
Transfinite Turing machines

Sebastián Bravo López

1 Introduction

With the rise of computers with high computational power the idea of de-
veloping more powerful models of computation has appeared. Suppose that
we have a task whose solution involves an infinite number of steps. With
the computational power of transfinite Turing machines [6] it is possible to
compute the task.

The study of more powerful models of computation have implications
in mathematics, physics, computer science and even philosophy [1]. The
theoretical models of transfinite Turing machines can be applied to the real
world to study physics. Quantum mechanics give us the opportunity to apply
the new models to the real world.

Transfinite Turing machines [6] extend the Turing machine model. This
approach extends the operation of ordinary Turing machines into transfinite
ordinal time. This new model can complete algorithms that require an in-
finite amount of steps to be completed. The steps work following ordinal
numbers. If the machine does not halt in finite amount of time it arrives
to the next infinite stage and so on [5]. Transfinite ordinal numbers repre-
sent a sequence of increasing ordinals in which is possible to find an ordinal
number greater than the rest. The construction of a new model of infinite
computability is the key to understand and find algorithms that require an
infinite number of steps to compute the solution.

The tasks solved by transfinite Turing machines are called supertask [6].
Supertasks are solved in a finite interval of time but that require a infinite
number of steps to be finished. This paradox can help the reader to under-
stand the supertask concept. Zeno of Elea (ca. 450 B.C.) had a theory that
it is impossible to go from one place to another one. Before arriving, one
must first get halfway there, and before that one must get halfway to the

1

halfway point, till infinite. Based on this argument all motion is impossible,
but this kind of supertask could be solved with the use of the new model.

The main type of transfinite Turing machine is the infinite time Turing

machine [5]. The main property of the infinite time Turing machine relies
on the management of an infinite number of steps. Infinite time Turing
machines are able to carry out and complete algorithms involving infinitely
many computational steps. The main principle to do it is based on the
division of the task into infinite stages based on ordinal numbers.

Accelerated Turing machines [5] can increase the computation speed in
every step. Division of the infinite steps into several finite stages is one of the
main properties to understand the method. Other examples are the infinite

state Turing machines [6] or the quantum Turing machines [2][3][1].
The organization of this paper is the following: in Section 2 the transfinite

ordinal numbers will be explained. This topic is very important to under-
stand how transfinite ordinal time is represented. The main types of trans-
finite Turing machines, infinite time Turing machines, infinite state Turing
machines, accelerated Turing machines and other approaches are explained
in Section 3. Finally at section 4 there are some thoughts about the power
of transfinite Turing machines and the problems that can be solved with the
use of the new models. Final conclusions are drawn in the Section 5.

2 Transfinite ordinal numbers

Transfinite Turing machines extend the classical Turing machine into trans-
finite ordinal time. This implies that the machines need infinite number of
computational steps. Unsolvable problems would need infinite computation.
Some problems can be solved in countable infinite time and by using trans-

finite numbers [5] we can measure the complexity of infinite computations.
The computational steps rely on ordinal numbers. An ordinal number is
defined as the order type of a well ordered set.

Totally ordered set is defined by the following conditions:

1. Antisymmetry: (a ≤ b) and (b ≤ a) implies a = b.

2. Transitivity: (a ≤ b) and (b ≤ c) implies (a ≤ c).

3. Comparability (trichotomy law): For any a,b in S, either (a ≤ b) or
(b ≤ a).

2

Two totally ordered sets (A,≤) and (B,≤) are order isomorphic if there
is a bijection f : A → B such that all α1, α2 ∈ A, α1 ≤ α2 iff f(α1) ≤ f(α2).

Finite ordinal numbers are denoted by arabic numerals and transfinite
ordinals are denoted using lower case Greek letters. Every finite totally
ordered set is well ordered. Any two totally ordered sets with k elements,
where k is a non negative integer, are order isomorphic and they have the
same order type. The ordinals for an infinite set are denoted by 1, 2, 3, ..., ω.

The number series is divided into finite stages 1, 2, 3, ..., ω. The number
denoted by ω is the order type of a set of nonnegative integers. ω represents
the first of the Cantor’s transfinite numbers. ω is the smallest ordinal number
but higher than the natural numbers. When we arrive to the stage ω, the
series continues with the stages (ω + 1), (ω + 2), ..., (ω + ω), New ωs are
added an infinite number of times. By ω’s it is possible to define all countable
numbers [5], some examples of large ordinal numbers are: (ω2) or (ωω).

One of the main properties of the transfinite numbers is the ability to
interchange operations: x + 1 = 1 + x, n · x = x · n. We can define the
successors adding numbers to the stage: (1 + ω) is the successor of ω. For
transfinite numbers the order of operation determines the meaning:

1. (1 + ω) = (n + ω) = 2 · ω = n · ω = ω, but

2. (ω+1) = ω’s successor,(ω+2) = (ω+1)’s successor, (ω ·2) = (ω+ω),
etc.

3 More powerful Turing machines

Transfinite Turing machines [6] are based on the classical Turing machines.
It is possible to increase the power of standard Turing machines by allowing
the machine to have infinite time to run, accelerated speed, infinite number
of states or quantum states.

3.1 Classic Turing machines

The standard Turing machine consists on several parts [5]. There is a head
moving back and forth reading and writing characters on a tape according
to the rigid instructions. The characters depend on the alphabet used and
generally Turing machines can use any set of characters. It is common the
use of the alphabet 0, 1. All other characters can be represented by strings

3

of 0’s ans 1’s. For example we could group 4 bits to create a character. For 4
bits we have 16 different combinations that could represent numbers (0, ..., 9)
and some operations (−, +, ∗, /).

Classic Turing machines have also a control unit which defines the transi-
tions between the different states based on the input. They have also tapes in
which the information is stored. The input and output are read and written
in those tapes. An algorithm for a Turing machine is defined by the state
transitions. The heads can move along the tapes and read and write values
according to the current state. When the algorithm finds the solution the
current state is the final state and the Turing machine halts. The Transfi-
nite Turing machines use the same principle but with the addition of some
properties.

a a T
b

a ¶c

a
a

c
c

c

a a T
b

a ¶c

a
a

c
c

c

...

...

a a T
b

a ¶c

a
a

c
c

c

a a T
b

a ¶c

a
a

c
c

c

...

...

a a T
b

a ¶c

a
a

c
c

c

a a T
b

a ¶c

a
a

c
c

c

...

...

Tape 1

Tape 2

Tape N

CONTROL UNIT

Figure 1: Turing Machine

3.2 Infinite time Turing machines

Infinite time Turing machines [5] can compute an infinite number of steps
in a finite amount of time. The tapes on which the infinite time Turing

4

machines writes are infinite and there is no limit in the space to use. Since
infinite time Turing machines can use the entirety of their tapes during their
execution, it is possible to use a more wide range of algorithms with them.

The machine can perform several infinite sequences of steps and repeat
the process infinitely. The number of steps can be seen as a sequence of
ordinal numbers. For example the infinite sequence of infinite sequences of
steps is denoted by ω2. The infinite time Turing machine is an extension of
the Turing machine into transfinite ordinal time. At a limit in the ordinal
time the machine’s actual state is based on the previous states. The machine
can compute any recursive function in less than ω steps and evaluate the
function in every ω steps [5] obtaining data already calculated. At every
step ω its possible to consult the partial results. Even if the task is not
finished, there is information already computed that can be obtained as a
partial result. This allows to obtain results even if the machine does not
halt. This results can be wrong or have some solution and they can be used
to know the state of the machine.

3.3 Infinite state Turing machines

Infinite state Turing machines [6] are standard Turing machines with infinite
number of states. Although this can be implemented with an infinite tran-
sition table, it is possible to do in practice with the use of states based on
functions or some other properties. The tape is only used for input and out-
put data and the main work is done by the use of infinite number of states.
This leads to better results for questions of computational complexity. As
we already have an infinite number of states, we have no need for a tape, we
can simply incorporate this into the states.

The number of possible transitions is also infinite but only a finite number
of states can be reached from a given one. One obvious way of specifying a
state is by an infinite string of 0’s and 1’s. This gives an uncountable number
of states. We simply require that every string at time t determines another
string at time t + 1. It is possible even to have all the information in the
states, and with the change of the states, the input data and the output of
any function can be specified and different algorithms can be used. In this
example the tape is only used for input and output but it is also possible to
define inputs in the states and avoid completely the tape. If we are in the
state 1 and we add 1 to our result we move to the state 2, and the state is
the result itself.

5

For example, following the function that adds the number 1 to the current
number the next step is current state+1, the previous step is current state
−1. The state depends on a given function and the result can be obtained
by the current state. If current state is n, the resulting number is n.

3.4 Accelerated Turing Machines

Accelerated Turing Machines [6] can increase the computation speed in every
step. Since 1 + 1

2
+ 1

4
+ 1

8
+ ... < 2, any task can be done in less than two

time units. There is no difference between standard Turing machines and
the accelerated ones other than the speed of operation which is the same in
the first step and exponentially increased in the next steps.

Let us study the following example [6]: Let A to be an accelerated Turing
machine that changes the value of a tape position from 0 to 1 when a given
Turing machine B halts. If the Turing machine B does not halt, A leaves the
original value 0, but after 2 time units the position on A holds the value of
the halting function value for this Turing machine B and its input because
after 2 time units the machine finish regard of if it halts or not.

This accelerated Turing machine only computes functions N → {0, 1}
but it can be extended to N → N by designating the odd positions to begin
with 0 and only being changed at most once. Natural numbers and even real
numbers can be written in binary on the special squares after two time units.

3.5 Other Turing machines

The addition of the random factor is an interesting property for the Turing
machines. The probabilistic Turing machines [7] can have two different and
valid transitions from the current state. In each state the machine selects
between the valid transitions giving them equal probabilities to be selected.
Using this model the Turing machine can compute recursive functions on
real numbers and natural numbers. Probabilistic Turing machines can give
different results for different executions.

Quantum Turing machines [2][3][1] are becoming very popular. In a quan-
tum Turing machine read, write, and shift operations are all accomplished
by quantum interactions. The tape itself exists in a quantum state as does
the head. In particular, in the place of the Turing tape position that could
hold either 0 or 1, in quantum Turing machine there is a qubit [3][1], which
can hold a value between 0 and 1.

6

Qbits can have different states 0, 1 and 0+1 (state between 0 and 1). Qbits
are often represented by an sphere with an arrow inside. Arrow up means
1, arrow down means 0, any other arrow state is called arrow phase. Arrow
phase is an intermediate state that provides the quantum Turing machines
an interesting property, the capacity to select the transitions from non well
defined value between 0 and 1.

The tape of the quantum Turing machine is made of qbits. The machine
evolves in many different directions simultaneously. After some time t its
state is a superposition of all states that can be reached from the initial
condition in that time.

Although the quantum Turing machines can be emulated with standard
Turing machines, the quantum Turing machines complexity appears in the
layout of transitions of the quantum states. The quantum Turing machine
can encode many inputs to a problem simultaneously, and then it can perform
calculations on all the inputs at the same time. This is called quantum
parallelism. Although the quantum Turing machines are faster than Turing
machines, they can not solve more complex problems, they have the same
power.

4 Power of transfinite Turing machines

The transfinite Turing machines can solve the same range of problems than
the classical Turing machines and much more [5], but we must take into ac-
count the concepts of infinite number of steps. The main concept in the new
model is the infinite computational power of those machines. The transfinite
Turing machines have infinite time to compute an algorithm. Another prop-
erty is the ability of the infinite time Turing machines to compute partial
results at each step. When the transfinite Turing machine arrives to step ω
its possible to obtain the state of the machine and results.

Since the conception of the Turing machines it has been known that there
exist functions not computable with them. It is clear when we consider an
uncountable set of functions from N → N and compare it with the countable
set of the Turing machines.

Halting problem is unsolvable [8] on standard Turing machines. In the
classical Turing machines, the halting problem represents the question of
whether a given program p halts on a given input n in finitely many steps.
Halting problem is one of the first problems which was proved to be unde-

7

cideable.
If a solution to a new problem is found it can be used to solve an un-

decidable problem. That is made by transform instances of the undecidable
problem to instances of the new problem. If it is not possible to solve the
old problem, then is not possible to solve the new one. One consequence of
the halting problem is that is not possible to create an algorithm that finds
if a statement about natural numbers is true or false.

The proposition that states that a certain algorithm will halt with some
input can be converted to another statement about natural numbers. An
algorithm that solves any statement about natural numbers can solve also
the halting problem, but that determine when the original program halts,
that is impossible, so halting problem is undecidable.

Halting problem of the classic Turing machines is solvable with the use
transfinite Turing machines after ω (infinite ordinal stage) steps. But trans-
finite Turing machines have also their own halting problem unsolvable by
using transfinite Turing machines.

5 Conclusions

In this paper I have covered the basics of the transfinite Turing machines.
I have described different approaches of the transfinite Turing machines.
Quantum Turing machines represents a new model capable of very powerful
calculation like physical world simulation.

With the use of transfinite Turing machines its possible to extend the
classic Turing machines into transfinite ordinal time. Transfinite Turing ma-
chines provide a natural new model of infinitely computability and a good
point of view for setting the analysis of the power and limits of supertask
algorithms (i.e. algorithms that involves infinitely many steps).

In this report I did not presented all the different extended Turing ma-
chines. For example asynchronous networks of Turing machines [6] or error
prone Turing machines [6] are very interesting approaches, but there exist
some similarities with the already mentioned Turing machines variants.

There exist several types of quantum Turing machines like the bulk quan-
tum Turing machines [2][3][1]. Although bulk quantum Turing machines are
not more powerful than quantum Turing machines, they provide a better
way to define the problems. Both are related with spatial machines [4], an
attempt to create more powerful models with the use of 3 dimensional space

8

as a limit for the develop of new Turing machines models.

References

[1] Paul Benioff. Models of quantum turing machines. Fortschritte der

Physik, 46:423, 1998.

[2] Gilles Brassard. Quantum computing: the end of classical cryptography?
SIGACT News, 25(4):15–21, 1994.

[3] Marco Carpentieri. On the simulation of quantum turing machines. The-

ory of Computer Science, 304(1-3):103–128, 2003.

[4] Yosee Feldman and Ehud Shapiro. Spatial machines: a more realistic
approach to parallel computation. Communications of ACM, 35(10):60–
73, 1992.

[5] Joel David Hamkins. Infinite time Turing machines. Minds and Machines,
12(4):521–539, 2002.

[6] Toby Ord. Hypercomputation: computing more than the Turing machine.
CoRR, Department of Computer Science, University of Melbourne, 2002.

[7] Alon Orlitsky, Narayana P. Santhanam, and Junan Zhang. Always good
Turing: Asymptotically optimal probability estimation. focs ’03: Pro-
ceedings of the 44th annual ieee symposium on foundations of computer
science, vol 302, no 5644. pages 427–431, 2003.

[8] Alan Turing. Halting problem of one binary horn clause is undecidable.
pages Ser. 2, Vol. 42, 1937.

9

