
P versus NP question

Dominik Wisniewski

June 6, 2006

1 Introduction

Many important problems like 3-SAT, Clique, Vertex cover, Travelling Sales-
man’s problem, etc. have only exponential time solutions. It means that in
practice they cannot be solved efficiently except with small input sizes. The
P versus NP question asks whether the problems can be solved in polyno-
mial time or whether they are intractable by their nature. To outline the P
versus NP problem more clearly, let us consider as an example the Travelling
Salesman’s problem (TSP). A generic instance of TSP consists of a finite set
C = {c1, c2, ..., cm} of cities and distances d(ci, cj) ∈ Z+ for each pair of cities
ci, cj ∈ C, where i, j ∈ {1, 2, ...,m} and i 6= j. A solution to the problem is
a sequence (cΠ(1), cΠ(2), ..., cΠ(m)) of cities from C such that it minimizes the
following cost function:∑m−1

i=1 d(cΠ(i), cΠ(i+1)) + d(cΠ(m), cΠ(1))

A straightforward algorithm for solving the TSP problem uses the Brute
Force Search method. Checking all the possible orderings of cities is time
consuming and it is not hard to see that it takes Θ(m!) time, where m is
the number of cities. Using dynamic programming techniques, Bellman [12]
showed the the problem can be solved exactly in time Θ(m22m). In particular
the P versus NP question asks whether the TSP problem can be solved in
polynomial time or whether it is intractable by its nature.

The complexity of a computational problem is defined in a given model
of computation. According to Garey and Johnson [6], the most common and
widely used model of computation is the Turing machine. In this paper we
assume that the Turning machine is the model of computation in which the
problem under discussion will be expressed. Once the model of computation
is fixed we can define the concept of time complexity which is required to
measure efficiency of algorithms.

1

Definition 1 (Time complexity). Let Π be a problem and let M be a Turing
machine which solves Π. Let us denote by w an instance of problem Π and
by tM(w) the number of transitions (steps) occurring in the computation of
machine M until a final state is entered (if for a given instance w computation
of M does not terminate then tM(w) = ∞).

Let us denote by TM(n) the maximum number of steps required by M to
finish computation for an input instance w of length n:

TM(n) = max{tM(w) : |w| = n}.

M runs in polynomial time if there exists a polynome p(n) such that for
all n ∈ N the following condition holds:

TM(n) ≤ p(n).

Two kinds of Turing machines (deterministic and nondeterministic) will
help us define and distinguish two important classes of problems. According
to the interpretation given by Garey and Johnson [6], the nondeterministic
Turing machine, in comparison to deterministic one, is augmented with a
guessing module. The solely purpose of the guessing module is to guess
the solution to a problem which the machine solves. The next stage of a
nondeterministic Turing machine is to check whether the guessed solution is
correct. The same definition of time complexity applies two both kinds of
Turing machines and in the case of the nondeterministic one it takes into
account both guessing and checking stages of the machine.

Now we can give a formal definition of the first important class of prob-
lems. It is defined as follows:

P = {Π : there exists a deterministic Turing machine M which solves Π in
polynomial time}.

The second important class of problems is defined as follows:

NP = {Π : there exists a nondeterministic Turing machine M which solves
Π in polynomial time}.

The P versus NP question can be stated as follows: suppose that we have
a problem Π and a non-deterministic algorithm A which solves Π in polyno-
mial time. We ask whether there exists a deterministic algorithm B which
solves Π in polynomial time. The inverse question has a positive answer while
every problem solvable by a polynomial time deterministic algorithm is also

2

solvable by a polynomial time nondeterministic algorithm. Intuitively the in-
clusion NP ⊆ P does not hold because nondeterministic algorithms appear
to be more powerful than deterministic ones and we not know general meth-
ods for converting the former into the latter. The power of nondeterministic
algorithms lies in their ability to check exponential number of possibilities in
polynomial time.

In this paper we investigate the P versus NP question and we try to
answer the question by giving the pros and cons arguments and outlining a set
methods which can be used to settle the problem. It is important to mention
that in this paper we do not take a concrete standpoint for the P versus
NP question, but we discuss two points of view to solve the question. In
section 2 we introduce several basic definitions required to pose the P versus
NP question formally, and we divide the NP-complete problems into two
important categories: weakly and strongly NP-complete problems. Section
3 discusses the possible ways and methods to answer the question. Section 4
discusses methods and attempts which have failed in answering the question
and probably cannot be used to settle the question. The section also outlines
the consequences of possible answers to the P versus NP question and tries
to give a justifiation for the common bielief that P!=NP.

2 NP-complete problems

In this section I will consider a very important subclass of problems of the
class NP, the class of NP-complete problems. I will explain how the class
of NP-complete problems is important and how it is related to the P versus
NP question. Next I will give a couple of examples of NP-complete prob-
lems. Further we will see an important distinction between two kinds of
NP-complete problems.

2.1 Basic definitions

Informally the class of NP-complete problems contains the hardest problems
in the class NP(Garey and Johnson [6]). To define the class of NP-complete
problems more formally we need to introduce the concepts of a decision
problem and a polynomial transformation between two decisions problems.

We define a computantional problem Π as a mapping from Π : DΠ → S,
where DΠ is the set of instances and S is the set of solutions. If the set of
instances S = {0, 1} that the problem Π is a decision problem. A decision
problem is no harder than the corresponding optimization(computantional)
problem, since we can use the solution to the optimization problem to find a

3

solution for the decision problem. In many cases it can be shown that a de-
cision problem is no easier than the corresponding optimization problem (for
example in case of the Traveling Salesman problem). Once the concept of a
decision problem has been defined we can give formal definitions of a poly-
nomial transformation and a NP-complete problem based on the definitions
given by Garey and Johnson [6].

Definition 2 (Polynomial transformation). Let Π1 : DΠ1 → {0, 1} and Π2 :
DΠ2 → {0, 1} be decision problems. Π1 is polynomially reducible to Π2,
denoted by Π1 ≤p Π2, if there exists a function f : I1 → I2 that satisfies the
following conditions:

1. f can be computed in polynomial time;

2. ∀I ∈ DΠ1 Π1(x) = 1 ⇔ Π2(f(x)) = 1.

Now we can give a formal definition of a NP-complete problem.

Definition 3 (NP-complete problem). Decision problem Π is NP-complete
if and only if

1. Π ∈ NP , and

2. for each decision problem Π1 ∈ NP Π1 ≤p Π

Polynomial-time transformations give us a powerful tool for proving that
a problem belongs to class P . Namely, if Π1 and Π2 are decisions problems,
Π1 ≤p Π2 and Π2 ∈ P then Π1 ∈ P . On the other hand, proving that a
problem Π is NP − complete according to the definition of NP − complete
problems requires us to show that all problems in class NP are polynomially
reducible to Π. Utilizing the concept of polynomial-time transformations,
in practice we can show that a new problem is NP − complete, if we can
reduce an existing NP − complete problem to it in polynomial time. Further
conclusions (discussed in details by Garey and Johnson [6]) coming out from
the definition of polynomial transformations and NP-complete problems are
summarized as follows.

1. if Π is NP-complete and polynomial-time solvable then P=NP;

2. if any problem in NP is not polynomial-time solvable, then all NP-
complete problems are not polynomial-time solvable (P!=NP).

4

The conclusions stated above can be used to solve the P versus NP ques-
tion. As it was told previously, one can use a polynomial-time reduction
and an existing NP-complete problem to show that a new problem is NP-
complete. The only problem which arises here is the need of known at least
one NP-complete problem. Cook [4] has shown that the Boolean Satisfia-
bility problem (SAT) is NP-complete. Next, a simplified version of SAT,
the 3-Satisfiability problem (3-SAT) was shown to be NP-complete by a
polynomial-time reduction from SAT(the prove has been outlined by Garey
and Johnson [6]). After this, other new problems have been shown to be
NP-complete, proving their NP-completeness by using the polynomial-time
reduction approach.

2.2 Weakly and strongly NP-complete problems

Now we will divide the class of NP-complete problems into two categories:
NP-complete problems and strongly NP-complete problems, based on te def-
initions proposed by Garey and Johnson [6]. In the following we will see
that the distinction is important for the P versus NP question. To show the
idea lying behind the distinction let us consider an example problem: the
Partition problem. The generic instance of the Partition problem consists of
a finite set A and a total function s : A → Z+. We ask if there is a subset
A

′ ⊂ A such that: ∑
a∈A′ s(a) =

∑
a∈A\A′ s(a).

Garey and Johnson [6] used the dynamic programming technique and
show that the time complexity of the derived algorithm is O(nB), where n is
the number of elements of A and B =

∑
a∈A s(a). At first glance this appears

to give us a polynomial time algorithm for solving the Partition problem and
thus proving that P = NP . On the other hand they also showed that the
length of a problem instance is O(n log2 B). Thus nB cannot be bounded
by any polynomial function of this quantity, what proves that this is not a
polynomial time algorithm.

To give an exact definitions of strong and weak NP-complete problems we
have to define the following two functions. For each decision problem Π there
is an associated length function Length : DΠ → Z+ and Max : DΠ → Z+

function, where DΠ is the set of instances of Π. For a given instance I ∈ DΠ,
Length function maps the corresponding string representation Is of instance
I to an integer that corresponds to the length of the instance Is, and Max
function maps Is to an integer that corresponds to the largest number in
instance Is. To make the definitions of the two functions more clearly and

5

to allow us to talk about length of an instance instead of its size we assume
that there is a encoding scheme e for a decision problem Π, which transforms
each instance I of problem Π to its string representation Is. For example
Garey Johnsonfor [6] give the following Length and Max functions for the
Partition problem:

Length(Is) = |A|+
∑

a∈Adlog2 s(a)e
Max(Is) = max{s(a) : a ∈ A}

, where |A| denotes the number of elements in A.
According to definitions given by Garey and Johnson [6] an algorithm that

solves a decision problem Π is called a pseudo-polynomial time algorithm, if
its time complexity function is bounded above by a polynomial function of
the two variables Length[I] and Max[I], where Max[I] is not bounded by
polynome of Length[I]. We say that a decision problem Π is a number
problem, if there exists no polynome p such that Max[I] ≤ p(Length[I]) for
all I ∈ DΠ.

Let Π be a number problem, p a polynome, and let us denote by Πp the
subproblem of Π obtained by restricting Π to only these instances for which
Max[I] ≤ p(Length[i]). Garey and Johnson [6] showed that Πp is not a
number problem and if the problem Π is solvable by a pseudo-polynomial
algorithm then Πp is solvable by a polynomial time algorithm (by the defi-
nition of pseudo-polynomial time algorithm, the algorithm which solves Π is
a polynomial time algorithm for the set Πp of restricted instances of Π).

A decision problem Π is called NP-complete in the strong sense, if Π is
NP-complete and there exists a polynome p such that Πp is NP-complete.
Otherwise Π is called NP-complete in the weak sense. It was shown by
Gareyand Johnson [6] that, if P = NP , then a NP-complete problem in the
strong sense can be solved by a pseudo-polynomial time algorithm. This
observation gives us a tool for deciding if a problem does not have or can
have a pseudo-polynomial time algorithm. It is also easy to see that, if
decision problem Π is NP-complete and Π is not a number problem then Π
is NP-complete in the strong sense.

Let us sum up our conclusions of how the theory of weakly and strongly
NP-complete problems can be used to solve the P versus NP question. One
could find a pseudo-polynomial time algorithm for a strongly NP-complete
problem, what would prove that N = NP (the consequence comes out from
the observation that a pseudo-polynomial time algorithm for a strongly NP-
complete problem is actually a polynomial time algorithm for the problem).
One could also find a pseudo-polynomial time algorithm for a NP-complete
problem which is not a number problem, what would prove that P = NP .

6

3 Attempts to solve the question

In this section we will see common approaches which can be used to solve
the P versus NP question and we will see previous attempts which have been
made to settle the problem.

3.1 Possible approaches to solve the P versus NP ques-
tion

Let us suppose that P = NP and let us think how somebody could prove
it. The one of the most obvious way to do it is to find a polynomial time
algorithm for one of almost 1000 known NP-complete problems. Then all
other NP-complete problems can be reduced to the problem and solved in
polynomial time too. The original solved problem should be strongly NP-
complete, or weakly NP-complete, assuming that the presented algorithm is
not pseudo-polynomial, but truly polynomial.

Some standard methods for developing polynomial time algorithms have
been used including the greedy method, dynamic programming, reduction
to linear programming etc. Programmers and researchers have been trying
to find efficient algorithms for NP-complete problems over the past 30 years
(Cook [7]). Unfortunately their attempts have not brought any success. The
best proven upper bound on an algorithm for solving the 3-SAT problem is
approximately 0(1.5n), where n is the number of Boolean variables in the
input formula (Cook [2]).

Let us think how somebody could prove that P ! = NP . To prove that
P ! = NP one could show that for a given problem, no efficient (polynomial
time algorithm) exists. Such methods for limiting the computational com-
plexity of problems from below are known as lower bounds . In the last two
decades, several powerful techniques for proving lower bounds have been used
including diagonalization, discussed by Baker, Gill, and Solovay [5], Boolean
circuits, discussed by Shannon [9], and natural proofs, discussed by Razborov
and Rudich [13].

3.2 Diagonalization

The diagonalization argument was used by Cantor to show that the set of
real numbers is uncountable. Next the technique has been successfully used
by Turing to show that some problems are unsolvable (including the Halt-
ing Problem). Thus the following question arises: Can the diagonalization
argument be used to show that PN ! = P? The technique has been used
to show that there are problems solvable in exponential time which are not

7

solvable in polynomial time. These are very hard decidable problems for
which super-exponential lower bounds has been proved(Rabin [15]). There
are also strong evidences that the diagonalization argument cannot solve the
P versus NP question as discussed by Baker, Gill, and Solovay [5]. To make
it more clear we need to introduce the concept of relativized computations.

In relativized computation as discussed by Baker, Gill, and Solovay [5]
a Turing machine is provided with a set, called oracle, and the ability to
determine a membership of an element in the set without any cost. For each
oracle, there exists a set of problems which are effectively solvable in the
presence of that oracle. Let us denote by PA the class of problems solvable
by a deterministic Truing machine MA that uses oracle A in polynomial time
and by NPA the class of problems solvable by a nondeterministic Truing
machine MA that uses oracle A in polynomial time. Baker, Gill, and Solovay
[5] have shown that there exists an oracle relative to which P = NP and an
oracle relative to which P ! = NP . This observation (called BGS theorem) is a
strong evidence that diagonalization cannot solve the P versus NP question,
because otherwise it would contradict the BGS theorem. In 1987, Blum and
Impagliazzo [11] proved one of the few really strong results about the P versus
NP problem, namely that for most oracles, NP ! = P .

3.3 Boolean circuits

Boolean circuits , discussed by Shannon [9], are a model of computation
which has particularly been used for proving lower bounds on complexity of
functions. The size of a Boolean circuit serves as a measure of complexity
of functions and there is a close relationship between the size of a Boolean
circuit and the number of steps performed by a Turing machine for a given
function f (the relationship between the two computational models exists
according to Church-Turing thesis).

More formally a Boolean circuit can be viewed as a finite acyclic graph
having some number of input nodes, some number of output nodes and some
number of inner nodes called gates. Each gate corresponds to a Boolean
connective {AND,OR, NOT}. It is clear that a Boolean circuit having n
input nodes and m output nodes computes a Boolean function f : In → Im,
where Ik is the set of all finite binary sequences of length k. Shannon [9]
showned that most Boolean functions require exponential size circuits. So far,
however, we cannot prove such hardness for any explicit function f (e.g. for
an NP-complete function like SAT). One could also show that there exists a
NP-complete problem and a Boolean circuit family, such that it computes the
problem, and has super-polynomial lower bound, proving concurrently that
P ! = NP . The best lower bound which have been proved so far for problems

8

in NP using the Boolean Circuit approach is equal to 0(3n) (discussed by
Blum [10]).

3.4 Natural proofs

A natural proof is the notion introduced by Razborov and Rudich [13] to
describe a class of proofs for proving lower bounds on the circuit complexity
of a boolean function. The proofs they describe show, either directly or indi-
rectly, that a boolean function has a certain natural combinatorial property.
A natural combinatorial property C meets the following conditions:

• Largeness: C contains many functions. It requires that the property
hold for a sufficiently large number of the set of all boolean functions.

• Constructivity: One can efficiently verify that a function f is in C.
It requires that a property be decidable in polynomial time when the
truth table of a boolean function is given as input.

A natural proof is defined as a proof with a natural property C.
They explain that the following common strategy taken to solve the P

versus NP question cannot succeed. Namely, one approach to show that
NP does not have polynomial-size circuits is: Firstly. Find some property
C of functions such that SAT is in C. Secondly. Show, using some sort
of inductive argument, that no function computable by polynomial-size cir-
cuits can have property C. Thirdly. This would imply SAT , cannot have
polynomial-size circuits. They give evidence that no proof strategy along
these lines can ever succeed, becuase a proof against polynomial-size circuits
would break the widely believed assumption, that one-way functions exist,
and in particular imply that the discrete logarithm is not hard.

4 Discussion

Scientists, mathematicians and engineers have been trying to resolve the P
versus NP question since almost 40 years. Lots of attempts have been made
and a lot of incorrect solutions have been presented. Using a large number
of available methods (e.g. diagonalization and relativization as discussed
by Sipser [1]) and trying to express the problem in different computational
models (e.g. Boolean circuits as proposed by Shannon [9]) no solution to
the question has been found so far. Especially We have already seen in the
previous sections that the following methods have been proved not to be able
to solve the P versus NP question:

9

• Diagonalization : Baker, Gill and Solovay [5] showed the existence of
two oracles. According to the first one P=NP and according to the
second one P!=NP. This implies that the question cannot be resolved
by diagonalization techniques.

• Natural proofs : Razborov and Rudich [13] showed that the question
cannot be solved using natural proofs. The main part of the problem
is that no unnatural proof techniques are known, and no one has been
able to find any. Thus resolving the P versus NP problem will require
more than the use of existing conventional proof techniques.

• Boolean circuits - Valiant [14] suggests and explains why direct at-
tempts to prove lower bounds on the time complexities of problems
using Boolean circuits may not be an appropriate approach.

One could think that the question is unsolvable. Cook states that [7] lots
of scientists and engineer, who are well familiarized with the topic, think
we are closer to the solution than further from it. It is also important to
notice that most of them think that P!=NP. Their belief is partly justified
by the practical consequences of proving that P=NP and the current state
of knowledge. We can consider the practical consequences of proving that
P=NP. In this case firstly we need to consider the proof of P=NP. According
to Cook [2], it is very possible that the presented proof is nonconstructive, in
the sense that it does not yield an algorithm for any NP-complete problem.
It can also yield a nonfeasible algorithm for example whose time complexity
is 0(n100). In these two cases, the practical consequences of such a prove
would not be striking.

On the other hand if P=NP is proved by finding a truly feasible algorithm
for an NP-complete problem (e.g. the Satisfability problem). Cook [7] states
and describes the following consequences of proving that P=NP: Firstly, all
of the over 1000 already known NP-complete problems could be efficiently
reduced to the Satisfability problem and then solved efficiently. Secondly,
mathematics would be transformed, because computer would be able to find
a formal proof of any theorem which has a proof of a reasonable length.
Thirdly, the complexity-based cryptography would become impossible. Ac-
cording to Cook [7], the security of the Internet relies on the assumption
that a factorization of a large integer and breaking the DES (Data Encryp-
tion Standard)1 is very hard to perform. Cook in [4] gives also an example,
and considers the situation in which we had an algorithm which solves the

1DES is a method for encrypting information, still widely used by financial services
and other industries worldwide to protect sensitive on-line applications.

10

3-SAT problem in 0(n2). Then we could use the algorithm to factor 200-digit
numbers in a few minutes, what would mean that DES encryption algorithm
is useless. Friedman [8] summarizes what famous scientists think about solv-
ability of and a possible answer to the P versus NP question:

• Jeff Ullman: (Stanford, 2100, P!=NP)

”I think the problem is comparable to some of the great
problems of mathematics that lasted hundreds of years, e.g.,
The 4-color theorem. Thus, I would guess 100 years. I would
bet we do not have the techniques, or even names for tech-
niques today.”

• Donald Knuth: (retired from Stanford)

”It will be solved by either 2048 or 4096. I am currently
somewhat pessimistic. The outcome will be truly worst case
scenario: namely that someone will prove P=NP because
there are only finitely many obstructions to the opposite hy-
pothesis; hence there will exist a polynomial time solution to
SAT but we will never know its complexity.”

• Richard Karp: (Berkeley, unsure, P!=NP)

My intuitive belief is that P!=NP, but the only support-
ing arguments I can offer are the failure of all efforts to
place specific NP-complete problems in P by constructing
polynomial-time algorithms. I believe traditional proof tech-
niques will not suffice. My hunch is that the problem will be
solved by a young researcher who is not encumbered by too
much conventional wisdom about how to attack the prob-
lem.”

• Juris Hartmanis (Cornell, 2012, P!=NP)

”I hope that many other separation problems, such as
LOGSPACE, NLOGSPACE, P, PH; P, NP, PH, PSPACE;
PSPACE, EXPTIME, NEXPTIME will be solved once the
first major separation result is obtained.”

11

5 Conclusions

In this paper we were invastigating and trying to answer the P versus
NP. We have also seen that methods including diagonalization, Boolean
circuits, natural proofs have failed. We also discussed the common ways
and methods which can be used to settle the question.

Mathematicians and engineers have been trying to solve the problem
for the last three decades, what makes it one of the greatest unsolved
problems of mathematics and computer science. Base on the current
state of our knowledge we cannot say when the problem probably is
solved or we cannot even say if it can be solved. On the other hand,
it is widely believed that P ! = NP . This belief is mainly based on the
suspicion that it not very probable that all NP-complete problems, and
moreover all the strongly NP-complete problems have polynomial time
solutions.

References

[1] Michael Sipser: The history and status of the P versus NP question.
Proceedings of the twenty-fourth annual ACM symposium on Theory of
computing, 1992, pages 603–618.

[2] Stephen Cook: The importance of the P versus NP question. Journal
ACM, vol. 50, num. 1, 2003, pages 27–29.

[3] Scott Aaronson: Guest Column: NP-complete problems and physical
reality. SIGACT News, vol. 36, num. 1, 2005, pages 30–52.

[4] Stephen A. Cook: The complexity of theorem-proving procedures. Pro-
ceedings of the third annual ACM symposium on Theory of computing,
1971, pages 151–158.

[5] T. Baker, J. Gill and R. Solovay: Relativization of the P =?NP question.
SICOMP: SIAM Journal on Computing, 4, 1975, pages 431-442.

[6] Michael R. Garey and David S. Johnson: Computers and Intractability; A
Guide to the Theory of NP-Completeness. W. H. Freeman and Company,
1990.

[7] Stephen A. Cook: The P versus NP Problem. Clay Mathematics, Insti-
tute Millennium Prize Problems, http://www.claymath.org/prize prob-
lems/pvsnp.pdf, accessed 10/10/2000.

12

[8] Harvey M. Friedman: Clay Millenium Problem: P = NP. Mathematics
Colloquium, Ohio State University, 2005.

[9] C.E. Shannon: The synthesis of two-terminal switching circuits. Bell Sys-
tems Technical Journal, 1949, pages 59–98.

[10] N. Blum: A Boolean Function Requiring 3n Network Size. Theoretical
Computer Science, Vol. 28, pages 337–345, 1984.

[11] Blum, M., and Impagliazzo: Generic oracles and oracle classes. Proceed-
ings, 28th IEEE Symposium on Foundations of Computer Science, 1987,
pages 118–126.

[12] Richard Bellman: Dynamic Programming Treatment of the Travelling
Salesman Problem. Journal ACM, vol. 9, num. 1, 1962 , pages 61–63.

[13] Alexander A. Razborov and Steven Rudich: Natural proofs. Proceedings
of the twenty-sixth annual ACM symposium on Theory of computing,
1994, pages 204–213.

[14] Leslie G. Valiant: Why is Boolean complexity theory difficult? Poceed-
ings of the London Mathematical Society symposium on Boolean function
complexity, Cambridge University Press, 1992, pages 84–94.

[15] M. O. Rabin: Degree of dificutly of computing a function and a partial
ordering of recursive sets. Technical Report Number 2, Hebrew University,
1960.

13

