
Exercises about finite automata and corresponding regular expressions

- 1. Remove all ϵ -transitions from the Goblins' Gingerbread automaton and transform it to deterministic!
- 2. What kind of language does the Goblins' Gingerbread automaton recognize? Describe the language as a regular expression!
- 3. Give the regular expressions corresponding the following automata!

- 4. Construct the finite automata corresponding the following regular expressions! $a)(ab)^*(ba)^* \bigcup aa^*$ $b)((ab \bigcup abb)^*a^*)^*)$
- 5. For what practical applications could you use finite automata or regular expressions? Give at least three applications!
- 6. Let w^R = reversal of string w (i.e. if $w = a_1 a_2 ... a_n$, then $w^R = a_n ... a_2 a_1$). Prove that if the language L in alphabet $\{a, b\}$ is regular, then also its reversal language

$$L^R = \{ w^R | w \in L \}$$

is regular. (Hint: concider automata.)

- 7. Prove that the class of regular languages is closed under cut and concatenation. I.e. if L_1 and L_2 are regular languages, then also $L_1 \cap L_2$ and $L_1 L_2$ are regular. (Hint: automata and de Morgan law: $A \cap B = \overline{A \cup B}$.)
- 8. Install the JFLAP 4.0 automaton tool. http://www.cs.duke.edu/ rodger/tools/tools.html) Use the program to find out, if the following expressions are equivalent:

$$a^*b^*\bigcup(a\bigcup b)^*ba(a\bigcup b)^*,\;(a^*b^*)^*\text{ ja }(a\bigcup b\bigcup ab\bigcup ba)^*!$$