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Abstract

Cohort normalization is a method for normalizing the scores
in speaker verification in order to reduce undesirable variation
arising from acoustically mismatched conditions. A particular
form of cohort normalization, unconstrained cohort normaliza-
tion (UCN) is addressed in this study. The UCN method has
been shown to give excellent results but its major drawback is
the huge computational load arising from the search of the co-
hort speakers. In this paper, we propose a fast cohort search
algorithm, that quantizes the test vector sequence and uses the
quantized data for both impostor and claimant scoring. Results
on the NIST-1999 corpus show a speed-up factor of 23:1 com-
pared to full search. Furthermore, the equal error rates are de-
creased from those of the full search.

1. Introduction
Speaker verification [1] is a task of deciding whether an un-
known speech utterance was produced by a claimed identity.
The output of a verification system is binary: either the speaker
is accepted or rejected.

The verification task is a statistical hypothesis testing prob-
lem that can be formulated as follows. Suppose that the un-
known speaker produced an utteranceX and claims to be a per-
son S. The two opposite hypotheses are

{
H0 : X was produced by S
H1 : X was not produced by S,

and the verification engine must decide which one of these two
hypotheses is true.

Suppose for a moment that the likelihoods of both hypothe-
ses are known. In this case, the likelihood ratio [2] gives the
optimal decision in Bayes sense (minimum risk classification)
[2, 3]. The decision rule is then

Decide

{
H0 , if LRH0,H1 > ΘS

H1 , if LRH0,H1 ≤ ΘS ,
(1)

where LRH0,H1 is the ratio of the likelihoods of the two hy-
potheses, and ΘS is a decision threshold for speaker S. The
thresholds Θi are determined from the training data so that a
desired balance between false acceptances (FA) and false re-
jections (FR) is obtained. The threshold can be global for all
speakers, or it can be speaker-depended [4].

The data for speaker verification is obtained in the form of
acoustic feature vectors {xi} extracted from real speech utter-
ances. In the enrollment phase, a speaker model is trained from
the training vectors. In the verification phase, the input utter-
ance is first converted into feature vectors, which are then used
for estimating the likelihoods of the two hypothesesH0 andH1.

The likelihood of the null hypothesis H0 is estimated by
matching the vectors X = {xi} against the claimed speaker’s
model S, which is intuitively reasonable. Suppose that the
probability density of the claimant’s feature vectors p(x|S) is
known; in this case, the matching is carried out by computing
the likelihood p(X|S) under some simplifying assumptions (in-
dependence of the test vectors). In reality, due to finite amount
of training data, the densities are only estimates of the true un-
derlying distributions.

The estimation of the likelihood of the alternative hypoth-
esis H1 is considerably much harder. Estimating this is equiv-
alent to solving what is the likelihood that anyone else in the
world (except S) produced X . In speaker recognition com-
munity, there have emerged two main approaches for modeling
the alternative hypothesis [5], so-called world model and cohort
model approaches.

The world model W (background model, universal back-
ground model, global speaker model) is a large model that aims
characterizing all possible speakers and speaking contexts of
the “world”. It is trained from a large amount (several hours)
of speech data from a variety of speakers. Estimating the likeli-
hood of H1 then translates simply to computing the likelihood
p(X|W ) similarly as with the client model.

The second approach for estimating the likelihood of H1

uses the concept of cohort models. Rather than modeling the
whole world, cohort approach uses a small representative set of
models, called cohort set. Individual cohort models’ scores are
obtained and combined e.g. by averaging.

The world-model and cohort approaches have been com-
bined successfully in [6]. In this approach, a coarse matching
based on world model is first carried out, and this is followed
by detailed matching using the cohort models. The combined
approach was reported to give smaller error than neither of the
two approaches alone.

There is no general consensus whether the world model or
cohort approach is more accurate [4, 7], and results supporting
both hypotheses exist. The reason for this is that the studies
are done in rather diverse conditions (different corpora, acous-
tic features, speaker models, number of speakers, . . . ), so one
approach might be better in certain situation than the other.

An argument in favor of the world model is that the cohort
approach is more complex. It is true that in the cohort approach
the following issues must be addressed: (1) the cohort selection
method, (2) the size of the cohort set, and (3) the method of
combining the individual cohort scores.

An argument in favor of the cohort approach originates
from its dynamic nature: for each client speaker, there is a per-
sonal set of “impostors”, which might simulate the case of an
intruder attack, and potentially to decreases the false acceptance
rate.

However, it is recognized that the cohort approach is com-
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Figure 1: A case where offline cohort selection fails. In the
offline case, the client score is higher than any of the cohort
speakers, whereas in the online case the cohort scores are much
higher, preventing an obvious intrusion.

putationally more expensive than the world model approach,
especially if the number of cohort speakers is high or the co-
hort models are complex. Furthermore, it is often argued that
the cohort approach requires a lot of storage, since the cohort
models need to be stored for each client speaker. However, this
argument is incorrect if the cohort speakers are selected among
the client speakers. In this case, the cohort approach takes less
space than the world model approach since only a look-up ta-
ble of the cohort indices must be stored in addition to the client
models. In fact, it was noticed in [8] that a smaller equal error
rate (EER) is obtained if the cohort models are selected among
the client speakers instead of an external cohort.

In this study, we propose a computationally efficient algo-
rithm for cohort normalization, called pre-quantization based
cohort search (PQS). The PQS method reduces computational
load by quantizing the input vector sequence using the LBG
clustering algorithm [9]. The experimental results on the
NIST-1999 speaker recognition evaluation corpus indicate that
a speed-up of 23:1 can be obtained, and at the same time the
equal error rate is decreased.

2. Review of Cohort Normalization
Regarding the selection of cohort speakers, the most com-
mon approach is to select the closest speakers to the claimant
speaker, since intuitively these are the best “impostors” for the
claimant speaker [5,8,10–12]. This method is referred to as the
closest impostors method in this paper.

There are several ways of selecting the cohort speakers [5,8,
10, 13–18]. The methods can be divided into two classes: those
that select the cohort speakers offline in the training phase, and
those that select the cohort online based on the input utterance.
In offline selection, a set of cohort models is searched based on
their closeness to the claimant model. Therefore, the database
consists of the speaker models and a look-up table of cohort
speaker indices. In the verification phase, the cohort models of
the client speaker are scored. Most of the computation is spent
on scoring the cohort models, especially if the cohort size is
large.

The online cohort selection, also known as unconstrained
cohort normalization [8] (UCN), selects the cohort speakers
during the matching phase, based on the closeness to the input

utterance. This method is expected to give better results than
the offline selection, since it adapts to the current verification
trial. In [8, 18] the superiority of the UCN method was verified
experimentally. Another feature in favor of the UCN is that it
does not require updating the cohort pointers when new clients
are enrolled.

Fig. 1 shows a case where the offline selection fails. The
three closest impostors to the client speaker are on the “wrong
side” of the client speaker in respect to the test vectors. Conse-
quently, the score for the client speaker will be higher than for
any of the cohort speaker, thus probably accepting the claimant.
However, it can be seen that the vectors are much more proba-
ble produced by the rightmost speaker. The problem is solved
in the online case; the closest impostor to the test sequence are
selected and scored, thus giving high likelihood for the alter-
native hypothesis and rejecting the speaker as it should be. In
the light of this example, it is expected that the number of false
acceptances is reduced by using the online approach.

The computational overhead of the online selection, how-
ever, limits it’s usability in practise. The cohort models must
be first searched which requires N matching function evalua-
tions for a candidate set of N speakers. In the next Section, we
propose an efficient online cohort search method.

The optimal cohort size depends on the cohort selection
method, the task, as well as the rule for combining the cohort
speaker scores. For instance, in [8, 18] it was observed that
for offline cohort selection, the EER decreases with increas-
ing cohort size. However, for online selection, a cohort size of
one speaker was optimal according to Ariyaeeinia and Sivaku-
maran [8].

There are several approaches for combining the cohort
speakers’ scores in the likelihood ratio context (see [18] for a
comparitive study). The twomost commonly used methods [14]
are (1) averaging the cohort scores, and (2) taking the maxi-
mum of the cohort scores, i.e. the score of the most competiting
speaker. Fuzzy integration of the cohort scores has been pro-
posed in [11]. Finally, we note that there are alternatives to the
likelihood ratio based score normalization. In [19], the claimant
and cohort scores were combined with a multilayer perceptron
(MLP) neural network.

3. Efficient Cohort Scoring for Verification
For the sake of simplicity, we will formulate the methods for
vector quantization (VQ) based recognition [20]. The methods
are straightforward to generalize to GMM and other models, as
will be demonstrated.

In VQ-based verification, the match score between se-
quence of vectors X = {xi} and a speaker codebook C =
{cj} is computed as the average quantization distortion defined
as follows:

D(X, C) =
1

|X|
∑

i

min
j

‖xi − cj‖. (2)

The smaller the distortion is, the betterX and C match.
LetC = {C1, . . . , CN} be the set of all client models. Fur-

thermore, let FindCohort(X, C, K) denote a procedure that
returns the indices of top K best scoring models for vector se-
quenceX from the model set C (cohort candidates).

The pseudocode of the proposed method is given in Algo-
rithm 1. First, the input sequenceX is quantized with the LBG-
clustering algorithm, producing a reduced vector sequence X̂ of
size M . The LBG algorithm gives reasonable good results for



Algorithm 1 Pre-Quantization Based Cohort Search (PQS)
LetX be the feature vectors and I the claimed identity ;

X̂ := LBG-Clustering(X, M) ;

Let Coh := FindCohort(X̂, C \ {CI}, K) ;

Return Score(X, CI) := D(X̂,CI )
1
K

∑
i∈Coh D(X̂,Ci)

;

quantizing speech data. It reduces effectively redundant vectors
and outliers while retaining the characteristics of the original
distribution.

Cohort models are searched from the set of all models, ex-
cluding the client model. The client score is then divided by
the average cohort score, giving an estimate of the inverse like-
lihood ratio. For GMM, the procedure is exactly the same, but
the ratio of the GMM likelihoods is used instead.

Notice that only the quantized data is used in scoring, both
the target speaker and the impostors. This is reasonable, since
both the client and cohort scores are degraded, but their ratio is
expected to remain the same - this is the fundamental rationale
behind score normalization. In other words, we assume:

D(X, CI)∑
i D(X, Ci)

≈ D(X̂, CI)∑
i D(X̂, Ci)

, (3)

where the sums go through the indices of the cohort models se-
lected based on X and X̂ , respectively. The approximation (3)
is good whenX and X̂ follow the same probability distribution.
This assumption is reasonable, if the intermediate codebook is
created properly and the codebook is large enough. The control
parameters of the algorithm are the cohort size (K) and the size
of the quantized test set (M ).

4. Experiments
For the experiments, we used the NIST 1999 speaker recogni-
tion evaluation corpus [21]. We selected the male subset con-
taining 230 speakers for the verification experiments. Both the
“a” and “b” files for each speaker were used for training. We
selected to use the 1-speaker test segments from the same tele-
phone line with mixed handsets. There are N = 692 genuine
speaker trials and N(N − 1)/2 = 239086 impostor trials. The
model size is fixed to 128 for both VQ and GMM. For VQ code-
book training, we use the LBG algorithm, and for GMM train-
ing, we use the Expectation Maximization (EM) algorithm [22].

We use the standard MFCCs as the features [23]. A pre-
emphasiz filter H(z) = 1 − 0.97z−1 is used before framing.
Each frame is multiplied by a 30 ms Hamming window, shifted
by 10 ms. The FFT spectrum is computed, followed by band-
pass filtering with 27 triangular filters spaced linearly on the
mel-scale. The log-compressed filter outputs are converted into
12 cepstral coefficients by DCT, and the 0th cepstral coefficient
is ignored. On average, there is about 2 minutes of training data
for each speaker, and approximately 30 seconds of test data,
giving on average 2900 feature vectors per verification trial.

First, we studied the effect of the cohort size (K) and the
size of the PQ codebook (M ). The cohort size was varied from
1 to 20, and the PQ codebook from 4 to 512. The equal error
rates (EER) for VQ and GMM are shown in Figures 2 and 3,
respectively. We observe that the cohort size is less important
parameter than the pre-quantization factor, as expected. The
absolute recognition performance is rather poor, which might
be because we did not apply any channel compensation method
nor added the delta/double-delta coefficients.

It is surprising how much the test sequence can be quan-
tized without noticeable degradation; the equal error rates for
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Figure 2: Accuracy of the PQS method (VQ-128).
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Figure 3: Accuracy of the PQS method (GMM-128).
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Figure 4: Comparison of normalization methods (VQ-128,
GMM-128;M = 32).

both methods converge to minimum EERs (about 7.4 %) around
M = 32. In other words, the test sequence can be compressed
by a factor of 2900/32 = 90:1 without noticeable degradation
in the accuracy. In their experiments, McLaughlin & al. [24]
observed that the test sequence could be decimated up to factor
20:1 without degradation. However, they simply decimated the
vector sequence (taking every M th vector), whereas we aimed
at retaining the original density by clustering the test sequence.

Next, we fixed the PQ codebook size to 32, and compared
the following methods by varying the cohort size: (1) no nor-
malization, (2) closest impostors, (3) pre-quantization based co-
hort search. The results are shown in Fig. 4. We observe that
increasing cohort size improves verification accuracy, which is
consistent with the results reported in [12, 18].

For GMM, the PQS method gives systematically better re-



sults than the closest impostors method. For VQ, the ordering
is not as consistent; nevertheless the PQS method reaches the
accuracy of the closest impostors method when cohort size is
increased. The GMMmodeling gives slightly better results than
VQ, and both modeling techniques reduce the EER from about
10 % of the unnormalized case to about 7.4 %.

Table 1: Summary of the scoring methods (cohort size K =
20).
Method Model EER (%) Avg. verif. Speed-up

time (s) factor

Closest VQ-128 7.80 5.79 1:1
impostors GMM-128 7.51 18.94 1:1
PQS VQ-128 7.80 0.65 9:1

GMM-128 7.37 0.84 23:1

The average verification times along with the error rates for
the best cohort size (K = 20) are summarized in Table 1. We
observe that VQ achieves a speed-up of 9:1 compared to the
full-search unconstrained cohort normalization (closest impos-
tors), whereas GMM achieves a speed-up factor of 23:1.

5. Conclusions
We have proposed a computationally efficient method for un-
constrained cohort normalization problem in speaker verifica-
tion. The results with NIST-1999 corpus indicate that the
method can decrease both the error rate and the running time.
In future, we plan to extend the experiments by comparing the
other various existing cohort selection and score normalization
methods. In particular, we are interested whether the cohort or
world model normalization works better in practise since no one
has compared this systematically in large scale to our knowl-
edge.
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