Tutorial KDD'14 New York

STATISTICALLY SOUND PATTERN DISCOVERY

Wilhelmiina Hämäläinen University of Eastern Finland whamalai@cs.uef.fi Geoff Webb Monash University Australia geoff.webb@monash.edu

http://www.cs.joensuu.fi/pages/whamalai/kdd14/sspdtutorial.html

Statistically sound pattern discovery: Problem

Statistically sound pattern discovery: Problem

Statistically Sound vs. Unsound DM?

Pattern-type-first:

Given a desired classical pattern, invent a search method.

Method-first:

Invent a new pattern type which has an easy search method

e.g., an antimonotonic "interestingness" property

Tricks to sell it:

- overload statistical terms
- don't specify exactly

Statistically Sound vs. Unsound DM?

Pattern-type-first:

Given a desired classical pattern, invent a search method.

Method-first:

Invent a new pattern type which has an easy search method

- + easy to interprete correctly
- + informative
- H likely to hold in future
- computationally demanding

- difficult to interprete
- misleading "information"
- no guarantees on validity
- + computationally easy

Statistically sound pattern discovery: Scope

Contents

Overview (statistical dependency patterns)

Part I

- Dependency rules
- Statistical significance testing
 Coffee break (10:00-10:30)
- Significance of improvement

Part II

- Correlated itemsets (self-sufficient itemsets)
- Significance tests for genuine set dependencies

Discussion

Statistical dependence: Many interpretations!

Events (X = x) and (Y = y) are statistically **independent**, if P(X = x, Y = y) = P(X = x)P(Y = y).

- When variables (or variable-value combinations) are statistically dependent?
- When the dependency is genuine? →
 measures for the strength and significance of
 dependence
- How to define mutual dependence between three or more variables?

Statistical dependence: 3 main interpretations

Let A, B, C binary variables. Notate $\neg A \equiv (A = 0)$ and $A \equiv (A = 1)$

- 1. **Dependency rule** $AB \rightarrow C$: must be $\delta = P(ABC) P(AB)P(C) > 0$ (positive dependence).
- 2. Full probability model:

$$\delta_1 = P(ABC) - P(AB)P(C),$$

$$\delta_2 = P(A \neg BC) - P(A \neg B)P(C),$$

$$\delta_3 = P(\neg ABC) - P(\neg AB)P(C) \text{ and}$$

$$\delta_4 = P(\neg A \neg BC) - P(\neg A \neg B)P(C).$$

- If $\delta_1 = \delta_2 = \delta_3 = \delta_4 = 0$, no dependence
- Otherwise decide from δ_i (i = 1, ..., 4) (with some equation)

Statistical dependence: 3 interpretations

3. Correlated set ABC

Starting point mutual independence:

$$P(A = a, B = b, C = c) = P(A = a)P(B = b)P(C = c)$$
 for all $a, b, c \in \{0, 1\}$

- different variations (and names)! e.g.
 - (i) P(ABC) > P(A)P(B)P(C) (positive dependence) or
 - (ii) $P(A = a, B = b, C = c) \neq P(A = a)P(B = b)P(C = c)$ for some $a, b, c \in \{0, 1\}$
- + extra criteria

In addition, conditional independence sometimes useful

$$P(B = b, C = c|A = a) = P(B = b|A = a)P(C = c|A = a)$$

Statistical dependence: no single correct definition

One of the most important problems in the philosophy of natural sciences is — in addition to the well-known one regarding the essence of the concept of probability itself — to make precise the premises which would make it possible to regard any given real events as independent.

A.N. Kolmogorov

Part I Contents

- 1. Statistical dependency rules
- 2. Variable- and value-based interpretations
- 3. Statistical significance testing
 - 3.1 Approaches
 - 3.2 Sampling models
 - 3.3 Multiple testing problem
- 4. Redundancy and significance of improvement
- 5. Search strategies

1. Statistical dependency rules

Requirements for a genuine statistical dependency rule $X \rightarrow A$:

- (i) Statistical dependence
- (ii) Statistically significant
 - likely not due to chance
- (iii) Non-redundant
 - not a side-product of another dependency
 - added value

Why?

Example: Dependency rules on atherosclerosis

 Statistical dependencies: smoking → atherosclerosis sports → ¬ atherosclerosis ABCA1-R219K ⊥ atherosclerosis ?

- Statistical significance?
 spruce sprout extract → ¬ atherosclerosis ?
 dark chocolate → ¬ atherosclerosis
- Redundancy?
 stress, smoking → atherosclerosis
 smoking, coffee → atherosclerosis?
 high cholesterol, sports → atherosclerosis?
 male, male pattern baldness → atherosclerosis?

Part I Contents

- 1. Statistical dependency rules
- 2. Variable- and value-based interpretations
- 3. Statistical significance testing
 - 3.1 Approaches
 - 3.2 Sampling models
 - 3.3 Multiple testing problem
- 4. Redundancy and significance of improvement
- 5. Search strategies

2. Variable-based vs. Value-based interpretation

Meaning of dependency rule $X \rightarrow A$

- 1. Variable-based: dependency between binary variables *X* and *A*
 - Positive dependency $X \to A$ the same as $\neg X \to \neg A$
 - Equally strong as negative dependency between X and $\neg A$ (or $\neg X$ and A)
- 2. Value-based: positive dependency between values X = 1 and A = 1
 - different from $\neg X \rightarrow \neg A$ which may be weak!

Strength of statistical dependence

The most common measures:

1. Variable-based: leverage

$$\delta(X, A) = P(XA) - P(X)P(A)$$

2. Value-based: lift

$$\gamma(X,A) = \frac{P(XA)}{P(X)P(A)} = \frac{P(A|X)}{P(A)} = \frac{P(X|A)}{P(X)}$$

P(A|X) = "confidence" of the rule Remember: $X \equiv (X = 1)$ and $A \equiv (A = 1)$

Contingency table

	A	$\neg A$	All
X	fr(XA) =	$fr(X \neg A) =$	
	$n[P(X)P(A) + \delta]$	$n[P(X)P(\neg A) - \delta]$	fr(X)
$\neg X$	$fr(\neg XA) =$	$fr(\neg X \neg A) =$	
	$n[P(\neg X)P(A) - \delta]$	$n[P\neg(X)P(\neg A) + \delta]$	$fr(\neg X)$
All	fr(A)	$fr(\neg A)$	n

All value combinations have the same $|\delta|!$ $\Leftrightarrow \gamma$ depends on the value combination

fr(X)=absolute frequency of XP(X)=relative frequency of X

Example: The Apple problem

Variables: Taste, smell, colour, size, weight, variety, grower,

100 apples

Rule RED \rightarrow SWEET ($Y \rightarrow A$)

$$P(A|Y) = 0.92, P(\neg A|\neg Y) = 1.0$$

 $\delta = 0.22, \gamma = 1.67$

Basket 1
60 red apples
(55 sweet)

A=sweet, $\neg A$ =bitter Y=red, $\neg Y$ =green

Basket 2
40 green apples
(all bitter)

Rule RED and BIG \rightarrow SWEET ($X \rightarrow A$)

$$P(A|X) = 1.0, P(\neg A|\neg X) = 0.75$$

 $\delta = 0.18, \gamma = 1.82$

 $X=(\text{red} \land \text{big})$ $\neg X=(\text{green} \lor \text{small})$

Basket 1

40 large red apples (all sweet)

Basket 2

40 green + 20 small red apples (45 bitter)

When the value-based interpretation could be useful? Example

D=disease, X=allele combination P(X) small and P(D|X) = 1.0

$$\Rightarrow \gamma(X, D) = P(D)^{-1}$$
 can be large

$$P(D|\neg X) \approx P(D)$$

 $P(\neg D|\neg X) \approx P(\neg D)$

$$\Rightarrow \delta(X, D) = P(X)P(\neg D)$$
 small.

Now dependency strong in the value-based but weak in the variable-based interpretation!

(Usually, variable-based dependencies tend to be more reliable)

Part I Contents

- 1. Statistical dependency rules
- 2. Variable- and value-based interpretations
- 3. Statistical significance testing
 - 3.1 Approaches
 - 3.2 Sampling models
 - 3.3 Multiple testing problem
- 4. Redundancy and significance of improvement
- 5. Search strategies

3. Statistical significance of $X \rightarrow A$

What is the probability of the observed or a stronger dependency, if X and A were independent? If small probability, then $X \rightarrow A$ likely genuine (not due to chance).

- Significant X → A is likely to hold in future (in similar data sets)
- How to estimate the probability??
- How small the probability should be?
 - Fisherian vs. Neyman-Pearsonian schools
 - multiple testing problem

3.1 Main approaches

different schools

different sampling models

Analytic approaches

- H_0 : X and A independent (null hypothesis)
- H_1 : X and A positively dependent (research hypothesis)
 - Frequentist: Calculate $p = P(\text{observed or stronger dependency}|H_0)$
 - Bayesian:
 - (i) Set $P(H_0)$ and $P(H_1)$
 - (ii) Calculate P(observed or stronger dependency $|H_0\rangle$ and P(observed or stronger dependency $|H_1\rangle$
 - (iii) Derive (with Bayes' rule) $P(H_0|\text{observed or stronger dependency})$ and $P(H_1|\text{observed or stronger dependency})$

Analytic approaches: pros and cons

- + p-values relatively fast to calculate
- + can be used as search criteria
- How to define the distribution under H_0 ? (assumptions)
- If data not representative, the discoveries cannot be generalized to the whole population
 - describe only the sample data or other similar samples
 - random samples not always possible (infinite population)

Note: Differences between Fisherian vs. Neyman-Pearsonian schools

- significance testing vs. hypothesis testing
- role of nominal p-values (thresholds 0.05, 0.01)
- many textbooks represent a hybrid approach
- → see Hubbard & Bayarri

Empirical approach (randomization testing)

Generate random data sets according to H_0 and test how many of them contain the observed or stronger dependency $X \to A$.

- (i) Fix a permutation scheme (how to express H_0 + which properties of the original data should hold)
- (ii) Generate a random subset $\{d_1, \ldots, d_b\}$ of all possible permutations

(iii)

$$p = \frac{|\{d_i | \text{contains observed or stronger dependency}\}|}{b}$$

Empirical approach: pros and cons

- no assumptions on any underlying parametric distribution
- can test null hypotheses for which no closed form test exists
- + offers an approach to multiple testing problem → Later
- + data doesn't have to be a random sample
 → discoveries hold for the whole population ...
- ... defined by the permutation scheme
- often not clear (but critical), how to permutate data!
- computationally heavy (b: efficiency vs. quality trade-off)
- How to apply during search??

Note: Randomization test vs. Fisher's exact test

When testing significance of $X \rightarrow A$

- a natural permutation scheme fixes N = n, $N_X = fr(X)$, $N_A = fr(A)$
- randomization test generates some random contingency tables with these constraints
- full permutation test = Fisher's exact test studies all contingency tables
 - faster to compute (analytically)
 - produces more reliable results
- ⇒ No need for randomization tests, here!

Part I Contents

- 1. Statistical dependency rules
- 2. Variable- and value-based interpretations
- 3. Statistical significance testing
 - 3.1 Approaches
 - 3.2 Sampling models
 - variable-based
 - value-based
 - 3.3 Multiple testing problem
- 4. Redundancy and significance of improvement
- 5. Search strategies

3.2 Sampling models

- = defining the distribution under H_0
- ← What do we assume fixed?
 - Variable-based dependencies: classical sampling models (Statistics)
 - Value-based dependencies: several suggestions (Data mining)

Basic idea

Given a sampling model \mathcal{M} =set of all possible contingency tables.

- 1. Define probability $P(T_i|\mathcal{M})$ for contingency tables $T_i \in \mathcal{T}$
- 2. Define an extremeness relation $T_i \geq T_j$
 - T_i contains at least as strong dependency $X \to A$ as T_j does
 - depends on the strength measure, e.g. δ (var-based) or γ (val-based)
- 3. Calculate $p = \sum_{T_i \geq T_0} P(T_i | \mathcal{M})$ (T_0 =our table)

Sampling models for variable-based dependencies

3 basic models:

- 1. Multinomial (N = n fixed)
- 2. Double binomial $(N = n, N_X = fr(X) \text{ fixed})$
- 3. Hypergeometric (\rightarrow Fisher's exact test) $(N = n, N_A = fr(A), N_X = fr(X) \text{ fixed})$
- + asymptotic measures (like χ^2)

Multinomial model

Independence assumption: In the infinite urn, $p_{XA} = p_X p_A$. (p_{XA} =probability of red sweet apples)

Multinomial model

 T_i is defined by random variables N_{XA} , $N_{X\neg A}$, $N_{\neg XA}$, $N_{\neg XA}$

$$P(N_{XA}, N_{X\neg A}, N_{\neg XA}, N_{\neg X\neg A}|n, p_X, p_A) = \begin{pmatrix} n \\ N_{XA}, N_{X\neg A}, N_{\neg XA}, N_{\neg X\neg A} \end{pmatrix} p_X^{N_X} (1 - p_X)^{n - N_X} p_A^{N_A} (1 - p_A)^{n - N_A}.$$

$$p = \sum_{T_i \ge T_0} P(N_{XA}, N_{X \neg A}, N_{\neg XA}, N_{\neg XA}, N_{\neg X \neg A} | n, p_X, p_A)$$

 \bullet p_X and p_A can be estimated from the data

Double binomial model

Independence assumption: $p_{A|X} = p_A = p_{A|\neg X}$

TWO INFINITE URNS:

Double binomial model

Probability of red sweet apples:

$$P(N_{XA}|fr(X), p_A) = \binom{fr(X)}{N_{XA}} p_A^{N_{XA}} (1 - p_A)^{fr(X) - N_{XA}}$$

Probability of green sweet apples:

$$P(N_{\neg XA}|fr(\neg X), p_A) = \binom{fr(\neg X)}{N_{\neg XA}} p_A^{N_{\neg XA}} (1 - p_A)^{fr(\neg X) - N_{\neg XA}}$$

Double binomial model

 T_i is defined by variables N_{XA} and $N_{\neg XA}$.

$$P(N_{XA}, N_{\neg XA}|n, fr(X), fr(\neg X), p_A) =$$

$$\binom{fr(X)}{N_{XA}} \binom{fr(\neg X)}{N_{\neg XA}} p_A^{N_A} (1 - p_A)^{n - N_A}$$

$$p = \sum_{T_i > T_0} P(N_{XA}, N_{\neg XA} | n, fr(X), fr(\neg X), p_A)$$

Hypergeometric model (Fisher's exact test)

How many other similar urns have at least as strong dependency as ours?

OUR URN n apples fr(A) sweet + $fr(\neg A)$ bitter

 $fr(X) red + fr(\neg X) green$

Like in a full permutation test

			X					$\neg X$	-	
	1	2	3	4	5	6	7	8	9	10
urn1	A	A	A	$\neg A$						
urn2	A	A	$\neg A$	A	$\neg A$					
	A	A	$\neg A$	$\neg A$	A	$\neg A$				
				•					•	
				•					•	
20				l .						
urn120	$\Box A$	$\neg A$	A	A	A					

Hypergeometric model (Fisher's exact test)

The number of all possible similar urns (fixed N = n, $N_X = fr(X)$ and $N_A = fr(A)$) is

$$\sum_{i=0}^{fr(A)} \binom{fr(X)}{i} \binom{fr(\neg X)}{fr(A) - i} = \binom{n}{fr(A)}$$

Now $(T_i \ge T_0) \equiv (N_{XA} \ge fr(XA))$. Easy!

$$p_F = \sum_{i=0}^{\infty} \frac{\binom{fr(X)}{fr(XA)+i} \binom{fr(\neg X)}{fr(\neg X\neg A)+i}}{\binom{n}{fr(A)}}$$

$\int f r_{XA}$	multi-	double	Fisher	
	nomial	binomial	(hyperg.)	
180	1.7e-05	1.8e-05	2.2e-05	
200	2.3e-12	2.2e-12	3.0e-12	
220	1.4e-22	7.3e-23	1.1e-22	
240	2.9e-36	3.0e-37	4.4e-37	
260	1.5e-53	4.2e-56	3.5e-56	
280	1.3e-74	2.9e-80	1.6e-81	
300	9.3e-100	3.5e-111	2.5e-119	

Asymptotic measures

Idea: p-values are estimated indirectly

- 1. Select some "nicely behaving" measure M
 - e.g. M follows asymptotically the normal or the χ^2 distribution
- 2. Estimate $P(M \ge val)$, where M = val in our data
 - Easy! (look at statistical tables)
 - But the accuracy can be poor

The χ^2 -measure

$$\chi^{2} = \sum_{i=0}^{1} \sum_{j=0}^{1} \frac{n(P(X=i, A=j) - P(X=i)P(A=j))^{2}}{P(X=i)P(A=j)}$$

$$= \frac{n(P(X, A) - P(X)P(A))^{2}}{P(X)P(\neg X)P(A)P(\neg A)} = \frac{n\delta^{2}}{P(X)P(\neg X)P(A)P(\neg A)}$$

- very sensitive to underlying assumptions!
- all P(X = i)P(A = j) should be sufficiently large
- the corresponding hypergeometric distribution shouldn't be too skewed

Mutual information

$$MI =$$

$$\log \frac{P(XA)^{P(XA)}P(X\neg A)^{P(X\neg A)}P(\neg XA)^{P(\neg XA)}P(\neg X\neg A)^{P(\neg X\neg A)}}{P(X)^{P(X)}P(\neg X)^{P(\neg X)}P(A)^{P(A)}P(\neg A)^{P(\neg A)}}$$

- $2n \cdot MI = \log likelihood ratio$
- follows asymptotically the χ^2 -distribution
- usually gives more reliable results than the χ^2 -measure

Comparison: Sampling models for variable-based dependencies

- Multinomial: impractical but useful for theoretical results
- Double binomial: not exchangeable $p(X \to A) \neq p(A \to X)$ (in general)
- Hypergeometric (Fisher's exact test): recommended, enables efficient search, reliable results
- Asymptotic: often sensitive to underlying assumptions
 - χ^2 very sensitive, not recommended
 - MI reliable, enables efficient search, approximates p_F

Sampling models for value-based dependencies

Main choices:

- 1. Classical sampling models but with a different extremeness relation
 - use lift γ to define a stronger dependency
 - Multinomial and Double binomial: can differ much from var-based
 - Hypergeometric: leads to Fisher's exact test, again!
- 2. Binomial models + corresponding asymptotic measures

Binomial model 1 (classical binomial test)

Probability of sweet red apples is $p_{XA} = p_X p_A$. If a random sample of n apples is taken, what is the probability to get fr(XA) sweet red apples and n - fr(XA) green or bitter apples?

Binomial model 1 (classical binomial test)

Probability of getting exactly N_{XA} sweet red apples and $n - N_{XA}$ green or bitter apples is

$$p(N_{XA}|n, p_{XA}) = \binom{n}{N_{XA}} (p_{XA})^{N_{XA}} (1 - p_{XA})^{n - N_{XA}}$$

$$p(N_{XA} \ge fr(XA)|n, p_{XA}) = \sum_{i=fr(XA)}^{n} {n \choose i} (p_{XA})^{i} (1 - p_{XA})^{n-i}$$

(or
$$i = fr(XA), \ldots, \min\{fr(X), fr(A)\}\$$
)

- Use estimate $p_{XA} = P(X)P(A)$
- Note: N_X and N_A unfixed

Corresponding asymptotic measure

z-score:

$$z_{1}(X \to A) = \frac{fr(X, A) - \mu}{\sigma} = \frac{fr(X, A) - nP(X)P(A)}{\sqrt{nP(X)P(A)(1 - P(X)P(A))}}$$
$$= \frac{\sqrt{n}\delta(X, A)}{\sqrt{P(X)P(A)(1 - P(X)P(A))}} = \frac{\sqrt{nP(XA)}(\gamma(X, A) - 1)}{\sqrt{\gamma(X, A) - P(X, A)}}.$$

follows asymptotically the normal distribution

Binomial model 2 (suggested in DM)

Like the double binomial model, but forget the other urn!

CONSIDER ONE FROM TWO INFINITE URNS:

Binomial model 2

$$p(N_{XA} \ge fr(XA)|fr(X), P(A)) = \sum_{i=fr(XA)}^{fr(X)} \binom{fr(X)}{i} P(A)^{i} P(\neg A)^{fr(X)-i}$$

Corresponding *z*-score:

$$z_2 = \frac{fr(XA) - \mu}{\sigma} = \frac{fr(XA) - fr(X)P(A)}{\sqrt{fr(X)P(A)P(\neg A)}}$$
$$= \frac{\sqrt{n}\delta(X,A)}{\sqrt{P(X)P(A)P(\neg A)}} = \frac{\sqrt{fr(X)(P(A|X) - P(A))}}{\sqrt{P(A)P(\neg A)}}$$

J-measure

 \approx one urn version of MI

$$J = P(XA) \log \frac{P(XA)}{P(X)P(A)} + P(X\neg A) \log \frac{P(X\neg A)}{P(X)P(\neg A)}$$

Comparison: Sampling models for value-based dependencies

- Multinomial, Hypergeometric, classical Binomial + its z-score: $p(X \rightarrow A) = P(A \rightarrow X)$
- Double binomial, alternative Binomial + its *z*-score: $p(X \to A) \neq P(A \to X)$ (in general)
- The alternative Binomial, its z-score and J can disagree with the other measures (only the X-urn vs. whole data)
- z-score easy to integrate into search, but may be unreliable for infrequent patterns → (classical)
 Binomial test in post-pruning improves quality!

Part I Contents

- 1. Statistical dependency rules
- 2. Variable- and value-based interpretations
- 3. Statistical significance testing
 - 3.1 Approaches
 - 3.2 Sampling models
 - 3.3 Multiple testing problem
- 4. Redundancy and significance of improvement
- 5. Search strategies

3.3 Multiple testing problem

The more patterns we test, the more spurious patterns we are likely to accept.

- If threshold $\alpha = 0.05$, there is 5% probability that a spurious dependency passes the test.
- If we test 10 000 rules, we are likely to accept 500 spurious rules!

Solutions to Multiple testing problem

- 1. Direct adjustment approach: adjust α (stricter thresholds)
 - easiest to integrate into the search
- Holdout approach: Save part of the data for testing →
 Webb
- 3. Randomization test approaches: Estimate the overall significance of all discoveries or adjust the individual *p*-values empirically
 - → e.g. Gionis et al., Hanhijärvi et al.

Contingency table for m significance tests

	spurious rule	genuine rule	All
	H_0 true	H_1 true	
declared	V	S	R
significant	false positives	true positives	
declared	$oldsymbol{U}$	T	m-R
insignificant	true negatives	false negatives	
All	m_0	$m-m_0$	m

Direct adjustment: Two approaches

(i) Control familywise error rate = probablity of accepting at least one false discovery

$$FWER = P(V \ge 1)$$

(ii) Control false discovery rate = expected proportion of false discoveries

$$FDR = E\left[\frac{V}{R}\right]$$

	spurious rule	genuine rule	All
decl. sign.	V	S	R
decl. insign	$oldsymbol{U}$	T	m-R
All	m_0	$m-m_0$	m

(i) Control familywise error rate FWER

Decide $\alpha^* = FWER$ and calculate a new stricter threhold α .

- If tests are mutually independent: $\alpha^* = 1 (1 \alpha)^m$ ⇒ Šidák correction: $\alpha = 1 - (1 - \alpha^*)^{\frac{1}{m}}$
- If they are not independent: $\alpha^* \leq m \cdot \alpha$ ⇒ **Bonferroni correction**: $\alpha = \frac{\alpha^*}{m}$
- conservative (may lose genuine discoveries)
- How to estimate m?
 - may be explicit and implicit testing during search
- Holm-Bonferroni method more powerful
 - but less suitable for the search (all p-values should be known, first)

(ii) Control false discovery rate FDR

Benjamini-Hochberg-Yekutieli procedure

- 1. Decide q = FDR
- 2. Order patterns r_i by their p-values Result r_1, \ldots, r_m such that $p_1 \leq \ldots \leq p_m$
- 3. Search the largest k such that $p_k \leq \frac{k \cdot q}{m \cdot c(m)}$
 - if tests mutually independent or positively dependent, c(m) = 1
 - otherwise $c(m) = \sum_{i=1}^{m} \frac{1}{i} \approx \ln(m) + 0.58$
- 4. Save patterns r_1, \ldots, r_k (as significant) and reject r_{k+1}, \ldots, r_m

Hold-out approach

Powerful because m is quite small!

Randomization test approaches

- 1. Estimate the overall significance of discoveries at once
 - e.g. What is the probability to find K_0 dependency rules whose strength is at least min_M ?
 - Empirical p-value

$$p_{emp} = \frac{|\{d_i \mid K_i \ge K_0\}| + 1}{b + 1}$$

 d_0 original set d_1, \ldots, d_b random sets K_1, \ldots, K_b numbers of discovered patterns from set d_i

→ Gionis et al.

Randomization test approaches (cont.)

- 2. Use randomization tests to correct individual p-values
 - e.g., How many sets contained better rules than X → A?

$$p' = \frac{\left| \{ d_i | (\mathcal{S}_i \neq \emptyset) \land (\min p(Y \rightarrow B \mid d_i) \leq p(X \rightarrow A \mid d_0) \} \right|}{b+1},$$

 d_0 original set d_1, \ldots, d_b random sets S_i =set of patterns returned from set d_i

→ Hanhijärvi

Randomization test approaches

- + dependencies between patterns not a problem → more powerful control over FWER
- + one can impose extra constraints (e.g. that a certain pattern holds with a given frequency and confidence)
- most techniques assume subset pivotality ≈ the complete hypothesis and all subsets of true null hypotheses have the same distribution of the measure statistic

Remember also points mentioned in the single hypothesis testing

Part I Contents

- 1. Statistical dependency rules
- 2. Variable- and value-based interpretations
- 3. Statistical significance testing
 - 3.1 Approaches
 - 3.2 Sampling models
 - 3.3 Multiple testing problem
- 4. Redundancy and significance of improvement
- 5. Search strategies

4. Redundancy and significance of improvement

When $X \to A$ is redundant with respect to $Y \to A$ ($Y \subsetneq X$)? Improves it significantly?

Examples of redundant dependency rules:

- smoking, coffee → atherosclerosis
 coffee has no effect on smoking → atherosclerosis
- high cholesterol, sports → atherosclerosis sports makes the dependency only weaker
- male, male pattern baldness → atherosclerosis adding male hardly any significant improvement

Redundancy and significance of improvement

- Value-based: $X \to A$ is **productive** if P(A|X) > P(A|Y) for all $Y \subsetneq X$
- Variable-based: $X \to A$ is **redundant** if there is $Y \subsetneq X$ such that $M(Y \to A)$ is better than $M(X \to A)$ with the **given goodness measure** $M \Leftrightarrow X \to A$ is **non-redundant** if for all $Y \subsetneq X$ $M(X \to A)$ is better than $M(Y \to A)$
- When the improvement is significant?

Value-based: Significance of productivity

Hypergeometric model:

$$p(YQ \to A|Y \to A) = \frac{\sum_{i} \binom{fr(YQ)}{fr(YQA)+i} \binom{fr(Y\neg Q)}{fr(Y\neg QA)-i}}{\binom{fr(Y)}{fr(YA)}}$$

 \approx probability of the observed or a stronger conditional dependency $Q \rightarrow A$, given Y, in a value-based model.

• also asymptotic measures (χ^2, MI)

Apple problem: value-based

Y=red, Q=large

20 small red apples (15 sweet)

Basket 1
40 large red apples
(all sweet)

Basket 2
40 green apples
(all bitter)

Apple problem: variable-based?

Observation

$$\frac{p(\neg Y \to \neg A | \neg (YQ) \to \neg A)}{p(YQ \to A | Y \to A)} \approx \frac{p_F(Y \to A)}{p_F(YQ \to A)}$$

Thesis: Comparing productivity of $YQ \rightarrow A$ and $\neg Y \rightarrow \neg A \equiv$ redundancy test with $M = p_F!$

Part I Contents

- 1. Statistical dependency rules
- 2. Variable- and value-based interpretations
- 3. Statistical significance testing
 - 3.1 Approaches
 - 3.2 Sampling models
 - 3.3 Multiple testing problem
- 4. Redundancy and significance of improvement
- 5. Search strategies

5. Search strategies

- 1. Search for the strongest rules (with γ , δ etc.) that pass the significance test for productivity
 - → MagnumOpus (Webb 2005)
- 2. Search for the most significant non-redundant rules (with Fisher's p etc.)
 - → Kingfisher (Hämäläinen 2012)
- 3. Search for frequent sets, construct association rules, prune with statistical measures, and filter non-redundant rules??
 - No way!
 - closed sets? → redundancy problem
 - their minimal generators?

Main problem: non-monotonicity of statistical dependence

- $AB \rightarrow C$ can express a significant dependency even if A and C as well as B and C mutually independent
- In the worst case, the only significant dependency involves all attributes $A_1 \dots A_k$ (e.g. $A_1 \dots A_{k-1} \to A_k$)
- ⇒ 1) A greedy heuristic does not work!
- \Rightarrow 2) Studying only simplest dependency rules does not reveal everything!

ABCA1-R219K → ¬alzheimer ABCA1-R219K, female → alzheimer

End of Part I

Questions?

