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We consider text-independent speaker verification undei ad frames estimation
tive noise corruption. In the popular mel-frequency cepstr v
coefficient (MFCC) front-end, we substitute the converaion . RASTA
Fourier-based spectrum estimation with weighted lineadior Frame dropping [« Aandp* = filtering
tive methods, which have earlier shown success in noisastob *
speech recognition. We introduce two temporally weighted ) )
variants of linear predictive (LP) modeling to speaker fiesi- CMVN fe'd'mens'ona'
. S . eature vectors
tion and compare them to FFT, which is normally used in com-
puting MFCCs, and to conventional LP. We also investigage th
effect of speech enhancement (spectral subtraction) osyte Figure 1: Front-end of the speaker recognition system.

tem performance with each of the four feature represemstio
Our experiments on the NIST 2002 SRE corpus indicate that the
accuracy of the conventional and proposed features are tdos
each other on clean data. On 0 dB SNR level, baseline FFT and
the better of the proposed features give EERs of 17.4 % and
15.6 %, respectively. These accuracies improve to 11.6 % and
11.2 %, respectively, when spectral subtraction is inauds

a pre-processing method. The new features hold a promise for
noise-robust speaker verification.

1. Introduction

Speaker verificatiors the task of verifying one’s identity based
on the speech signal [1]. A typical speaker verification sys-
tem consists of a short-term spectral feature extracton(fr
end) and a pattern matching module (back-end). For pattern
matching, Gaussian mixture models [2] and support vecter ma
chines [3] are commonly used. The standard spectrum analy-
sis method for speaker verification is the discrete Fouréars-
form, implemented by fast Fourier transform (FFOinear pre-
diction(LP) is another approach to estimate the short-time spec-
trum [4].

Research in speaker recognition over the past two decades
has largely concentrated on tackling tblkeannel variability
problem, that is, how to normalize out the adverse effeces du
to differing training and test handsets or channels (e.gMGS
versus landline speech) [5]. Another challenging problem i
speaker recognition, and speech technology in generdiats t
of additive noisethat is, degradation that originates from other
sound sources and adds to the speech signal.

Neither FFT nor LP can robustly handle conditions of ad-
ditive noise. Therefore, this topic has been studied ektelys
in the past few decades and maspeech enhancementeth-
ods have been proposed to tackle problems caused by additive
noise [6, 7]. These methods include, for example, speatial s
traction, Wiener filtering and Kalman filtering. They are all

*Short version of the paper has been acceptdBHEt Signal Pro-
cessing Letters

While we use standard mel-frequency cepstral featureseteri
through mel-frequency spaced filterbank placed on the magni
tude spectrum, the way how the magnitude spectrum is com-
puted varies (FFT = Fast Fourier transform, baseline method
LP = Linear prediction; WLP = Weighted linear prediction;
SWLP = Stabilized weighted linear prediction).

based on forming a statistical estimate for the noise andvem
ing it from the corrupted speech. Speech enhancement neethod
can be used in speaker recognition as a pre-processingtetage
remove additive noise. However, they have two potentiavera
backs. First, noise estimates are never perfect, which may r
sult in removing not only the noise but also speaker-depgnde
components of the original speech. Second, additional pre-
processing increases processing time which can becoméa pro
lem in real-time authentication.

Another approach to increase robustness is to carrfeadt
ture normalizatiorsuch as cepstral mean and variance normal-
ization (CMVN), RASTA filtering [8] or feature warping [9].
These methods are often stacked with each other and combined
with score normalizatiorsuch as T-norm [10]. Finally, exam-
ples ofmodel-domairmethods, specifically designed to tackle
additive noise, include model-domain spectral subtradtid],
missing feature theory [12] and parallel model combinati®)
to mention a few. Model-domain methods are always limited to
a certain model family, such as Gaussian mixtures.

This paper focuses on short-term spectral feature extrac-
tion (Fig. 1). Several previous studies have addressedstobu
feature extraction in speaker identification based on Li«ele
methods, e.g., [14] [15] [16]. All these investigationswever,
use vector quantization (VQ) classifiers and some of the fea-
ture extraction methods utilized are computationally ristee,
because they involve solving for the roots of LP polynomials
Differently from these previous studies, we (a) compare two
straightforward noise-robust modifications of LP and (lil)aet
them in a more modern speaker verification system based on
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Figure 2: (a) Shorttime energy (STE) as it used as the weighti
function in WLP and SWLP is shown for a voiced speech sound
taken from the NIST 2002 speaker recognition corpus and cor-
rupted by factory noise (SNR -10 dB). (b) Examples of FFT,
LP, WLP and SWLP spectra for the speech frame in (a). The
spectra have been shifted by approximately 10 dB with reéspec
to each other.

adapted Gaussian mixtures [2] and MFCC feature extraction.
The robust linear predictive methods used for spectrurmesti
tion (Fig. 1) areweighted linear predictiofWLP) [17] and
stabilizedWLP (SWLP) [18], which is a modified version of
WLP that guarantees the stability of the resulting all-giter.

spectrum. The standard FFT and LP form a point of compar-
ison. We expect the temporally weighted LP variants — WLP
and SWLP — to perform better under additive noise conditions
which will be demonstrated in Section 4. The paper is con-
cluded in Section 6.

2. Spectrum Estimation Methods

In linear predictive (LP) modeling, with prediction ordgy it

is assumed that each speech sample can be predicted as a lin-
ear combination op previous samplesi, = > 7_, arsn_&,
wheres,, is the digital speech signal afd; } are the prediction
coefficients. The difference between the actual sarapland

its predicted valué,, is theresiduale, = s, — > %_, axSn—&.
Weighted linear prediction (WLP) is a generalization of L.
contrast to conventional LP, WLP introducegemporalweight-

ing of the squared residual in model coefficient optimizatio
allowing emphasis of the temporal regions assumed to be lit-
tle affected by the noise, and de-emphasis of the noisy re-
gions. The coefficient$bs } are solved by minimizing the en-
ergy of the weighted squared residual [F]= > W, =

S (80— Y P bisn—k)*W,, where W, is the weighting
function. The range of summation af (not explicitly writ-

ten) is chosen in this work to correspond to the autocoiciat
method, in which the energy is minimized over a theoretjcall
infinite interval, buts,, is considered to be zero outside the ac-
tual analysis window [4]. By setting the partial derivasvef

E with respect to eachy, to zero, we arrive at the WLP normal
equations

5 Wnsn—ksnfizg Wnsnsnfiy

n n

1<i<p,

S
k=1
(1)

which can be solved for the coefficieriis to obtain the WLP
all-pole modelH (2) = 1/(1 — 3°P_ bpz™%). Itis easy to
show that conventional LP can be obtained as a special case of
WLP: by setting, for alln, W,, = ¢, wherec is a finite nonzero
constant¢c becomes a multiplier of both sides of (1) and cancels
out, leaving the LP normal equations [4].

The conventional autocorrelation LP method is guaranteed
to always produce stableall-pole model, that is, a filter where
all poles are within the unit circle [4]. However, such a guar
tee does not exist for autocorrelation WLP when the weightin
functionW,, is arbitrary [17] [18]. Because of the importance of
model stability in coding and synthesis applicatiostapbilized
WLP (SWLP) was developed [18]. The WLP normal equations
(1) can alternatively be written in terms pértial weightsZ,, ;
as

Rather than removing noise as speech enhancement methods »

do, the weighted LP methods aim to increase the contribution
of such samples in the filter optimization that have been less
corrupted by noise. As illustrated in Fig. 2, the correspogd
all-pole spectra may preserve the formant structure ofenois
corrupted voiced speech better than the conventional rdstho
The WLP and SWLP features were recently applied to auto-
matic speech recognition in [19] with promising results; we
were curious to see whether these improvements would trans-
late to speaker verification as well.

We first introduce the spectrum estimation methods in Sec-
tion 2. Experimental setup is described in Section 3. We use a
robust mel-frequency cepstral coefficient (MFCC) frontters
indicated in Fig. 1 and vary the computation of the magnitude

bk § Zn,ksnszn,isn—i - g Zn,OSnZn,iSn—i7

k=1 n n

2
1<i<p,

where Z,,; = W, for 0 < j < p. As shown in [18]
(using a matrix-based formulation), model stability is gua
teed if the partial weight%,, ; are, instead, defined recursively
aSZn,() = \/Wn and Zn,j = max(l, \‘/A/Winl)anLjfl,

1 < j < p. Substitution of these values in (2) gives the SWLP
normal equations.

The motivation for temporal weighting is to emphasize the
contribution of the less noisy signal regions in solvingltkefil-
ter coefficients. Typically, the weighting functid®’,, in WLP




and SWLP is chosen as the short-time energy (STE) of the im- the test files with a given average segmental (frame-avgrage

mediate signal history [17] [18] [19], computed using aisigd signal-to-noise ratio (SNR). We consider five valu8NR €
window of M samples asV,, = Zgl s2_,. STE weight- {clean, 20, 10,0, —10} dB, where “clean” refers to the origi-
ing emphasizes those sections of the speech waveform which nal, uncontaminated NIST samples

consist of samples of large amplitude. It can be argued that We also include the well-known and simple speech en-
these segments of speech are likely to have been less @arupt hancement methodpectral subtraction(SS), as described in
by stationary additive noise than low-energy segmentseddgd [6], in the experiments. We study the effect of speech erdranc

when compared to traditional spectral modeling methodd suc  ment alone, as well as the combination of speech enhancement
as FFT and LP, WLP and SWLP using STE-weighting have with the new features. The noise model is initialized frora th
been shown to improve noise robustness in automatic speech firstfive frames and updated during the non-speech peridtis wi
recognition [19] [18]. VAD labels given by the energy method.

3. Speaker Verification Setup 4. Speaker Verification Results

We evaluate the effectiveness of the features on the NIST We first study the effects of spectral subtraction and T-nonm
2002 speaker recognition evaluation (SRE) corpus by using a der white noise corruption in Fig. 3. The results, shown fere
standard Gaussian mixture model with a universal backgtoun the FFT-derived spectrum, are similar for LP, WLP and SWLP.
model (GMM-UBM) [2]. We chose the GMM-UBM system Inclusion of spectral subtraction helps especially in venisy
since it is simple and may outperform support vector machine ~ conditions, and does not degrade the performance evendor th
under additive noise conditions [13]. Test normalization (T- ~ clean condition. T-norm helps to reduce the miss rate atismal
norm) [10] is applied on the log likelihood ratio scores. fihe false alarm rates (as reflected by the value of MinDCF), as ex-
are 2982 genuine and 36,277 impostor test trials in the NIST Pected [10]. In the rest of the experiments, we include Tmor
2002 corpus. For each of the 330 target speakers, two minutes unless otherwise stated.

of untranscribed, conversational speech is availablerfin- We next study the effect of noise type and noise level to
ing the target speaker model. Duration of the test uttesance all four feature sets, both with and without spectral subtra
varies between 15 and 45 seconds. The (gender-dependent) tion. The equal error rates are presented graphically in &ig
background models and cohort models for Tnorm, having 1024 Whereas Tables 1, 2 and 3 display more detailed breakdown of
Gaussians, are trained using NIST 2001 corpus. Our baseline the results for white, pink and factory noise, respectivéty
system [20] has comparable or better accuracy to otherragste ~ hally, Fig. 6 shows a DET plot that compares the four feature
evaluated on this corpus (e.g. [21]). Features are extiaste sets under factory noise degradation at SNR of 0 dB withopt an
ery 15 ms from 30 ms frames multiplied by a Hamming win- ~ SPeech enhancement. Comparing the results without speech e
dow. Depending on the feature extraction method, the magni- hancement, we make the following observations:

tude spectrum is computed differently. For the baselindoust e The accuracy of all four feature sets degrades signifi-
we directly compute the fast Fourier transform (FFT) of the cantly under additive noise; performance in white and
windowed frame. For LP, WLP, and SWLP, the model coeffi- pink noises is inferior to that in factory noise.

cients and the corresponding all-pole spectra are firstelkas
explained in Section 2. All the three parametric methodsause
predictor order op = 20. For WLP and SWLP, the short-term

e WLP and SWLP outperform FFT and LP in most cases,
with large differences at low SNRs and for factory noise

energy window duration is set th/ = 20 samples. We use e WLP and SWLP show minor improvement over FFT

a 27-channel mel-frequency filterbank to extract 12 MFCCs. also in the clean condition, showing consistency of the
After RASTA filtering, A and A? coefficients are appended. new features.

Voiced frames are then selected using an energy-basedawice e It is interesting to note that, although SWLP is stabi-

tivity detector (VAD). Finally, cepstral mean and variamuear- lized mainly for synthesis purposes, and WLP has per-
malization (CMVN) is performed. The procedure is illusért formed better in speech recognition [19], SWLP seems
in Fig. 1. to slightly outperform WLP in speaker recognition.

We use two standard metrics to assess recognition accuracy:
equal error rate (EER) and minimum detection cost function
value (MinDCF). EER corresponds to the threshold at whieh th
miss rate Pmiss) and false alarm rate.,) are equal; MinDCF
is the minimum value of a weighted cost function giverdalx
Phiss+0.99 x Pg,. In addition, we plot a few selected detection
error tradeoff (DET) curves which shows the full trade-aff\e
between false alarms and misses in a normal deviate scdle. Al
the reported minDCF values are multiplied by 10, for ease of
comparison.

To study robustness against additive noise, we digitally
add some additive noise from the NOISEX-92 database
the speech samples. In this study we wdgte, pink and
factory2 noised. The background models and target speaker
models are trained on clean data, but the noises are added to

In speaker recognition, it is common to fuse FFT- and LP-
derived features since that they capture complementapepro
ties of the underlying speech process [22, 23]. Here, we con-
sider fusion of the FFT- and SWLP-based features using two
well-known fusion strategiesScore fusionis carried out by
summing the log-likelihood ratio scores of the two classifie
score = 0.5 X (LLRrrr + LLRswip) andfeature fusions
implemented by training a single GMM-UBM classifier on the
concatenated 72-dimensional features. The results fointhe
dividual classifiers (FFT, SWLP) and the two types of fusion
are given in Fig. 5. Overall, the fusion gains are rather mod-
est and feature fusion is more stable. Since the FFT and SWLP
classifiers do not degrade uniformly with decreasing SNRljev
for effective score fusion the fusion weight should be addpt
for the (estimated) SNR-level; feature fusion seems to beemo

1Samples available athttp://spib.rice. edu/spib/ 3In fact, these samples are far away from “clean” as they haea b
sel ect _noi se. htni transmitted over different cellular networks with varyitypes of hand-
2We will refer this as “factory noise” throughout the paper. sets and are possibly already contaminated with some aiditiise.
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straightforward. The DET plot in Fig. 7 also includes the-fea
ture fusion which indicates slight improvements at low dals

alarm rates.

5. Discussion

Considering the effect of speech enhancement, as summiarize
by Figs. 4 and 7, we see that speech enhancement as a pre-
processing step significantly improves all the four methdds
addition, according to Tables 1 through 3, the difference be



Table 1: System performance under white noise with T-norptieg.

Signal- Equal error rate (EER %) MinDCF

to-noise Without spectral subtraction With spectral subtraction Without spectral subtraction With spectral subtraction
ratio (dB) | FFT LP WLP SWLP| FFT LP WLP  SWLP| FFT LP WLP SWLP| FFT LP WLP SWLP
clean 922 889 9.15 9.15| 9.29 892 9.26 9.19| 356 347 350 354 359 351 353 3.60
20 9.76 943 9.46 9.39| 952 935 9.39 9.19| 383 377 3.69 3.82| 3.77 3.60 3.69 3.69
10 12.37 12.04 12.01 12.1%3 10.73 10.19 10.32 10.09 5.12 5.10 5.09 5.20| 417 410 4.8 4.14
0 26.27 26.19 2515 2539 13.22 1271 1291 1271 934 951 950 944|528 514 515 5.10
-10 37.66 37.73 37.06 37.14 2351 2277 23.44 2250 10.00 10.00 10.00 10.0q 857 8.29 8.56 8.27
[ Average [ 19.08 18.86 1857 1864 [ 1325 1279 13.06 1274 [ 637 637 636 640 [ 508 493 5.02 4.96 |

Table 2: System performance under pink noise with T-norntiegp

Signal- Equal error rate (EER %) MinDCF

to-noise Without spectral subtraction With spectral subtraction Without spectral subtraction With spectral subtraction
ratio (dB) | FFT LP  WLP SWLP| FFT LP WLP SWLP| FFT LP  WLP SWLP| FFT LP WLP SWLP
clean 9.22 8.89 9.15 9.15| 9.29 8.92 9.26 9.19| 3.56 3.47 3.50 354|359 351 353 3.60
20 9.53 922 932 9.32| 946 923 942 9.39| 371 372 3.70 3.75| 3.77 369 3.63 3.70
10 11.00 11.21 10.66 10.7Q 10.36 10.03 9.99 9.99| 441 4.62 4.51 451| 412 4.02 411 4.05
0 2274 22.86 20.86 21.7q 11.80 11.70 12.14 11.5Q0 8.72 9.07 8.86 8.74| 476 484 481 4.77
-10 33.37 3317 3192 31.69 20.12 20.32 20.76 19.14 10.00 10.00 10.00 10.0q 790 7.66 7.94 7.51
[ Average | 17.17 17.07 16.38 16.52 | 12.21 12.04 12.31 1184 | 6.08 618 6.11 6.11] 483 474 480 4.73 |

Table 3: System performance under factory noise with T-repplied.

Signal- Equal error rate (EER %) MinDCF

to-noise Without spectral subtraction With spectral subtraction Without spectral subtraction With spectral subtraction
ratio (dB) | FFT LP  WLP SWLP| FFT LP WLP SWLP| FFT LP WLP SWLP| FFT LP WLP SWLP
clean 922 889 9.15 9.15| 9.29 892 9.26 9.19| 356 347 350 354|359 351 353 3.60
20 957 922 9.22 9.29| 9.69 9.26 9.46 9.35( 371 370 3.70 3.71| 372 365 364 3.68
10 10.13 10.26 10.13 10.03 10.47 10.20 10.26 10.03 4.05 4.20 4.16 4.16| 409 400 4.15 4.09
0 17.40 17.04 16.03 15,59 11.64 1157 1157 11.17 7.62 7.82 7.24 7.04| 454 464 476 4.60
-10 26.19 2563 2441 23.68 16.84 16.60 16.87 1555 9.80 9.84 9.75 9.69| 6.99 6.70 6.72 6.34

| Average | 1450 14.23 13.79 13.55 | 1159 11.31 11.48 11.06 \ 575 581 567 5.63 | 459 450 456 4.46 |

Table 4: The effects of spectral subtraction and voice igtiletector (VAD) on the noisiest factory noise conditiohQ dB SNR).

Spectral VAD labels Equal error rate (EER %) MinDCF

subtraction  from FFT LP WLP SWLP| FFT LP WLP SWLP
No Noisy 26.19 25.63 2441 2364 980 9.84 9.75 9.69
No Clean 17.60 1749 1754 16.18 7.68 7.57 7.49 7.36
Yes Noisy 16.84 16.60 16.87 15.55 6.99 6.70 6.72 6.34
Yes Clean 17.25 16.97 1742 15.64 7.30 6.68 6.93 6.41

comes progressively larger with decreasing SNR. This is ex-
pected, since for a less noisy signal, spectral subtraitideely

to remove also other information in addition to noise. After
cluding speech enhancement, even though the enhancensent ha
a larger effect than the choice of the feature set, SWLP mesnai
the most robust method and together with WLP outperforms
baseline FFT. Note that here the benefit from spectral subtra
tion may be quite pronounced due to almost stationary noise

types.

In analyzing the results further we noticed that the energy-
based VAD tends to produce unreliable results at low SNR (0
dB and -10 dB), by declaring most of the frames as speech. To
exclude the detrimental effect of the (highly) errorneodsbv
and focus on differences of spectrum estimation methoas-the
selves, we performed another experiment on the noisie8t (-1
dB) factory noise condition where the VAD labels were de-
rived from the clean signal. The results in Table 4 confirm
that the errorneous VAD labels are the main cause of degra-
dation at the low SNRs; spectral subtraction can be seen as
a “soft VAD". Interestingly, combination of spectral suitr

tion and “non-cheating VAD” appears to be the best combi-
nation. Further research is required to find good combinatio

of speech enhancement and voice activity detection for non-
stationary noises. Comparing the spectrum estimationadsth

in Table 4, SWLP remains the best method irrespective of the
chosen VAD and spectral subtraction.

6. Conclusions

We studied temporally weighted linear predictive features
speaker verification. Without speech enhancement, the new
WLP and SWLP features outperformed standard FFT and LP
features in recognition experiments under additive noiseliz
tions. The usefulness of robust voice activity detectorspet-

tral subtraction in highly noisy environments was also demo
strated. Overall, the SWLP remained the most robust method.
The temporally weighted linear predictive features areoars-

ing approach for speaker recognition in the presence ofiaedi
noise.
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