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Abstract. We consider the distortion measure in vector quantization based
speaker identification system. The model of a speaker is a codebook generated
from the set of feature vectors from the speakers voice sample. The matching is
performed by evaluating the distortions between the unknown speech sample
and the models in the speaker database. In this paper, we introduce a weighted
distortion measure that takes into account the correlations between the known
models in the database. Larger weights are assigned to vectors that have high
discriminating power between the speakers and vice versa.

1 Introduction

It is well known that different phonemes have unequal discrimination power between
speakers [14, 15]. That is, the inter-speaker variation of certain phonemes are clearly
different from other phonemes. This knowledge should be exploited in the design of
speaker recognition [6] systems. Acoustic units that have higher discrimination power
should contribute more to the similarity or distance scores in the matching.

The description of acoustic units in speech and speaker recognition is often done
via short-term spectral features. Speech signal is analyzed in short segments (frames)
and a representative feature vector for each frame is computed. In speaker recognition,
cepstral coefficients [5] along with their 1st and 2nd time derivatives (
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coefficients) are commonly used. Physically these represent the shapes of the vocal
tract and their dynamic changes [1, 2, 5], and therefore carry information about the
formant structure (vocal tract resonant frequencies) and dynamic formant changes.

In vector quantization (VQ) based speaker recognition [3, 8, 9, 10, 16], each
speaker (or class) is presented by a codebook which approximates his/her data density
by a small number of representative code vectors. Different regions (clusters) in the
feature space represent acoustically different units.

The question how to benefit from the different discrimination power of phonemes
in VQ-based speaker recognition returns into question how to assign discriminative
weights for different code vectors and how to adopt these weights into the distance or
similarity calculations in the matching phase. As a motivating example, Fig. 1 shows
two scatter plots of four different speakers cepstral code vectors derived from the
TIMIT speech corpus. In both plots, two randomly chosen components of the 36-
dimensional cepstral vectors are shown. Each speakers data density is presented as a



codebook of 32 vectors. As can be seen, different classes have strong overlap.
However, some speakers do have code vectors that are far away from all other classes.
������������������������������������! !�������"$#&%('�)*'+����"$' '+���,��-��+��/.�-��/ !���0�1��2����1-���3��+#�����-$��4���-
code vectors that are especially good for discriminating them from other speakers.

Fig. 1. Scatter plots of two randomly chosen dimensions of four speakers cepstral data from
TIMIT database

There are two well-known ways for improving class separability in pattern
recognition. The first one is to improve separability in the training phase by
discriminative training algorithms. Examples in the VQ context are LVQ [12] and
GVQ [8] algorithms. The second discrimination paradigm, score normalization,  is
used in the decision phase. For instance, matching scores of the client speaker in
speaker verification can be normalized against matching scores obtained from a cohort
set [3].

In this paper, we introduce a third alternative for improving class separability and
apply it to speaker identification problem. For a given set of codebooks, we assign
discriminative weights for each of the code vectors. In the matching phase, these
weights are retrieved from a look-up table and used in the distance calculations
directly. Thus, the time complexity of the matching remains the same as in the
unweighted case.

The outline of this paper is as follows. In Section 2, we shortly review the
baseline VQ-based speaker identification. In Section 3, we give details of the weighted
distortion measure. Experimental results are reported in Section 4. Finally,
conclusions are drawn in Section 5.

2 VQ-Based Speaker Identification

 Speaker identification is a process of finding the best matching speaker from a speaker
database, when given an unknown speakers voive sample [6]. In VQ-based speaker
identification [8, 9, 11, 16], vector quantization [7] plays two roles. It is used both in
the training and matching phases. In the training phase, the speaker models are



constructed by clustering the feature vectors in K separate clusters. Each cluster is
represented by a code vector ci, which is the centroid (average vector) of the cluster.
The resulting set of code vectors is called a codebook, and notated here by C(j) = { c1

(j),
c2

(j), ..., cK
(j)} . The superscript (j) denotes speaker number.

 In the codebook, each vector represents a single acoustic unit typical for the
particular speaker. Thus, the distribution of the feature vectors is represented by a
smaller set of sample vectors with similar distribution than the full set of feature
vectors of the speaker model. The codebook size should be set reasonably high since
the previous results indicate that the matching performance improves with the size of
the codebook [8, 11, 16]. For the clustering we use the randomized local search
(RLS) algorithm [4] due its superiority in codebook quality over the widely used LBG
method [13].

 In the matching phase, VQ is used in computing a distortion D(X, C(i)) between an
unknown speakers feature vectors X = { x1, ..., xT}  and all codebooks { C 

(1), C 
(2) , ... ,

C 
(N)}  in the speaker database [16]. A simple decision rule is to select the speaker i*

that minimizes the distortion, i.e.
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 A natural choice for the distortion measure is the average distortion [8, 16] defined as
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 where NN[x] is the index of the nearest code vector to x in the codebook and d(.,.) is a
distance measure defined for the feature vectors. In words, each vector from the
unknown feature set is quantized to its nearest neighbor in the codebook and the sum
of the distances is normalized by the length of the test sequence. A popular choice for
the distance measure d is the Euclidean distance or its square. In [15] it is justified that
Euclidean distance of two cepstral vectors is a good measure for the dissimilarity of
the corresponding short-term speech spectra. In this work, we use squared Euclidean
distance as the distance measure.

 In the previous work [10] we suggested an alternative approach to the matching.
Instead minimizing distortion, maximization of a similarity measure was proposed.
However, later experiments have pointed out that it is difficult to define a natural and
intuitive similarity measure in the same way as distortion (2) is defined. For that
reason, we limit our discussion to distortion measures.

 

 3 Speaker Discriminative Matching

As an introduction, consider the two speakers codebooks illustrated in Fig. 2. Vectors
marked by ” •”  represent an unknown speakers’  data. Which one is this speaker? We
can see that the uppermost code vector c2

(1)  is actually the only vector which clearly
turns the decision to the speaker #1. Suppose that there wasn’ t that code vector. Then



the average distortion would be approximately same for both speakers. There are
clearly three regions in the feature space which cannot distinguish these two speakers.
Only the code vectors c2

(1) and c3
(2) can make the difference, and they should be given

a large discrimination weight.

3.1 Weighted Distortion Measure

We define our distortion measure by modifying (2) as follows:
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Here wNN[x] is the weight associated with the nearest code vector, and f  is a non-
increasing function of its argument. In other words, code vectors that have good
discrimination (large weight) tend to decrease the distances d; vice versa, non-
discriminative code vectors (small weight) tend to increase the distances. Product
f(w)d(x,c) can be viewed as an operator which ”attracts”  (decreases overall distortion)
vectors x that are close to c or the corresponding weight w is large. Likewise, it
” repels”  (increases overall distortion) such vectors x that are far away or are quantized
with small w.

Fig. 2. Illustration of code vectors with unequal discrimination powers

An example of a quantization of a single vector is illustrated in Fig. 3. Three
speakers’  code vectors and corresponding weights are shown. For instance, the code
vector at location (8, 4) has a large weight, because there are no other classes’
presentatives in its neighborhood. The three code vectors in the down left corner, in
turn, have all small weights because they all have another classes’  representative near.
When quantizing the vector marked by ×, the unweighted measure (2) would give the
same distortion value D ≅ 7.5 for all classes (squared Euclidean distance). However,
when using the weighted distortion (3.1), we get distortion values D1 ≅ 6.8, D2 ≅ 6.8
and D3 ≅ 1.9 for the three classes, respectively. Thus, × is favored by the class #3 due
to the large weight of the code vector. We have not yet specified two important issues
in the design of the weighted distortion, namely:



• How to assign the code vector weights,
• Selection of the function f.

Fig. 3. Weighted quantization of a single vector

In this work, we fix the function f as a decaying exponential of the form
 wewf α−=)( ,  (4)
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 3.2 Assigning the Weights

The weight of a code vector should depend on the minimum distances to other classes
code vectors. Let c ∈  C(j) be a code vector of the jth speaker. Let us denote the index
of its nearest neighbor in the kth codebook simply by NN(k). The weight of c is then
assigned as follows:
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In other words, nearest code vector from all other classes are found, and the inverse of
the sum of inverse distances is taken. If some of the distances equals 0, we set w(c) = 0
for mathematical convenience. The algorithm is looped over all code vectors and all
codebooks.

As an example, consider the code vector located at (1,1) in Fig. 3. The distances
(squared Euclidean) to the nearest code vectors in other classes are 2.0 and 4.0. Thus,
the weight for this code vector is w = 1/(1/2.0 + 1/4.0) = 1.33. In the practical
implementation, we further normalize the weights within each codebook such that
their sum equals 1. Then all weights satisfy 0 X w Y[Z]\�^A_�`�a�_,bCc�d�e�f!g/_�e�bhe�c�f�`�e�i�g/j
handle and interpret.



 4 Experimental Results

 For testing purposes, we used a 100 speaker subset from the American English TIMIT
corpus. We resampled the wave files down to 8.0 kHz with 16-bit resolution. The
average duration of the training speech per speaker was approximately 15 seconds.
For testing purposes we derived three test sequences from other files with durations
0.16, 0.8 and 3.2 seconds. The feature extraction was performed using the following
steps:

• Pre-emphasis filtering with 197.01)( −−= zzH .

• 12th order mel-cepstral analysis with 30 ms Hamming window, shifted by 15
ms.

 The feature vectors were composed of the 12 lowest mel-cepstral coefficients
(excluded the 0th coefficient). The ∆ - and ∆∆ -cepstral were added to the feature
vectors, thereby implying 3×12=36-dimensional feature space.
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Fig. 4. Performance evaluation using ~0.16 s. speech sample (~10 vectors)
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Fig. 5. Performance evaluation using ~0.8 s. speech sample (~50 vectors)



Sample length 3.2 s
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Fig. 6. Performance evaluation using ~3.2 s. speech sample (~200 vectors)

 The identification rates by using the reference method (2) and the proposed method
(3) are summarized through Figs. 4 - 6 for the three different subsequences by varying
the codebook sizes from K = 2 to 128. The parameter k�l�m*n�oqp/rsltp�u�v�w$p�x$y�z�z1{/|�}�v�v
experiments to ~��&�
 The following observations can be made from the figures. The proposed method
does not perform consistently better than the reference method. In some cases the
reference method (unweighted) outperforms the proposed (weighted) method,
especially for low codebook sizes. For large codebooks the ordering tends to be
opposite. This phenomenon is probably due to the fact that small codebook sizes give
a poorer representation of the training data, and thus the weight estimates cannot be
good either.

Both methods give generally better results with increasing codebook size and test
sequence length. Both methods saturate to the maximum accuracy (97 %) with the
longest test sequence (3.2 seconds of speech) and codebook size K=64. In this case,
using codebook K=128 does not improve accuracy any more.

 5 Conclusions

We have proposed a framework for improving class separability in pattern recognition
and evaluated the approach in the speaker identification problem. In general, results
show that with proper design VQ-based speaker identification system can achieve high
recognition rates with very short test samples while model having low complexity
(codebook size K = 64). Proposed method adapts to a given set of classes represented
by codebooks by computing discrimination weights for all code vectors and uses these
weights in the matching phase. The results obtained in this work show no clear
improvement over the reference method. However, together with the results obtained
in [10] we conclude that weighting indeed can be used to improve class separability.
The critical question is: how to take full advantage of the weights in the distortion or
similarity measure? In future work, we will focus on the optimization of the weight
decay function  f.
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