A Comparison of Features for Synthetic Speech Detection

Md Sahidullah, Tomi Kinnunen, Cemal Hanilgi

School of Computing, University of Eastern Finland, Firdan

sahid@cs.uef.fi, tkinnu@cs.joensuu.fi, chanil@cs.uef.

Abstract

The performance of biometric systems based on automatic
speaker recognition technology is severely degraded due to
spoofing attacks with synthetic speech generated usireyelift
voice conversion (VC) and speech synthesis (SS) techniques
Various countermeasures are proposed to detect this tygie of
tack, and in this context, choosing an appropriate feattrae

tion technique for capturing relevant information from sgie

is an important issue. This paper presents a concise experi-
mental review of different features for synthetic speectede

tion task. A wide variety of features considered in this gtud
include previously investigated features as well as sorherot
potentially useful features for characterizing real andtlsgtic
speech. The experiments are conducted on recently released
ASVspoof 2015 corpus containing speech data from a large
number of VC and SS technique. Comparative results using two
different classifiers indicate that features represergimectral
information in high-frequency region, dynamic informatiof
speech, and detailed information related to subband dlesisc

tics are considerably more useful in detecting synthegesh.
Index Terms: anti-spoofing, ASVspoo2015, feature extrac-
tion, countermeasures

1. Introduction

Synthetic speech signal created using different voice esinn
(VC) and speech synthesis (SS) techniques can be uspddd
biometric systems based on automatic speaker recognéibn t
nology [1, 2, 3, 4]. Over the past few years, considerable re-
search effort has been devoted to protect the speaker iecogn
tion systems by developing varioosuntermeasurg8]. Coun-
termeasures consists of two parts: front-end for parameter
ing the speech signal and back-end to determine whether it
is a natural or synthetic speech. The front-end or feature ex
traction unit should capture relevant information from esgie
signal that reflects artifacts related to conversion or leysis
process. The other part includes a modeling technique to ef-
fectively represent those speech features. A number of tech
nigues have been proposed for both parts to improve the spoof
ing detection performance. For example, mel-frequency cep
stral coefficients (MFCCs), cosine phase, and modified group
delay features were investigated in [5] for VC-based sytithe
speech detection using a Gaussian mixture model (GMM) as
back-end. Phase information obtained fraetative phase shift
(RPS) is also used in SS-based synthetic speech detection wi
high recognition accuracy as compared to MFCCs [6, 7]. The
authors of [8], in turn, proposed to use one-class approach u
ing local binary pattern[9] of linear frequency cepstral coef-
ficients (LFCCs) followed by support vector machine (SVM)
for voice conversion, speech synthesis and artificial $igaa
tection [8]. A good overview of various countermeasuresitec
niques is given in [3].

fi

But most of the prior investigations are restricted to a cer-
tain type of spoofing technique, and only a limited number of
countermeasures are studied. It is also not possible to a@mp
the reported results across different studies since therexp
ments are conducted on different databases with varyinfigeon
uration of features, classifiers and evaluation metricsa As-
sult for an end-user (e.g. administrator of an ASV systeti, i
difficult to choose one technique over another for his/h@tiap
cations. A systematic benchmarking of the different pregos
techniques in presence of various spoofing attacks is higgdy
manding. Further, it is crucial to know which kind of techumég
is more useful for a certain kind of spoofing attack.

In this paper, we experimentally compare speech front-
end features for spoofing attack detection, and compare thei
relative performances. We not only evaluate the performaic
previously investigated features for spoofing detectia, it
clude other features also which are successfully used ekspe
verification task and have a potential for robust detectibn o
spoofing attacks. The performances are separately ewdluate
with Gaussian mixture model (GMM) and support vector ma-
chine (SVM) based classifiers that are successfully emgloye
in detecting synthetic speech. We report our results on the
ASVspoof 2015 corpus which is provided withFirst Auto-
matic Speaker Verification Spoofing and Countermeasure-Chal
lenge[10]. As far as we are aware, our study is the most exten-
sive comparative evaluation of features in spoofing degecti

2. Feature Extraction Techniques

Here we describe the compared features briefly. We divide all
the methods into three categories as shown in Table 1: short-
term power spectrum features, short-term phase featunels, a
feature involving long-term processing steps.

2.1. Short-Term Power Spectrum Features

Log-spectrum: The logarithm of power spectrum contains
useful information related to the speech signal [16]. Weehav
used raw log-spectrum (Spec) computed directly from speech
frames as features.

Cepstrum: Cepstral coefficients (Cep) are computed from
the power spectrum by applying discrete cosine transform
(DCT) [17]. Usually, only the lower-order coefficients ae r
tained in speech processing front-ends. Here, howevergwe r
tain all the coefficients since especially the higher-order coeffi-
cients could be useful for characterizing synthetic sp¢&8h

A-Cepstrum and A%-Cepstrum: Traditional dynamic co-
efficients, i.e. deltas and double-deltas [19], are useful f
speech and speaker recognition. Most of the synthetic bpeec
generation techniques do not fully model temporal chareste
tics of speech. Therefore, intuitively deltas and doulstas
could be useful in detecting synthetic speech.

Filter bank based cepstral features:The main issue with



Table 1: Summary of the evaluated features evaluated in this paprtive values of required control parameters/implemeatati
details and references related to their earlier studiesgnafing detection.

Type Name (dim.) Configuration Parameter(s)/Implementation Details Used for Spoofing Detection in
Spec/Cep (257) Number of DFT bins =512 —
Short-term A-SpecA-Cep (257) Computed with three frames using differentiation —
power AZ-SpecA2-Cep (257) Computed with three frames using differentiation —
spectrum LFCC/MFCC (60) No. of filter=20 [4,11,12]
features RFCC/IMFCC (60) No. of filter=20 —
LPCC (60) LP Order=20 [13]
PLPCC (63) No. of filters in Bark scale=21 —
SSFC (60) No. of Subbands=20, rectangular window —
SCFC/SCMC (60) No. of Subbands=20, rectangular window —
MGDF (60) a = 0.4,y = 1.2, First 20 coefficients are retained after DCT [5]
Short-term APGDF (60) LP Order=20 —
phase features CosPhase (60) First 20 coefficients are retained after DCT [5]
RPS (60) RPS computed with COVAREP tool [14], 20 filters in mel filtemixa [6,7]
Spectral SDC (56) From MFCC withN=7,d=1, P=3, K=7 —
features Mod-Spec (60) From 20 mel filter log-energies using window of 510 ms with shift of b8 [15]
with long-term FDLP (60) FDLP packag® —
processing MHEC (60) No. of filters in Gammatone filter bank=2§, of LPF=30Hz —
@ analysis [24].
. Spectral flux based feature: Spectral flux measures the
0 ‘ frame-by-frame change in the power spectrum [25]. It is com-
0 (b) puted as the Euclidean distance between normalized power
il ) | spectrum of consecutive frames. We investigate a new featur
\/><><><><><\\/><><><\\>(\ that we termsubband spectral flux coefficie(BSFC). First,
0 L A we compute the subband spectral flux (SSF) of ithle sub-
0 © band of thet-th speech frame a§SF; = S M/t |5, (k) —
1 y ) Si—1(k)||*w;(k), where S;(k) is the magnitude of-th fre-
\J><><><>\>/\\/><><><>\ quency component of normalized power spectrumtbfframe,
% (d) w; (k) is the spectral window function to obtain the frequency
response of theé-th subband, and/ is the number of bins in
1 / A AT discrete Fourier transform (DFT). SSFCs are then obtaiyed b
0 WMM\ performing logarithm and DCT on SSFs.
0 8

Frequency (kHz) -

Figure 1:Figure showing filter bank used in the computation of
(a) RFCC, (b) LFCC, (c) MFCC, and (d) IMFCC.

Spec and Cep features is high their dimensionality. Thisdra
back is addressed by a filter bank. The power spectrum is first
integrated using overlapping band-pass filters and |dgaiit
compression followed by DCT is performed to produce the cep-
stral coefficients. We consider four types of filter bank ¢eps
features as illustrated in Fig 1. In rectangular filter cegst
coefficients (RFCCs), integration is performed using aarct
gular window [20] and the filters spaced in linear scale. Lin-
ear frequency cepstral coefficients (LFCCs) are extradied t
same way but the filters are triangular in shape [8]. In MFCC,
the filters are placed in mel scale, having denser spacirgin t
low-frequency region [21]. Finallynvertedmel frequency cep-
stral coefficient (IMFCC) uses filters that are linearly sgghon
“inverted-mel” scale, giving higher emphasis to the hige-fr
guency region [22].

All-pole modeling based cepstral featuresCepstral coef-
ficients are also derived from all-pole modeling repregdémnta
of signal where linear prediction coefficients (LPC) are -con
verted to linear prediction cepstral coefficients (LPCC3][2
Another all-pole representation of speech called pereditu
ear prediction cepstral coefficients (PLPCC) is also coegbut
by first performing a series of perceptual processing padmR

Subband spectral centroid based feature: Spec-

tral subband centroids represent centroid frequencies of
subbands, and they have properties similar to formant
frequencies [26]. In [27], spectral centroid magnitude
(SCM) is investigated along with subband centroid fre-
quency (SCF) for speaker recognition. For thiéh subband
of the t-th speech frame, they are defined &(F; =

W F (k) Se(Rywi (k) /S0 Su(k)uwi () and
SCM; = SR F(R)Se(R)wi(k) /LT F(R)wi(k),
whereS: (k) and f (k) represent the power spectrum magnitude
of ¢-th frame and normalized frequency (< f(k) < 1)
corresponding tdk-th frequency component. Both SCF and
SCM contain complementary information related to subbands
not captured in cepstral features. The finer details of $peec
spectrum are not preserved in synthetic speech as VC and
SS techniques mostly focus on producing identical overall
envelope of the speech spectrum. Therefore, speech feature
representing SCF and SCM could be useful in detecting syn-
thetic speech. We convert them to feature vectors followlieg
process described in [27]. SCFs are directly used to creake S
coefficients (SCFCs) feature while log and DCT operatioes ar
performed on SCM to get SCM coefficients (SCMCs).

http://www.clsp.jhu.edu/ ~sriram/research/

fdlp/feat_extract.tar.gz



2.2. Short-Term Phase Features

Modified group delay function (MGDF): Modified group
delay function was proposed to represent the phase informa-
tion of a signal [28]. It is defined asr: (k) sgn x
|[Xr(k)Yr(k) + X1(k)Yi(k)]/H(k)*"|*, wheresgn is the
sign of Xr (k) Yr (k) + X1(k)Y1(k), Xr(k) and X1(k) repre-
sent real and imaginary part of DFT for a speech frare)
of L samples (form = 0,1,2,...,L — 1), Yr(k) and Yi(k)
represent the real and the imaginary parts of DFTrfo(n),

H (k) is the speech spectrum after cepstral smoothing, while
« and~ are two control parameters. Cepstral like features are
formulated from MGDF by processing with logarithm followed
by DCT. This feature was used for detecting synthetic speech
in [5].

All-pole group delay function (APGDF): Recently, a
phase-based feature using all-pole modeling is investifjat
speaker recognition [29]. The advantage over MGDF is fewer
parameters: only the all-pole predictor order needs to lie op
mized.

Cosine-phase function (CosPhase)Phase spectrum ob-
tained during short-term speech analysis is used for sgiothe
speech detection [5]. Features are created from unwrapped
phase by cosine normalization followed by DCT.

Relative phase shift (RPS):In the context of harmonic
speech models, RPS describes the “phase shift” of the
harmonic components with respect to the fundamental fre-
quency [30]. Features are computed from raw RPS by per-
forming phase-unwrapping and differentiation followedgl-
scale integration and DCT. It was used in [6, 7] for detecting
synthetic speech.

2.3. Spectral Features with Long-term Processing

Modulation spectrum (ModSpec): Modulation spectrum
contains long-term temporal characteristics of speech sig
nal [31]. Itis computed by performing DFT in temporal domain
on each dimension of feature vector. Non-linear processing
such as logarithmic compression on both the power spectrum,
i.e. short-term and modulation, are often used in computing
modulation spectrum based features [32]. In [15], modothati
spectrum from MFCCs was used for synthetic speech detection
where feature vector is obtained by performing principaheo
ponent analysis (PCA) on stacked modulation spectra.

Shifted delta coefficients (SDCs):SDC which also cap-
tures long-term speech information and was originally used
language recognition [33]. It is computed by augmentingedel
coefficients of near-by frames. SDCs are specified by four pa-
rametersN, d, P, andk, where N is the number of cepstral
coefficientsd is the number of frames for delta computatiéh,
is the gap between the blocks of delta, @i the number of
blocks.

Frequency domain linear prediction (FDLP): In FDLP,

LP analysis is performed in different subbands obtaineddry p
forming DCT on speech signal. FDLP features were recently
studied in speaker recognition with promising results ithbo
clean and noisy conditions [34].

Mean Hilbert envelope coefficients (MHECSs): In
MHEC, the speech signal is passed through a Gammatone filter
bank. Then Hilbert envelope is computed from each filter out-
put and they are processed using a low-pass filter for smugpthi
Finally, MHEC features are derived by dividing the subband
signals into sub-frames and computing the mean [35].

2http://www.spoofingchallenge.org/

3. Experimental Setup and Results
3.1. Database Description

The accuracy of different features for synthetic speecaatien

is evaluated on ASVspodi015 corpus distributed with First
Automatic Speaker Verification Spoofing and Countermeasure
Challengé. A detailed description about the challenge and the
corpus is available in [10]. The database has its own train-
ing segments from natural speech and synthetic speech. The
synthetic speech data contains speech signals from five type
of spoofing attackskfown attacks The development section
includes trials from natural speech and trials from symthet
speech of known attacks. On the other hand, the evaluat®on se
tion contains trials from some additional spoofing techagju
(unknown attacKswhich are not included in training.

3.2. Classifier Description

In a different study with classifiers, we have shown that GMM-
based technique yields reasonably good accuracy in AS¥spoo
2015 corpus [36]. So, we choose this classifier for bench-
marking of various features. We have also evaluated the per-
formance with recently proposed SVM-based approach for de-
tecting synthetic speech.

GMM-ML: Two separate GMMs are trained first us-
ing maximum-likelihood ML) criteria from natural and syn-
thetic speech-data. Then likelihood of test-segment is-com
puted asA(X) = logp(X|An) — log p(X|\s), whereX =
{x1,x2,...,x7} represents the feature vectors of the test-
segment containing” frames while\,, and )\ are the GMMs
for natural and synthetic speech, respectively. We trainMaM
with 512 mixtures and 10 EM iterations.

LBP-SVM: In LBP-SVM, first atextrogramis computed
from feature-matrix using LBP analysis followed by one-
dimensional histogram computation as detailed in [8]. &inc
seven out of ten spoofing techniques of ASVspdot5 are
based on VC, we consider two-class SVM as back-end which
gives best recognition accuracy for this type of spoofing at-
tack [8]. We use linear kernel SVM froiBSVM package.

3.3. Performance Evaluation

Spoofing detection accuracy is measured by computing equal
error rate (EER) [10]. We use Bosdrimolkit to calculate

the EER using receiver operating characteristics conveix hu
(ROCCH) method. Here, we report average EER by comput-
ing them separately for each spoofing technique.

3.4. Feature Extraction Parameters

Short-term features are extracted from speech frames with
frame size20 ms and of overlay0%. The main control pa-
rameters and other implementation details of feature etkora
techniques are given in Table 1. We have also included the
energy coefficients when applicable. For meaningful compar
ison of performances, we choose the number of base coeffi-
cients such that the final feature dimensions, after addimgd

A?, are comparable as shown in the second column of Table 1.
However, for Spec and Cep, the dimensionality is considgrab
high 257). Based on observations from preliminary experi-
ments, we have not applied any voice activity detector (VAD)
except for RPS as it requires only voiced frames [6].

Shttp://www.csie.ntu.edu.tw/
“4https://sites.google.com/site/
bosaristoolkit/

~cjlin/libsvm/



Table 2: Comparative accuracy (Avg. EER in %) using Spec,
Cep, and RFCC features for static and dynamic coefficients on
development set using GMM-ML classifier.

Static | A A? | statictAA? | AA2
Spec 0.24 | 0.11 | 0.07 N/A N/A
Cep 0.02 | 013 | 0.18 N/A N/A
RFCC | 241 | 034 | 035 0.75 0.21

Table 3: Comparative accuracy (Avg. EER in %) of different
features on the development set for both the classifiers.

GMM-ML LBP-SVM
Feature Static SA“T; AA? | Static SA“T; ANA2
RFCC 241 | 075 | 021 | 625 | 212 | 338
LFcC 246 | 066 | 012 | 505 | 156 | 2.37
MFCC 346 | 109 | 064 | 771 | 478 | 7.99
IMFCC 133 | 048 | 020 | 603 | 150 | 210
LPCC 244 | 068 | 014 | 544 | 247 | 394
PLPCC 295 | 161 | 151 | 909 | 548 | 807
SSFC 096 | 060 | 049 | 457 | 280 | 582
SCFC 177 | 025 | 005 | 2343 | 187 | 191
SCMC 276 | 095 | 020 | 562 | 185 | 285
MGDF 471 | 224 | 269 | 715 | 381 | 741
APGDF 244 | 075 | 019 | 567 | 242 | 420
CosPhase | 0.82 | 111 | 189 | 1545 | 10.83 | 13.30
RPS 021 | 037 | 644 | 245 | 180 | 1321
FDLP 571 | 218 | 199 | 1217 | 650 | 9.44
MHEC 769 | 330 | 201 | 1188 | 654 | 8.09
SDC-MFCC | 4.37 7.06
ModSpec 4.41 5.92

Table 4: Comparative accuracy (Avg. EER in %) of different
features on the evaluation set for both the classifiers.

GMM-ML LBP-SVM
Known | Unknown | Known | Unknown
MFCC (StaticA A?) 0.83 5.17 4.35 17.18
RPS (Static) 0.10 10.51 1.66 20.04
RFCC AA?) 0.12 1.92 3.20 19.96
LFCC (AA?) 0.11 1.67 2.13 19.45
MFCC (AA2) 0.39 3.84 7.78 19.22
IMFCC (AA?) 0.15 1.86 1.96 9.97
LPCC (AA?) 0.11 2.31 3.54 13.90
SSFC AA2) 0.30 1.96 5.22 14.91
SCFC AA?) 0.07 8.84 1.81 17.54
SCMC (AA?) 0.17 1.71 2.36 19.10
APGDF (AA2) 0.16 2.34 3.74 13.10
3.5. Results

We first perform experiments on the development set for com-
paring the performance of the full spectrum (Spec and Cegp) an
RFCC feature. From the results in Table 2, we find that Spec
and Cep lead to promising recognition accuracy can be adain
by compromising computational cost. Importantly, the dyia
coefficients of Spec and RFCC are more useful than static co-
efficients. This is reasonable since dynamic charactesist
spectral content are not well-modeled in most VC and SS tech-
niques.

Motivated by this preliminary observations, we perform
further experiments for both back-end, separately foricstat
dynamic, and combined coefficients with all the features de-

scribed in Section 2 (except for ModSpec and SDC which al-
ready contain contextual information in their design). Tae
sults are shown in Table 3. For both the short-term power-spec
trum features as well as features involving long-term pseirey

(i.e. FDLP and MHEC), it is clear that the dynamic coefficient
outperform the static coefficients in almost all cases. Rkga
ing the filter bank features, LFCC which uses triangularrfilte
for local integration of the power spectrum outperforms RFC
where rectangular filter is used. Further, IMFCC, a featete s
which emphasizes high-frequency spectral informationtshea
MFCCs that emphasize the low-frequency region. Filter bank
features and LPCC, giving equal emphasis to all frequencies
also outperform MFCCs and PLPCCs. Note that in PLPCC,
low-frequency region is given more importance, too. SSFCs
carry information related to spectral flux in different sabds

is also found useful in comparison to other spectral feature
Centroid frequency and magnitude features also perforrh wel
The overall best recognition accuracy on development $ER(E
of 0.05%) is obtained with SCFC features and GMM-ML back-
end.

We also observe high recognition accuracy with short-term
phase based features. However, in contrast to the power spec
trum features, dynamic coefficients are not always bett@n th
their static counterpart. For instance, for RPS featureh wi
GMM-ML back-end, EERs of static and dynamic coefficients
are0.21% and6.44%, respectively. Perhaps the dynamic coef-
ficients of phase are sensitive to small variations in sigraiv-
ever, for MGDF and APGDFA and A? are useful, possibly
because of their resemblance with spectral charactesigf;
Fig.1]. Finally, somewhat different to what the authorsiatiy
assumed, for features with long-term processing, the récog
tion accuracy is low. This might be because long-term fea-
tures have been found useful in mismatched conditions. But i
ASVspoof2015, there is no channel or environment mismatch
and signals are already available with good quality.

The results orevaluation setare shown in Table 4 for top
11 features on the development set. Here, also, we find that dy-
namic coefficients and high-frequency information are wisef
RPS feature performs well for known attacks, but for unknown
attacks its performance is worst among all other featuré®e T
highest recognition accuracy for known attacks (EEB.0T%)
is obtained with SCFC features and GMM-ML classifier. How-
ever, for the unknown attacks, dynamics of cepstral featare
better, andAA? of LFCCs gives the highest recognition accu-
racy (EER of1.67%).

4. Conclusion

We have performed an extensive study with different feagure
traction techniques for synthetic speech detection. Caulte
indicate that features conveying information related tghhi
frequency region, dynamic characteristic and detailedtsple
information are useful. Those details are not accuratelg-mo
eled during voice conversion or speech synthesis process.
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