1

Theoretical Foundations of Computer Science

Mo altn. Myt
Siruelle, on Vo atey

+y;mu|-q. 5w
Sivvulol b ohjeluaa,
SpaHeelR o ming
lepesn loakereils,

Luku O

Introduction

0.1 Course description

3 (+17) cu

e possibly 1 cu "project work” about computational complexity and NP-
complete problems

e Subject: computational problems vs. corresponding formal languages
and mechanical models of solving problems vs. automata used for recog-
nizing languages

e Background knowledge: basic mathematics
e Lectures: Mon, Tue 12-14 TD106

e Lecturer: Wilhelmiina Hamaéldinen
(whamalai@cs.joensuu.fi, meeting time Wed 14-15)

0.1.1 Exercise sessions

1. Wed 14-16 B179 Roman Bednari (English group)

2. Thu 14-16 B180 Wilhelmiina Hamé&ldinen (Finnish group)

0.1.2 How to perform?

3 choices:

4 LUKU 0. INTRODUCTION

1. Taking a part in problem-based learning and doing exercises, when the
grade consists of exercises 25%, problem reports 50% and learning diary
25% of total points.

2. By doing exercises and performing two middle term exams, when exerci-
ses 25% and exams together 75% of total points.

3. By a separate exam, when the grade depends on only exam points.

0.1.3 Course material

e No one official course book, but a couple of recommended litterature

e "Lecture notes” cover the main topics of the whole course (the principal
lecture notes in Finnish, but if possible, the main topics will be trans-
lated in English and appear in the course homepage
http://www.cs.joensuu.fi/pages/whamalai/tepe/tfcp.html)

e It’s recommendable to make your own notes! The lecture notes can be
used as structure for your own material (also the text file available)

0.1.4 Litterature

Sipser, M. Introduction to the Theory of Computation.

Hopcroft, J.E., Motwani, R., Ulman, J.D. Introduction to Automata
Theory, Languages, and Computation. Addison-Wesley, 2001. (or older
edition)

Kinber, E., Smith, C. Theory of Computing. A Gentle Introduction. Pren-
tice Hall, 2001. (Hyvin havainnollinen, kiltti johdatus aiheeseen :)

Lewis, H.R., Papadimitriou, C.H. Elements of the Theory of Compu-
tation, Second Edition, Prentice-Hall, 1998.

Wood, D. Theory of Computation, Harper & Row, 1987.

Sudkamp, T.A. Languages and Machines. An Introduction to the Theory
of Computer Science.

0.1. COURSE DESCRIPTION

0.1.5 Contents

Look at the following comic (The assistant’s Nightmare):

LABRA-ASSARIN
PAINAJAINEN

kﬂpicdq. kirjeitudviv-

heida. PGS vo

Tuumosin +oimeny... \

Ng niin kone |
Kiy pas toimeen.
Ligtosso ow loodlek;
mewnlokijomat , joide,
kood e, smo, o lla,

Mutde lowinleon
k& y keddn - Tollo! TEANEREN o6
B mAEvE Nlﬂ-—i‘h

lo ppustcli ja.

Minz Bhin iy
Sinalle Pivan,; vilig
mujsted Porewiming

Pitaa enda
testodo. ahjelwnd

Tawa hin nienes

hyvin, Hpwi) lesn
keksin pitas i F-eke-
Parithin Pinoon.

Mudo, rmuwta.. i

LUKU 0. INTRODUCTION

Oha ! Sehan kood e
SilH. PHga vield
Poirastas, koneHa,

No aivn. Nyt

Firmallon o Ve atay

HyE naulbe . Sind
Sicmufo) abjeluas
spatieels g mina
lepaga lockereille. f|

Tyhwmi konel

Wenmy... Toutinlin nukle,
Pithan tovin. Yhals
Se lagkenda jodluwn?

TassihdEn o huine,
Silmulelen, |

beewin P"‘i““l‘“‘ +P’5‘
PEypdam Adremm_,

rpw_f!_ ﬂaz 1

. "Frustrating to chech all misspellings. I should make a checking machi-

b

ne.

. And so is done. "Well, Machine, let’s work. All strings which may appear
in the code are in the list.”

. But what happens...? ?Grazy machine! Here is different number of be-
ginning and end parenthesis. I'll give you a stack so you will remember
better.”

. After a while. "This is going well. Good, that I invented to put also
if-else structures into the stack. I'll just have to test the programs.”

. But: ”Oh! It still fell down. I still must make the machine better.”

. Ok, now you have an infinite tape. You’ll simulate the program with
the input while I lay on my leaves.”

0.1.

COURSE DESCRIPTION 7

The time pasts. ’7Hmm, it seems I have slept quite a while. Is the com-
putation still going on?”

. "Stupid machine! There is an infinite loop. I guess I have to return back

to work myself.”

LUKU 0. INTRODUCTION

e v.s. Chomsky hierarchy of languages

ratkeamattomat ongelmat

tyyppi 0

esim. pysahtymisongelma

rajoittamattomat

kielet
tunnistus:
rekyrSiivisesti numeroituvat - - =~) RN R umversqgh Tu gtkone
Kielet - ~+_ (pysénhtyy 'kylk'-tapauksessa)
L7 tunnistus: "~ _
7 . Turing—kone + &éareton
. reku_rsnwset tyonauha (pyséhtyy aina)
/ kielet »

N
\

RAM-kone,",
ohj.kielet N

tyyppi 1
kontekstilliset kielet

Turing—kone +
aarell. tybnauha

tyyppi 3
saanndlliset kielet

tunnistus:

aarelliset
kielet

Kuva 1: Chomsky language hierarchy + the class of recursive languages.

type 3 Regular languages (special case finite languages)

type 2 Context-free languages

type 1 Contert-sensitive languages

type 0 Unristricted languages = Recursive languages + Recursively
countable languages

e outside unsolvable problems

0.1. COURSE DESCRIPTION 9

Preliminary contents:

1. Introduction

Introduction of the course
Mathematical concepts

Computational problems and solvability

2. Finite automata and regular languages

Regular expressions and languages
Deterministic finite automata
Minimizing automata
Undeterministic finite automata

Limitations of the regular languages

3. Grammars and parsing

Context-free grammars and languages
Recursive parsing

Attribute grammars

CYK-algorithm

Pushdown automata

4. Turing machines and unristricted languages

Turing machines

Extensions: multi track/tape Turing machines

undeterministic <-> deterministic machines

*Excursion: Context-sensitive languages and parsing the natural
language

Self-respection of the machines, universal languages and machines
*Excursion: mechanical computability v.s. limits of human reaso-
ning

Unsolvable problems

Comparing and reducing problems

5. Computational complexity

Time and space requirements

NP-completeness

10 LUKU 0. INTRODUCTION
0.2 Mathematical concepts

e logical symbols
e sets

e relations

e functions

e countability

e proof methods

0.2.1 Logical symbols

Let P and Q) be propositions i.e. truth valued sentences, which describe some
events. E.g. P="The Moon is cheese”, ()="Napoleon lives in the Moon”.

e —P: P is false (not P, |P)

e PV Q: either P or @ is true (or both) (in programming languages P
or @, Pl|Q)

e PAQ: both P and @ are true (P and @, P&&Q)

e P = Q: implication "if P, then ¢’ (= -P V Q)

e P& Q:7 equivalence P if and only if Q" (= (P = Q) A (Q = P))

e In addition we often need V (universal quantifier, "for all”) and 3 (exis-
tence quantifier, "exists”, “for some”)

E.g. Vz,2 € N ”for all natural numbers x ...”, dz,2 € N ”for some
natural number x ...”

0.2.2 Sets

e set—a collection of elements or members
e.g. A={ay,ay,...,a,} or ¥ ={a,b,c,..., 2}
mark a; € A ("a; belongs to set A”)

e special case empty set ()

0.2. MATHEMATICAL CONCEPTS 11

e A C B: A is the subset of B
ACB&eVe(re A— x € B)
proper subset AC B: ACBANA#B
e AU B: union of A and B

AUB={z|lr € AVvz € B}

e AN B: intersection of A and B

ANB={zlxr € ANz € B}

e A\ B: A subtraction B
A\B={zlre ANz ¢ B}
e A= FE\ A: complement of Ain E
e A X B: cartesian product of A and B:
Ax B=A{(x,y)|lr € ANy € B},

in which < z,y > is an ordered pair.

o P(A): the power set of A
P(A) = {X|X C 4}

e.g. if A= {a,b,c}, then P(A) =
{0, {a}, {0}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}

0.2.3 Relations and functions
Relation

E.g. a (binary) relation between A and B is defined as a subset of A x B:

R ={(a,b)lae ANbeE BAR(a,b)}

12 LUKU 0. INTRODUCTION

e E.g. A and B are natural numbers and R is a successor relation:
R(a,b), if and only if b =a + 1.
Then the relation consists of pairs {(0, 1), (1,2),(2,3), ...}.

e inverse relation of R C A x B R~' C B x A is relation

R~ ={(b,a)|(a,b) € R}

Function

A relation between A and B f C A x B is a function or mapping from
set A to set B, if the following conditions hold:

1. For each element of A there is a mapping in B i.e.
Vee Ady e B (y= f(x))
2. For each element of A there is only one mapping in B i.e.
Vry, 29 € Az = 29 = f(21) = f(22)

« Mark y = f() & (2,9) € /.
Injection, surjection, bijection

Function f : A — B is
injection, if
V.Tl,l'g € A(f(.’l}l) = f(.’L‘Q) =T = .’1?2)
surjection, if
Vy € B3z € A(y = f(z))
bijection, if f is both surjection and bijection
NOTICE! f is bijection < f has inverse function

e egl f:Z—Z"U{0}
f(z) = |z| surjection, not injection
eeg2 f:ZT—>Q
f(z) = % injection, not surjection
e egld f:Rf - R"
f(z) = «” bijection, inverse mapping f(y) = /¥

0.2. MATHEMATICAL CONCEPTS 13

f

N
\ =

Kuva 2: A=definition set, B=goal set, f(A)=value set

0.2.4 Countability

Set X is countable, if

1. X is finite or

2. There exists a bijection f : N — X, for which
X ={f(n)|n € N}.
e intuitively: the elements of X can be ordered and indexed by natural
numbers: X = {xg, z1, X2, ... }.

e e.g. set of ood numbers X = {1,3,5,...} is countable, because we can
define a bijection f: N — X

fn)=2n+1

e If X is not countable it is uncountable.

e e.g. set of real numbers R and power set P(N) of natural numbers N
are uncountable

14 LUKU 0. INTRODUCTION

-3-2-10 1 2 3

Kuva 3: How to numerate integer numbers.

0.2.5 Proof methods

Mathematical induction
We want to show that P(n) holds for all natural numbers.
Two parts:

1. Case n = 0: Prove that P(0) holds.
2. Induction step: Prove that for all n P(n) — P(n+ 1)

o e.g. Claim: X2 i = 2 for all n > 0
Proof:

L. n=0%p,i=0= 240
2. Induction assumption: 3k € N such that the claim holds for all n <
k
Casen=k+1:2i=1+24+3+ .. +k+(k+1)
2
ko= 50 2
Sil = Bk g (p+ 1) = SHIHED g

Undirect Proof (Contradiction method or Proof by antithesis)

0.2. MATHEMATICAL CONCEPTS 15

We want to prove ”if P, then QQ”. Let’s suppose P and make an antithesis
—@). If we can conclude a contradiction, the claim is true.

e Notice! We don’t know, what is the contradiction, we want to
reach.

e Notice! Implication P = (@ is true in every case but when PA—Q).
e e.g. Let’s suppose U is an infinite set and S is a finite subset of it
and 7' is the complement of S in U.
Claim: T is infinite.
Proof: Antithesis: 7" is finite. Because both S and 7" are finite, also
U is finite, which means contradiction (U is infinite). O

e How would you prove the claim: "In the world there are at least
two people with exactly same number of hairs in their heads”?

Contraposition We want to prove ”if P, then Q”. Instead we prove an equi-
valent claim ”if not Q, then not P” (P = Q = -Q = —P)

e ~ a special case of antithesis method: Suppose P and —() and try
to conclude - P — now we know, what is the contradiction we are
looking for (P A —P).

Proving existential and universal claims "There exists x € X, for which...”
and "For all x € X ...” can sometimes been proved directly.

e Existial claim Jx € X P(x): construct such z (guess, produce,
invent a producing algorithm etc.) Notice! You have to show that
the wanted property really holds.

e c.g. "In the Himalaya there is a mountain, which is higher than
any other mountain in the world.”

e Universal claim Vz € X P(x): select an arbitrary = from X and
show that the wanted property P(X) holds for it.

eecg. Let S={z€R|(a*-3z+2=0)}and T={z € R[1<z<
2}. Claim: S =T.

Counter examples

e Claim Vz € XP(z) can be invalidated by giving any counter
example in X

e e.g. claim ”All cats are black.”

16 LUKU 0. INTRODUCTION

Litterature

Solow, Daniel: How to read and write proofs. An introduction to mathema-
tical thought process. John Wiley & Sons, 1982. (Easy reading guide book
for constructing proofs!)

0.3 Excursion: Transfinite ordinal numbers

The transfinite ordinal numbers mean infinite numbers which still can be
ordered. E.g. David Hilbert, Georg Cantor, Kurt Godel and Rudy Rucker
have studied problems dealing with such numbers.

w Omega

w or Ny (aleph-zero) is the greatest normal ordinal number, i.e. limn. w can
be defined: w is the first such number a, for which a +1 =a. E.g. 1 + w=w,
2w = w.

We can still define working sum and product operations for w. Let’s decide
that w + 1= the follower of w and lim,_,,(w +n) = w + w = 2w.

Now lim(w X 2+ n) = w x 3, lim(w X n) = w X w = w?. In the same way

wd,wh, LW

w? is the first such ordinal number a that w + @ = a and w¥ is the first such
ordinal number a that w X a = a. (W X W* = wW*T! = wW*, because 1 +w = w).

Notice! Sum and product operations for the transfinite numbers are not in-
vertible!

¢p Epsilon-zero

Even greater numbers can be generated by nested exponents w €o is the
first such ordinal number a that w® = a.

We can describe ¢; better by a new operation tetration *b, which means
b

a-times exponent b i.e. b , in which b appears a times. Very fast great

310 = omeilliard 2 w 3

3 w
numbers, i.e. w=w 3w =w". Now ¢ =¥ w.

Even greater numbers by nested tetration operations!

0.3. EXCURSION: TRANSFINITE ORDINAL NUMBERS 17

N; Aleph-one

The first ordinal number which is mahtavampi? than w. L.e. there doesn’t
exist any bijection, which would function X; elements into w elements.

Hilbert’s Hotel

Let’s think about Hilbert’s Hotel, in which there is infinite number of rooms,
numbered by 0,1, 2, 3, Hilbert’s Hotel is such a strange hotel that even if
it is full it can take new visitors. Let’s suppose for example that there is one
visitor in each room and a new visitor arrives to the hotel. How can we give
her/him a room? Easily! We put the new visitor into room 0, which we get
empty by moving the guest 0 into room 1, which we get empty by moving
the guest 1 into room 2 and so on.

What about if there comes a group of infinite number of guests at once? Now
we can put all the previous guests into even rooms and new guests into odd
rooms.

In the same way we can fit w?, w* or even ¢, quests. However the capacity of
the hotel has a limit: ¥;. ¥; is the first such number that we cannot fit such
number of guests into the hotel by any ordering.

Cantor’s proof

Cantor showed 1873 that there are at least X; points in the mathematical
space. (Usually we say that the set of real numbers is uncountable). Cantor
used a very smart technique in his proof, so called Cantor’s diagonalization
method:

Claim: The set of real numbers R is uncountable.

Proof: It’s enough to study some subset of R and show that it is uncountable.
Let’s select interval]0, 1[and make an antithesis:

Antithesis: The interval 0, 1 is countable. It means that we can number all
real numbers z, 0 < x < 1 by natural numbers. Let’s suppose that the num-
bering is done by a bijection r, which gives the real number = a number of
order 7(z) (r :]0,1]— N). Let’s suppose that we can represent all real num-
bers of the interval]0,1[as an infinite matrix M, in which every natural
number corresponds some real number represented with infinite precision.
The beginning of the matrix could be following:

18 LUKU 0. INTRODUCTION

r(1) : .141592...
r(2) : .333333...
r(3) :.718281...
r(4) :.414213...
r(5) : .500000...

Let’s now construct a new real number in the following way: We read the
digits in the diagonal of the matrix in order and change every digit to somet-
hing else. I.e. if the desimal representation of the new number is .d;dsdsdy...
the ith desimal d; # M]i][7] (i.e. the ith desimal of the ith row).

The beginning of the number could be for example .02719.... However this
number cannot appear in the matrix, because it differs from each number
in the matrix: from number 1 in first digit, from number 2 in second digit,
from number 3 in third digit and so on. So there cannot exist such ordering
function r.

Litterature

Rucker, Rudy: White Light, or, What is Cantor’s Continuum Problem? Ace
Books, New York, 1982. (Imaginative science fiction novel, in which we play
with infinities and also visit Hilbert’s Hotel.)

Rucker, Rudy: Infinity and the Mind. The Science and Philosophy of Infinite.
(An easy reading scientific book going on the themes of the White Light.)

Lem, Stanislaw: N. Ya. Vilenkin, Stories about Sets. Academic Press, New
York, 1968. (A collection of shortstories, one of them about Hilbert’s Hotel.)

Hofstadter, Douglas R.: Godel, Esser, Bach: An Eternal Golden Braid. Vin-
tage Books, New York, 1989. (Chapter XIII shows by Cantor’s diagonaliza-
tion argument that there exists problems which are algoritmically unsolvable.
Also otherwise suitable reading for this course!)

0.4 Exercises about chapter 0

1. Pigeonhole Principle says: If you have more pigeons than pigeonholes,
and each pigeon flies into some pigeonhole, then there must be at least
one hole that has more than one pigeon.

What happens, if you have as many pigeonholes as there are natural

0.4. EXERCISES ABOUT CHAPTER 0 19

numbers, and as many pigeons, as there are integers? What about,
if you have as many pigeons as there are natural numbers, but each
pigeon tries to make nest with every other pigeon into a different hole?
(Only one nest can be made into one hole.)

2. How would you allocate w x w quests into w rooms of Hilbert’s Hotel?

3. In the quest book of Hilbert’s Hotel there is only finite number of names
in each page and new quests must always write their names into the
next empty line. How many pages there must be in the book so that
there is room for the new names (without reorganizing the names) as
long as there is room in the hotel (maybe after reorganizing)?

4. Find the error in the following proof that 2 = 1. Consider the equation
a = b. Multiply both sides by a to obtain a? = ab. Subtract b* from
both sides to get a* —b* = ab—b?. Now factor each side, (a—b)(a+b) =
b(a — b), and divide each side by (a — b), to get a + b = b. Finally, let
a and b equal 1, which shows that 2 = 1.

5. What is wrong in the following induction proof that all cats are of the
same colour?

Let n be the number of cats. If n = 1 the claim holds clearly (one cat
is always of the same colour). Let’s now suppose that for any group
of n cats the claim holds. Then let’s consider a group of n + 1 cats.
By selecting any n cats from this group (which can be done in n + 1
different ways) we get by the induction assumption a group in which
all the cats have the same colour. So all n+ 1 cats must be of the same
colour.

6. Let X be a set and X the size of n = | X|. Prove by induction that the
size of the powerset of X is |P(X)| = 2".

7. Prove the following claim. If there are n(n > 2) people in the party,
then at least two people have equal number of friends in the party.

8. Prove by contraposition: If ¢ is an odd integer number, then the equa-
tion n? +n — ¢ = 0 doesn’t have any integer solution for n.

20

LUKU 0. INTRODUCTION

Luku 1

Computational problems

Computational problem ~ any task which can be modelled such way
that it can be solved by a computer

E.g.: multiplying integers, ordering library cards, managing course da-
tabase

the solving program is one representation

e a more general representation is easier to analyze

1.0.1 Problem: The MIU-system

In the logic school of Kissastan the cat students study MIU-stystem, in which
all the clauses are constructed from three letters: M, I and U. There is only
one axiom, M1, in the system. New clauses (theorems) can be derived from
the previous clauses (the axiom or theorems) by the following rules:

1. If you posses a string, whose last letter is /, you can add on a U at the
end.

2. Suppose you have Mz (in which z can be any string, also an empty
string). You can derive a string Mzz.

3. If I11 occurs in some string, you may replace it by U.

4. If UU occurs in some string, you can drop it from the string.

21

22 LUKU 1. COMPUTATIONAL PROBLEMS

The rules can be applied freely, when ever they fit the axiom or already de-
rived theorems, but you are not allowed to do anything else (that’s why the
system is called formal).

The cat students should derive from the axiom M1 a theorem MU. Can you
perform the reasoning?

So MIU-system can be thought as some kind of language game, in which
we have an alphabet {M,I,U} and a grammar to construct words. Let’s
represent the rules more formally:

xl — zU
Mz — Mzzx
xllly — xUy
zUUy — xy,

in which z and y can be any strings.

Let’s consider the set of all possible strings >*, which consists of strings

{e, M, 1, U MM, MI, MU, IM,II, IU, UM, UI,UU, MMM, MMI, MMU, MIM,...}.
Now we can make different questions about the strings. E.G. problem 7 (z):

"What strings can be produced from a given string x by the rules of the
system?” or my(x): ”Can you produce string x from M1I by the rules of the
system?” The answer for the first question is a set of strings (or possibly an

empty set), in fact a subset of £*, while the answer of the latter one is simply

"yes” or "no”. Such yes/no-problems are called decision problems. Formally

we can define a decision problem 7 as a mapping 7 : ¥* — {0,1}. So it
associates to each string of the alphabet either answer 1 or 0.

We can also ask, which strings of ¥* does the decision problem 74 accept?
(i.e. for which x 7(z) = 1 or the inverted relation 7—!(1) = z?) The answer
set A is called a formal language and the corresponding decision problem 7 4
the recognition problem of language A.

Problem: Which words do the following languages consist of?

e All strings which can be produced from M.
e All strings which can be produced from U.

e All strings which can be produced from MU

23

(The idea of the MIU-system is introduced in the book by Hofstadter, Godel,
Escher, Bach.)

1.0.2 Formalization

e the problem has potentially an infinite set of cases (“input”)

the solution is an algorithm, which associates to each case its answer
(“output”).

e.g. multiplying integers

— cases: all possible pairs of integers
— an answer for a given pair: the product of the integers

— solution of the problem: any algorithm for multiplying integers

each case and its answer must be finitely representable.

Computational problem = a mapping from the set of cases to the set
of answers
1.0.3 Finite representation

e all information has to represented by bits in the last hand
e natural to allow also other symbols

e Definition: “finite representation” = a string in some alphabet.

1.0.4 Some concepts

e Alphabet a nonempty, finite set of characters or symbols. e.g. binary
alphabet {0,1} and latin alphabet {A,B,...,Z}.

e String ordered queue of characters E.g. “01001”, “000”,“LTE” “XYZZY”

e Length of x: the number of characters. Mark |z|. E.g.

01001| = [XYZZY| =5, |000| = |OTE| = 3.

e Empty string €, length |e| = 0.

24 LUKU 1. COMPUTATIONAL PROBLEMS

e (atenation strings written together. E.g.
(i) CAT"FISH = CATFISH,;
(ii) if x = 00 and y = 11, then zy = 0011 and yz = 1100;
(iii) for all x we = ex = x;
(iv)
e The set of all strings of the alphabet ¥ ¥*. E.g. ¥ = {0,1}, ¥* =
{€,0,1,00,01, 10,...}.

v) for all z, y |zy| = |z| + |y|.

1.0.5 Decision problems and formal languages

e computational problem 7 is a mapping
m Xt — I
in which ¥ and I' are alphabets

e decision problems are a subclass of computational problems, for which
the answer is "yes” or "no”

e the problem is of form 7 : ¥* — {0, 1}.

e c.g. “is a given number prime?” can be represented as a mapping in
»={0,1,2,...,9}

. | 1, if z is prime;
m: X" —{0,1}, () = { 0, if z is not prime.

e For each decision problem 7 : ¥* — {0, 1} there is a set of strings
A, ={z e X | n(z) =1},
i.e. those cases for which the answer is "yes”

e for each set of string A C X* there is a decision problem

. |1, ifze A
T2 —){0,1}, 7TA(.’L‘)—{ 0, 1f$¢A

e formal language in X = arbitrary set of strings A C ¥*

e recognition problem of language A = decision problem 74 associated to

A

e formal language decision problem

25

1.0.6 Solvability

e the program P solves the computational problem 7, if for each input
x the program P computes and outputs the value 7(z).

e Can all possible computational problems be solved by computer?

e No: the set of all possible strings (possible programs) is countable, but
the set of all possible decision problems is uncountable (We cannot put
N guests into w rooms.)

e Notice! The result is independent of the programming language used!

Theorem 1 For any alphabet 3 the set of all strings ¥* is countable.

Proof: Let ¥ = {ay, ag, ..., a, }. Let’s fix an “alphabetic order” e.g. a1 < ag <
e < Gy

The strings of ¥* can be ordered in (canonical order):

1. first list strings, whose length is 0 (= €), then those, whose lengt is 1
(= ay,aq,...,a,), then those, whose length is 2, and so on

2. in each length group the strings are listed in alphabetic order

e for each natural number n there is astring of ¥* and vice versa — X*
is countable

Bijection f : N — X* is:

I

a

n+1
n+ 2

I

a a1

1

a10a2

2n
2n+1

I

a1Gy

I

G201

26 LUKU 1. COMPUTATIONAL PROBLEMS

3n — asa,

1

n2+n
n2+n+1
n?>+n+2

Qp,Gp

I

a1a101

I

a10102

Theorem 2 2 Any set of decision problems of ¥ is uncountable

*Proof: (Cantor’s diagonalization argument.)

Lets mark the collection of all decision problems of 3 by II

II = {r | 7 is mapping ¥* — {0,1}}.

Antithesis: Suppose that II is countable, i.e. there exists a numbering
I1= {7T0, 1,79, .. }

Let the strings of X*be in canonical order xg, z1, zo,

Let’s construct a new decision problem 7:

R . 1, jos mi(z;) = 05
7% —{0,1}, (r) = { 0 j'OS Wzgﬂﬁzg =1

Because 7 € 1I, 7 = 7, for some k£ € N.
Then

. |1, if mp(xy) = w(xk) = 0;
W(xk) o { O, if ﬂ'k(.’l?k) =7 1

CONTRADICTION. The claim that the set II is countable, is false. O

27

\ o (B! T2 3

—_

0
2| 0 4 0 0
0
| 1 1 11

=

3/ 0 0 0 P

e we can solve only a small part of all existing computational problems
by any programs

e all ’strong enough” programming languages solve just the same class of
solvable problems (Church-Turing thesis).

e most computational problems are absolutely unsolvable.
e also interesting practical problems

e e.g. halting problem: given a program P and its input z; we should
decide, if the computation of P completes with input x, or does it stay
in infinite loop

1.0.7 Excursion: The unsolvability of the halting problem

Interpreted in C-formalism: “There doesn’t exist a total (always halting) C-
program, which would solve, if the given C-program P halts with input w”.

Let’s suppose we could write a total C-funcion
int H (char *p, char *w),

which gets value 1, if the function represented by string p halts with input
w, and 0 otherwise. Let’s write another C-function H:

28 LUKU 1. COMPUTATIONAL PROBLEMS

void H (char *p){
if H(p,p) while (1) ;
}

Let’s mark the code of H by h and study the computation of H by its own
description. Contradiction:

A A

H(h) halts <« H(h,h) =0 << H(h) doesn’t halt.

= such total halting tester program H cannot exist.

'.FJ'...I.‘?IM& Y-Vl PULS -
A - KRUSIST

Erddns paiving
S Loty (5 Lavs, PEEHI
koetelle, Turing!o

§

& on i‘m‘
ivke kertoo

kewelida, F’Iﬂﬂ}.rh" i
da katte, fe on e

Aive. Priabiyug

29

Testataan g g, -
Koproia ensin gin,y.

Tl.-u;-i] pEREH Mmj

v Lo e o, prhh..

Mo vitn, kone, Kevwopa,
[TV g L
itretutkrihelnifasy &

B . Jog Banman. o8& fe
frifhby,fe e prodd,

da joi Jasm om e ey e
Plelabdy ge P)-";H?_))

s

] y vialle en elicite
= ?\ (\ 5 kwisd
e
kY L_ - _\-\-\\\

Minua & vo;
dllo. olemagpa,

o,

9a nirn kone baihiar Hpvaste !
Favima [fiaane

The comic about Omnipotency and existency crisis.

30 LUKU 1. COMPUTATIONAL PROBLEMS

One day the Great Guru decided to test Turing. "Here is a machine, which
can tell about all machines, if they halt or not. And look! It will always
halt itself.”

"Let’s study you.First I make a copy of you.”

Turing decided to change the copy a little bit. ”"You are a very good copy,
but still eat this.” "Hmm. If H says that P halts I’ll loop.”

”Ok, machine. Tell me, if this sister of yours halts in her selfrespection.”

The machine thought and thought. "Hmm... If I say that it halts it doesn’t
halt.” ”And if I say it doesn’t halt it halts.”

”T am sorry I have an existency crisis.” ”I cannot exist. Goodbye!” And so
y y
the machine vanished into air.

1.1. EXERCISES ABOUT CHAPTER 1 31
1.1 Exercises about chapter 1

1. Read the story about decision problems
http://www.cs.joensuu.fi/pages/whamalai/tfcs/story.html and
complete it!

2. Let’s consider the logic school of Kissastan again
(http://www.cs. joensuu.fi/pages/whamalai/tfcs/problem0.html).This
time the topic is a more complicated MIAU-system, which consists of
the following rules:

xUAx — xAUy
xUUx — xIUy
x — MxM

x — xUI

XX — X

xI — xUA

The task is to show that even an empty string can create a proper
miaow (MIAU) by the rules of the system!

3. Let’s consider the alphabet ¥ = {m, i, u}. The "powers” of the alphabet
are defined in the following way:
0 = {¢} (empty string)
Y =% x 3% = {az|a € ¥ and 1 € TF}.
E.g. X! = {m,i,u}, ¥* = {mm, mi, mu,im, i, iu, um, ui,uu}. How
many elements ("words”) is there in ¥"? What about in the whole
language ¥* = J,_, ™27

