequal discrimination
powers (reliability).

We continue by fixing the weights according to Fisher’s cri-
terion and examine what is the effect of excluding the best fea-
ture set, LTAS. The results are compared with MFCC in the
Fig. 3. We observe that excluding LTAS increases error rate.
Therefore, the gain in the fusion is mostly due to LTAS feature
set. Fusion without LTAS is close to the results obtained us-

Table 3:Correlations of the feature sets.
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Table 4: Comparison of the two best subclassifiers and the data
fusion.

Error rate Avg. confidence
LTAS 5.45 % 0.53
MFCC 6.36 % 0.14
Fusion 2.72 % 0.19
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Figure 2:Comparison of weight selection.

ing MFCC alone. For very short segments, the data fusion still
improves recognition accuracy.

4. Conclusions
Information fusion of diverse data sets is a difficult task.
We have evaluated the performance of classifier output fu-
sion for multiparametric speaker identification in the case of
dissimilarity-based classifiers. The results indicate that by using
multiple uncorrelated feature sets, the recognition performance
of the fusion system is better than any of the sub-classifiers
alone.
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