Bit parallel string matching

Alina Gutnova

June 21, 2006

1 Introduction

The string matching problem (SMP) consists of finding substring (generally
pattern) P in text 7. In the basic form both P and 7T consist of characters
in the same alphabet ¥. In practice the text can contain spelling errors.
Thus we can extend the problem and try to find all occurrences of P where
some characters can be missing, in wrong order, or the text contains addi-
tional characters. In the extended pattern matching we can search for more
complex patterns which can be described by regular expressions. This prob-
lem is described in some applications like word processors, virus scanning,
text information retrieval systems, digital libraries, web search engine, etc
[HELCO1].

There are many approaches to solve SMP. The simplest way to find a sub-
string in the given text is a brute force algorithm. It compares all characters
of the text with the beginning of the substring. If the characters match, it
compares the next characters in the text. The brute force algorithm does not
need any additional preparations or space but its time complexity is O(nm)
in the worst case and O(n) in the average case, where n is the size of the
text and m is the size of the substring [HELCO1].

The classical Boyer-Moore (BM) [HELCO01, RSB77] algorithm is one of
the most popular and efficient for common applications (e.g. text editors).
BM is like brute force, but it compares characters from right to left starting
from the rightmost character that give the opportunity to make larger shifts.

The BM requires preprocessing which takes O(m + s) time, where m
is the size of the pattern and s is the size of the alphabet. It also needs
O(m + s) additional space where s is the size of the alphabet. Unlike the
brute force algorithm, it has a time complexity O(n+m) in the average case.
The time required for the algorithm decreases with the increase of the size
of the pattern and the alphabet [HELCO1].

Another way to solve the SMP is to use finite automata. The Knuth-
Morris-Pratt (KMP) [HELCO1] algorithm is based on representing the pat-
tern by the finite automaton. The states are marked with symbols that should
match at the moment. There are two transitions from each state. One of
them corresponds to the matching of the characters, while the other one cor-
respond to the mismatching. The automaton moves to the next state if the
comparison is successful. Otherwise the automaton moves to the previous
state.

KMP needs preprocessing for constructing the automaton (which takes
O(m)) and additional space (O(m) time). The time complexity of the algo-
rithm is O(n 4+ m) even in the worst case [HELCO1].

In general, bit-parallel string matching (BPSM) [BYG92, Mye99] algo-
rithm is the most efficient. In contrast to the algorithms considered above,
the BPSM algorithm can solve also the extended SMP (described in the first
paragraph). The main idea of the bit-parallel algorithms is that they store
several data items into a single computer word and then update them in
parallel using a single computer operation (e.g. bitwise operation [BYG92]).
Bit-parallel algorithms are very efficient for approximate string matching
[Mye99).

In the second section of the article we describe briefly some traditional
solutions for string matching problem. Then the above mentioned BPSM
algorithm is described more carefully in the third section and some empirical
results are given in the forth section. The final conclusions are drawn in the
fifth section.

2 Traditional solutions

In this section we briefly recall the traditional algorithms for SMP [HELCOL1,
RSBT77].

2.1 Boyer-Moore algorithm

When the size of the pattern and the size of the alphabet ¥ are sufficiently
large, the BM algorithm can be used.

The BM algorithm compares pattern P with text 7" from right to left.
If the compared characters match, then the algorithm compares the next
characters. Otherwise the algorithm shifts the pattern according to two
heuristics: bad-character heuristic and good-suffix heuristic. The heuristics
are independent and they are used simultaneously. The BM algorithm shifts
the pattern by the longest of two distances, given by the bad character and

the good suffix heuristics. The tailpiece of the string is called suffix and the
forepart of the string is called prefiz.

In the general case, bad-character heuristic works as follows: let us sup-
pose that P is the pattern and T is the text on the same alphabet X, |P| = m,
|T'| = n. Let us assume that P[j] # T'[shift+ j] is the first mismatch during
the comparison of characters from right to left where 1 < j < m. Let k
be the index of character in the rightmost occurrence T[shift + j| to the
pattern P (assume us that k& = 0 if there is no such occurrence). Then we
can increase shift by 7 — k and without missing any suitable shift. Indeed,
if £ = 0, then stop-symbol T'[shift 4 j] is not met in pattern P. Thus it is
possible to shift the pattern to the j —k = 7 — 0 = j position to the right. If
0 < k < j, then the pattern can be shifted to the j — k positions to the right,
because with smaller shifting stop-symbol and the corresponding character of
the pattern would not be equal. Otherwise, if k£ > j, the heuristic shifts the
pattern to the left instead of shifting to the right, but the BM algorithm does
not consider such cases, because good-suffix heuristic always gives non-null
shift values.

Good-suffix heuristic is the following: if P[j] # T'[s+j]| (where j < m and
j is the biggest value with such a condition), then the shift can be increased by
the minimal distance v[j] = m — maxz{k : 0 < k < m&P[j +1...m| ~ Py},
where P, = P[1,2,... k] from P, such that none of the characters of the
suffix T'[shift + j + 1...shift + m]| would be opposite the different to it
character from the pattern. Note, that v[j] > 0 for each j. Thus BM
algorithm will shift the pattern at least on one position to the right at each
step.

2.2 Knuth-Morris-Pratt algorithm

BM is often used in practice, but the KMP algorithm is theoretically more
efficient. KMP algorithm is based on finite automaton.

During the construction of a finite automaton for matching the substring
in the text it is easy to construct transitions from the beginning state to the
finishing state. The transitions are marked by the characters of the substring
(Figure 1). The problem is in the attempts to add other characters that do
not transfer to the finishing state.

Figure 1: The non-deterministic automaton which recognizes pattern
xautomatonx.

The KMP algorithm is based on the theory of finite automata, but it
uses a more simple method for handling the unsuitable characters. The
states in the algorithm are marked with symbols that should match at the
moment. There are two transitions from each state. One of them corresponds
to the matching of the characters, while the other one corresponds to the
mismatching. The automaton goes to the next state, if the comparison is
successful, otherwise it goes to the previous state.

Figure 2: A KMP-automaton for pattern ababcb.

If the comparison was successful, the algorithm compares the next char-
acters. Otherwise it matches the current character again (Figure 2).

Note that when the compared symbols are the same, nothing special needs
to be done, only the transition to the next state. On the other hand, tran-
sitions that correspond to the mismatch of characters depend on comparing
the original pattern with itself. For example, when we match string ”ababch”
there is no need to go back by four positions, if the next character is not ”¢”
is not equal to the character being compared. If we get the fifth character in
the pattern, then we know that the first four characters of the text and the
pattern are the same. Therefore, characters "ab” in the text corresponding
to the third and fourth characters of the pattern equal to first and second
characters of the pattern.

Prefiz-function is used for construction of the KMP automaton. This
function is associated with the pattern P and gives the information about
the positions of the different prefixes of the string in the pattern P. Prefix-
function 7 : {1,2,...,m} — {0,1,...,m — 1} that is associated with the
pattern P[1...m] is defined as

mlq] = max{k : k < q& P, > P,}.

In other words, 7[q] is the length of the longest prefix P that is the suffix
of P, (see example in Table 2.2).

Pla|blalblalbla|b|c|a
T|0]0|1|12(3[4]|5]6|0]1

Table 1: An example of the prefix function for the pattern ababababca.

3 Bit-parallel solutions

3.1 Basic algorithm

Before considering the main topic of the article we will briefly review the
searching algorithm Shift-AND [UM92|. This algorithm works fast, is easy to
implement and can be easily generalized to the case of approximate searching.

In a general case we need to find all occurrences of pattern P in text T
Let us generalize the problem and assume that we should to find occurrences
of all possible prefixes of pattern P: P(1) = py, P(2) = pipa, ..., P(m) =
P1P2 - . . Pm, Where p; is the i-th symbol of pattern P.

For example, if the pattern is P = cacao, we should find all occurrences
of prefixes ¢, ca, cac, caca and cacao. We need to construct a table that shows
whether the current symbol in the text is the last symbol in each of the given
prefixes. For each position in the text we will have a five-element bit vector,
where the k-th bit equals to 1 if the k-th symbol in the text corresponds to
the last symbol in the k-th entry of the prefix. As a result we have a table
with m rows and n columns (Table 3.1).

caca & o c & ¢ a c a o

c 1 0100010 1O01O00O0
R:a0101000001010
c 0010 0O0OO0OOO0OT1TUO0OO0

a 0001 0 0O0O0OO0OO0OOT1TPO

o 0O00OO0O0OOOOOOOTO0?1

Table 2: All occurrences of prefixes ¢, ca, cac, caca and cacao of pattern P =
cacao in text caca&oc&cacao, where symbol & means some character except
¢, a and o.

We are interested in the last row, because it shows us, whether the pattern
is present in the text.

Let us describe the performed operations. Let R; be the j-th column of
the table. Then R; is an m-element bit vector, where R;[k] = 1, if first j char-

acters of the pattern concur exactly with & characters of the text that precede
T; including 7. In other words, R;[k] = 1, if p1,...,px = tj—pt1, ..., ;.

There is a fast method for constructing the table. It can be shown that
(7 + 1)-th column of the table depends only on the j-th column, on the
pattern and on the character ¢;;;. For example, the occurrence of cac in the
(j+1)-th position is found only if ca occurs in the j-th position and ;41 = c.
In other words,

. |1, it Rijlk—1] =1 and py = tj41,
Rjalk] = { 0, otherwise.

We suppose that Ry[k] = 0 for all & (1 < k < m) and R;[0] = 1 for all
Jj (0 < j < n). If we consider, for example, first two columns in the table,
Ry[?] = 1 only if two following conditions are satisfied: (a) Rs[i] = 1 only
if to = p;; (b) Roli] = 1 only if Ry[?] = 1, where ? is some position in the
column. The condition (a) provides the matching of the last characters of
the pattern, while the condition (b) provides the matching of the preceding
characters.

To check condition (b), it is enough to shift down the first column. To ver-
ify condition (a) fast we need to calculate the characteristic vector of length
m for each character. Characteristic vector for character ¢ in our case has 1’s
in the second and the fourth positions (i.e. in those positions where current
character is found) and 0’s in all other positions: 01010. Characteristic vec-
tor for ¢ is 10100, for o it is 00001 and for all other characters of the alphabet
it is 00000.

To verify condition (a), we shift down the first column (first column 10000
becomes #1000 after shifting) and compare it with the characteristic vector of
1. The new values in the second column will be 1 in those positions, where the
corresponding character in the shifted column and the corresponding value
in the characteristic vector equal to 1 and 0 otherwise. The only exception is
referred to the first position in the column for which the condition (b) is true,
since there is no preceding positions. Therefore the value at the first position
after shifting is always 1. Thus, by shifting and adding 1 to the third column
(10100), we get 11010. After applying the bit operation AND for the i’s
characteristic vector (01010) and the new value of the third column (11010)
we get value 01010.

So, first we construct a table which shows the matches of all prefixes of the
pattern. Then we calculate recursively the elements of the table. In the end,
we consider the method for calculating each column in the table by using
a shift of the previous column and an operation of bitwise multiplication.
Thus, algorithm Shift-AND needs O(n) comparisons [UM92], which are only
of bitwise operations.

3.2 Extensions

Let us assume now that in our example we need to find all entries of the
pattern cacao in text T" with at most one mismatch. Let us construct the
following Table 3.2:

caca & oc & ¢c a c a o
c1 1 11 1 11111111
~a 0101 0O001O01O01O0
Q_00010100010101
a 0001 0 0O0OO0OO0OT1IO0T10O0
o 0O00O0OT1 O0O0OO0O0OO0OOTO0OT1

Table 3: All occurrences of prefixes ¢, ca, cac, caca and cacao of pattern P =
cacao in text caca&oc&cacao with mismatches.

The table R is the same as the table that was described above. The second
table @ looks like the first table, but it shows not only the exact match, but
also the result of comparison, when there is one mismatch (replacement).

Let us consider the fifth column of the table (). It differs from the fifth
column of the table R in the first, third and fifth positions. Indeed, caca&
matches with the pattern cacao with one replacement, ca& matches with cac
with one replacement and & matches with ¢ (first row in the table @) always
consists of 1’s). The match of the caca& and the cacao with one replacement
is represented in the fourth column of the R as an exact matching with
the caca. If there is an exact matching, then there is no more than one
matching with one replacement. Thus, one of the methods to reconstruct ¢
from R is to shift the previous column of the table R without doing bitwise
multiplication.

Let us consider now the tenth column (in @ it equals to 11010). There
is one 1 in the second row (exact matching with ca) due to the shift. The
fourth row corresponds to the matching of the c&ca and caca. The matching
results are shown in the ninth column of the table Q after comparing the c&c
and the last character .

Only two additional arithmetic operations represent all the possibilities
of occurrences of pattern P in text 7" with match and mismatch. Mismatch
is replacement (changes), insertion (inserts) or gap (deletes). If there is an
exact matching or one replacement for the current character of the text, then
the result of the comparison depends on the shift of the previous column of
table R. If there was a mismatch before, then the decision depends on the

previous modified column of () and on the operation AND over the shifted
column and the characteristic vector.

Now let us consider insertion and gap. The previous mismatches are
shown in the previous column of () and can be found out by a shift operation
and bitwise multiplication as in the case of the replacement. Insertion can
be displayed by copying the previous column of R without shifting. Gap can
be displayed by shifting the current (new) column of R. For example, the
third column of @) for which replacements, insertions and gaps are possible,
would be 11110. Here the fourth 1 appears from the matching of caca and
cac with one gap, etc.

If there is a situation with more than one mismatch, the matching can be
done by introducing new auxiliary tables for each mismatch. This algorithm
can match any regular expression with or without mismatches [Tho68§].

Another approach to solve approximate string matching problem is using
dynamic programming [Mye99]. The edit distance between two strings S
and P is defined as the minimum number of character inserts, deletes and
changes needed to convert P to S [HELCO1]. Informally, the string edit
distance matching problem is to compute the smallest edit distance between
P and substrings of T'. A well-known dynamic programming algorithm takes
time O(nm) to solve this problem [Mye99].

4 Empirical results

In this section we compare different string matching algorithms with the
following parameters: the text size n, the pattern length m and the alphabet
size |X|. It is known that none of the algorithms are optimal or best in all
three cases [BYG92].

In [UM92] an experiment was made for a binary alphabet, an alphabet
of size 8 and the English alphabet. The KMP algorithm produced in all
cases exactly one character comparison. The BF' algorithm produced ap-
proximately the same number of character comparisons for the alphabet of
size 8 and for the English alphabet and required more character comparisons
for small size alphabet. Empirical results show that for patterns of length
greater than 10 the number of comparisons is approximately 2, twice the
number required by the KMP algorithm for the binary alphabet. The num-
ber of comparisons of the BPSM algorithm is generally less than 1 with the
exception of the binary alphabet, where the algorithms have on average 1.25
and 1.1 character comparisons. Furthermore, the number of comparisons of
the BPSM is higher when the binary alphabet is used and decreases as the
pattern length increases. Thus, according to the empirical results BPSM

is sublinear in the number of character comparisons. The bit-parallel al-
gorithms are more efficient that other string matching algorithms for small
and long patterns respectively. Their running time decreases as the pattern
length increases and they produce similar running times in all cases with the
exception of the binary alphabet.

5 Conclusion

In the article we have considered bit-parallels approaches for solving string
matching problem (SMP). String matching is often used in different areas:
text editors, virus scanning, digital libraries and web search engines. The
paper consists of two parts: in the first part we described two traditional
solutions for the problem: Boyer-Moore algorithm and Knuth-Morris-Pratt
algorithm. The first one uses the finiteness of the alphabet and another
constructs a finite automaton. BM is more used in practice, but theoretically
KMP is better, because it solves the SMP in linear time even in the worst
case. However, none of the algorithms is suitable for solving extended pattern
matching. This problem can be solved by a bit-parallel algorithm described
in the second part of the article. The BPSM uses both of the properties
of the above mentioned algorithms. It can solve the SMP with or without
mismatches and match several patterns the same time. However, in practice
bit-parallel algorithm is more efficient than KMP and BF.

References

[BYG92] R. A. Baeza-Yates and G. H. Gonnet. A new approach to text
searching. Communications of the ACM, pages 168-175, 1992.

[HELCO01] Cormen Thomas H., Leizerson Charles E., Rivest Ronald L., and
Stein Clifford. Introduction to algorithms, second edition. MIT
Press, 1180:757-785, 2001.

[Mye99] Gene Myers. A fast bit-vector algorithm for approximate string
matching based on dynamic programming. Journal of the ACM,
46:395-415, 1999.

[RSB77] J. S. Moore R. S. Boyer. A fast string searching algorithm. Com-
munications of the ACM, 20:762-772, 1977.

[Tho68] K. Thompson. Regular expression search algorithm. Communi-
cation of the ACM, pages 419422, 1968.

[UM92] Sun Wu Udi Manber. Fast text searching allowing errors. Com-
munication of the ACM, 35:83-91, 1992.

10

