Luku 2

Regular languages and finite
automata

No niln kowe |
Ry pis toimeen.

Listosso on kailklki
menkiijont; jaide
koodime. gm0, olla,

e ec.g. What is legal for variables, constants, different datatypes and so
on in the programming languages? How to describe that syntax?

e The problem can be solved by reqular languages and finite automata

e in UNIX ocommand grep to search for given patterns in the text.
(grep=“Global search for Regular Expression and Print”)

33

34 LUKU 2. REGULAR LANGUAGES AND FINITE AUTOMATA
2.1 Regular expressions and regular languages

e E.g. accept all strings which contain word "cat” i.e. the strings are of
form
[0 or more letters|cat[0 or more letters]

E.g. Search strings which are of form
[zstreet or xroad |[number] [possible letter]
[possible flat number|[postcode]|city]

How to represent in a compact way all legal strings (i.e. how to describe
the language that the recognizing program accepts?)

Let’s define three operators for combining languages: Let A and B be
langauges in alphabet 3. Then

— Union of A and B is language
AUB={zeX* |z € Aorz € B}
— Product of A and B
AB={zyeX* |z € A, y € B}

— Powers of A A*¥_ k> 0, are defined:

A = {e},
Ak — AAlc—l
— Closure of A
A= 4
k=0

= {:Elﬂik'kZO, ;€ A VZ:L,]{,‘}

e Definition Regular expression in ¥ are defined by rules:
(i) @ and € are regular expressions of ¥;
(ii) @ is regular expression of 3 for all a € ¥;

(iii) If » and s are regular expression in 3,
then (rUs), (rs) and r* are regular expressions in ¥;

(iv) Other regular expressions in ¥ don’t exist.

2.1. REGULAR EXPRESSIONS AND REGULAR LANGUAGES

e Each regular expression of X, r, describes a language L(r):
(i) L(0) = 0;
(i) L(e) = {e};
(iii) L(a) = {a} for all a € ¥;
(iv) L((rUs)) = L(r) U L(s);
(v) L((rs)) = L(r)L(s);
(vi) L(r*) = (L(r))*

e E.g. In alphabet {a,b}:

r1 = ((ab)b), ;= (ab)*,

= (ab™), ry= (a(bU (bb)))*.

The corresponding languages:

L(ri) = ({a}{b}){b} = {ab}{b} = {abb};
= {ab}* = {¢, ab, abab, ababab, ... }
{(ab)" | i >0}
L(r3) = {a}({b})" = {a,ab, abdb, abbb, ...}
{ab’ | i > 0};
({a}{b,0b})* = {ab, abb}*
= {e¢,ab, abb, abab, ababb, . ..}
= {z€{a,b}"| eachainx
is followed by 1 or 2 b’s }

~
—~
=3
N
N—r
|

~

—
R
o

N—
|

e Rules for dropping paranthesis:
— Priority of operators:
- . = U
— Assosiativity of union and product operations:

L(((rus)ut)) = L((ru(sut)))
L(((rs)t)) = L((r(st)))

35

36 LUKU 2. REGULAR LANGUAGES AND FINITE AUTOMATA
— We can use common letters if there is no danger of confusion

Simplier:
ry = abb, 1o = (ab)*, r3=ab*, 7r4= (a(bUbb))

o Definition: Language is regular, if it can be described by a regular
expression.

e E.g. Let alphabet ¥ = {a,b,c, ..., }. Let’s accept strings of form

I*catl™,
in which [is abreviation for [= (aUbU ... Ud) (i.e. [* € ©¥)
e E.g. unsigned floating point numbers in C (float, double, long double):

— (integer part).(desimal part) (e or E) [+ or —] (exponent) [suffix]
— integer part and desimal part consist of digits
— either integer or desimal part may be missing (but not both)

— either (i) desimal point or (ii) (e or E) and exponent can be missing
(but not both)

— suffix: F or f: float, L or l: long double, otherwise double

e The recognizing language for unsigned floating point (without suffixes):
number = (d*.d* U .d")(eU ((eU E)(+U—Ue€)d")) U
dt(e UE)(+U—Ue)d"t

e For example strings 12., .12, 1.2, 1.2E3, 1.2e3, 1.2E-3,1E2, 1e23 belong
to the language

2.1.1 Simplifying regular expressions

e Often many equivalent expressions, e.g.:
¥ = L((aUb)")
= L((a"0%)")
L(a™b* U (aUb)*ba(aUb)").

e Definition: Regular expressions r and s are equivalent, mark r = s, if
L(r) = L(s)

2.1. REGULAR EXPRESSIONS AND REGULAR LANGUAGES 37

e Also mark r C s, if L(r) C L(s)

e simplifying the expression= defining the “simplest” equivalent expres-
sion

e Notice! We often mark r+ = rr* = r*r
2.1.2 Simplifying rules

rUr = r (but rr #r, when r # 0, ¢)

rU(sUt) = (rus)ut
r(st) = (rs)t
rds = sUr

r(sUt) = rsUrt
(rus)t = rtUst
0* = e
br = 0 (butQur=r)
er = 7 (but eUr #r, when r # ¢)

r* = r'rUe=rtUe
r = (rUe)”

e Also holds:
If r=rsUt, then r = ts*, when € ¢ L(s)
o L(r)=L(s) & L(r) CL(s)ANL(s) CL(r)ie.r=s<rCsAsCr
o FE.g:
1. (aUb) C (a*d*) = (aUb)* C (a*b*)*
2. ((a*0*)*) C a*b* U (aUb)*ba(a U b)*):

— if of form a*b*, then obvious
— otherwise contains substring ba
3. a*b* U (aUb)*ba(aUb)*) C (a Ub)*, because (a Ub)* describes all
strings of X

e We can also prove (proof omitted): If L and M are regular languages,
then also

38 LUKU 2. REGULAR LANGUAGES AND FINITE AUTOMATA

1.LNM
2. L=Y*\L
3. L® ={wfw e L}

are regular

2.2 Finite automata

e Problem: A coffeemachine, which doesn’t give change, accepts coins of
50 cents and one euro. The minimum tax is 2 euros, What kind of input
strings does the machine accept?

e Legal input strings e.g. (as cents):
50 + 50 + 50 + 50
100 + 100
50 + 100 +100
100 + 50 + 50 + 100

e i.e. input strings are of form

1 euro + 1 euro +
[0 or more 50 cents or 1 euro coins]

or

1 euro + 50 cents +
[1 or more 50 cents or 1 euro coins]

or

50 cents + 1 euro +
[1 or more 50 cents or 1 euro coins]

or

50 cents + 50 cents + 1 euro +
[0 or more 50 cents or 1 euro coins]

or

2.2. FINITE AUTOMATA 39

50 cents + 50 cents + 50 cents +
[1 or more 50 cents or 1 euro coins]

e The coffeemachine can be described as a finite automaton
e input of automaton: 50 cents and 1 euro coins

e the automaton accepts an "input string”, if the sum of the coins in it is
at least 2 euros

e Automaton can be represented as a transition diagram

50, 10(

2.2.1 Representations of finite automaton
e transition diagram

e transition matrix

50 snt | 1 euro
— qo q Qo

q1 g2 g3
) g3 44
g3 g4 44

Qs q4 g4

e E.g. unsigned floating point numbers in C:

40 LUKU 2. REGULAR LANGUAGES AND FINITE AUTOMATA

d

-
(&——)

/

—og
d

d

— Transition matrix:

d| . |Ee|+,—
— qo|q1|Q2
g1 191|193 | 44
g2 | g3
<~ 3|G3 g4
q4 | Q6 gs
gs | de
< Gs | Gs

Here d = {0,1,...,9}. The missing positions of the matrix cor-
respond “Error” states, which are usually not drawn.

2.2. FINITE AUTOMATA 41

— As a program:

int IsDigit(char c); /* returns 1, if ¢ is digit, 0 otherwise */

int g =0
char ¢ while ((¢ = fgetc(stdin))!=EOF)
{
switch (¢)
{
case 0: if (IsDigit(c)) ¢ = 1;
else if (c==""") ¢ = 2 else ¢ = 99;
break;
case 1: if (IsDigit(c)) ¢ = 1;
else if (c==""") ¢=3;
else if (c=="¢’ || c=="E’) ¢=4; else ¢=99;
break;
case 2: if (IsDigit(c)) g=3; else ¢=99;
break;
case 3: if (IsDigit(c)) ¢=3;
else if (c=="¢" || c=="E’) ¢ = 4 else ¢ = 99;
break;
case 4: if (IsDigit(c)) ¢=6;
else if (c=="+" || c=="-") ¢ = 5 else ¢ = 99;

break;

case b: if (IsDigit(c)) ¢g=6; else ¢ = 99;
break;

case 6: if (IsDigit(c)) ¢=6; else ¢ = 99;
break;

case 99: break;

}
if (¢g==3]|| ¢g==06) printf("OK!");

else printf("Error");

e We can also add semantic functions into the program based on finite
automaton

e E.g. Recognizing a signed integer.

42 LUKU 2. REGULAR LANGUAGES AND FINITE AUTOMATA

d

N

e Corresponding program, which also evaluates the value of number:

int IsDigit(char c); /* returns 1, if ¢ is digit, 0 otherwise */

int =0
char ¢ int sign = 1; int val = 0; while ((¢ = fgetc(stdin))!=EOF)
{
switch (¢)
{
case 0: if (c=="4" || c=="-") {
q=1;
if (c=="-") sign = —1;
}
else if (IsDigit(c) {
9=2;
val = ¢ —'0';
}
break;
case 1: if (IsDigit(c) {
7=2;
val = ¢ —'0';
}
else ¢=99;
break;
case 2: if (IsDigit(c)) {
q=2;
val =10 x val + (¢ =" 0);
}
else ¢=99;
break;

2.2. FINITE AUTOMATA 43

case 99: break;

}

if (¢ == 2) printf("The value of the number is %d”, sgn * val);
else printf("Errourness number”);

2.2.2 Formal definition

syOtenauha: ‘ i ‘n ‘P ‘u ‘ b ‘

nauhapdi: /]\T
Qg =42
hj ksikko:
ohjausyksikko do
4

e Hinite automaton M

— finite control device, which is defined by transition function 6
— 1nput tape, which is divided into cells

— reading head, which is always positioned to some input charater

e Automaton stops when the last input character is read. If the control
device is then in a favourable state the automaton accepts the input,
otherwise it is rejected

e The automaton recognizes the language, which consist of all accepted
strings

e Definition: Finite automaton is a quintuple
M = (sza(sa q07F)7
in which

— (@ is finite set of states
— X is tnput alphabet;
— 0:Q x X — @ is the transition function;

44 LUKU 2. REGULAR LANGUAGES AND FINITE AUTOMATA
— qo € @ is the initial state;
— F C @ is the set of (favorable) final states.

e E.g. the formal representation of the real number automaton:

M = ({q,-..,gerror},{0,1, ... ,9,.,E,e,+,-},
5aQ0a{q3aq6})a

in which ¢ is like earlier in the matrix; e.g.

5(510,0) = (5((]07 1) == 5(q07 9) ={q1,

5(q07) = g2, (5(907 E) = error, 5(41; E) = Q4 jne'

e Configuration is pair (¢, w) € Q x X*

— initial configuration x is pair (qo, x)

— ¢ is current configuration w is the unread part of input string

e Configuration (g, w) leads directly to configuartion (¢', w'), mark
(¢, w) - (¢',w"),
M

if w=aw' (a € ¥)and ¢ = (g, a).
Configuration (¢, w') is an immediate successor of (¢, w)

e (q,w) leads to (¢',w') i.e. configuration (¢',w’) is a successor of (g, w),

mark
(¢, w)E" (¢, w'),
M
if there exists configuration queue (go, wo), (g1, w1), - .. , (Gn, wy,), n > 0,
such that

(¢, w) = (o, wo) - (qu, w1) = -+ + (gn, wn) = (¢, ")
M M M
Special case: n = 0, (¢, w)F" (g, w) for any (g, w)
M
e Automaton M accepts string z € ¥*, if
(g0, 2)F"(qy, €) for some ¢y € F
M

otherwise M rejects x.

2.3. MINIMIZING AUTOMATON 45

e Definition: Automaton M recognizes language

L(M) ={z € ¥* | (go,2)F"(gs,€) for some q; € F'}
M

e E.g. string “0.25E2™

l_ (qg, 5E2) l_ (CI3, E2)
F (g4,2) F (gs€)-

Because ¢s € F' = {g3, ¢s}, then 0.25E2 € L(M)

2.3 Minimizing automaton

e Two automata, which recognize exactly the same language, are equiva-
lent

e A finite automaton is minimal if it has minimum number of states
compared to other equivalent automata

e An automaton, which has more states than the minimal equivalent
automaton, is redundant

e Algorithms, which construct automata, don’t always produce minimal
automata

e It is easier to "read” a minimal automaton than redundant automaton
e It’s useless to save additional states

e [t’s more efficient to process on a minimal automaton

2.3.1 Some concepts

e Let’s define for M an augmented transition function 6*, which can have
a string as its parameter:
if g€ @, x € X*, then

6*(q,z) = such ¢’ € Q, that (¢, z)F"(¢,¢€)
M

46 LUKU 2. REGULAR LANGUAGES AND FINITE AUTOMATA

e Equivalence between states: states of M, ¢ and ¢', are equivalent, mark

if for all xz € ¥* holds
6*(¢,x) € F ifand only if &*(¢',z) € F
(i.e. if automaton accepts after ¢ and ¢' exactly same strings)

e k-equivalence: states ¢ and ¢’ are k-equivalent, mark

k
¢=q,

if for all z € ¥*, |z| < k, holds
0*(¢,z) € F if and only if 6*(¢',z) € F

(i.e. if string, the length of which is at most k, cannot make difference
between states)

e (Clearly holds:

. 0 .
(i) ¢=4¢', iff both q and ¢ are final states
or neither is; and

i) g=¢, iff qéq'forallkz(),l,Q,...

e Idea of minimization: the k-equivalence classes of the states of the given
automaton are partitioned into (k+1)-equivalence classes until we reach
the absolut equivalence

2.3.2 Minimization algorithm

e Input: Finite automaton M = (Q, %, d, qo, F).
1. (Removing redundant states) Remove from M all states, which
cannot be reached from ¢y by any string.

2. (0-equivalence) Partition the remaining states of M into two clas-
ses: non-final and final states

3. (k-equivalence — (k + 1)-equivalence)

2.3. MINIMIZING AUTOMATON 47

while not(transition function compatible with class division) {
divide states behaving in the different way into different classes;
}

return M = (Q, E,S,do,ﬁ),

in which

N

— (Q=state classes of M
— d—transition function between classes
— go=class of the initial state of M
— F—classes of the final states of M
e Final result:
— a finite automaton M. , which is equivalent with M and in which
there is minimum number of states
~ Mis uniquely defined (except naming)
e Notice: Initially we had a finite number of states and in each step 3

(except the last one) we divide at least one state class, so the algorithm
finishes always

Example

[] Let M - (Q;Ea5)q07p)’

— set of states Q = {1,2,3,4,5,6},
— input alphabet ¥ = {a, b},

— initial state ¢op = {1},

— set of final states F' = {4,5} and

— transition function 9:

S Ui W N~
=W N R N
U O W N W o

48 LUKU 2. REGULAR LANGUAGES AND FINITE AUTOMATA

e Step 2: 0-equivalence

— Divide the remaining states of M into two classes: final and other

states
a b
. —- 1121 (3,1
214,112, 1
312, 1 3,1
II: « 43,1 |5 1I
«~ 51,1 |4,1I

2.4. NONDETERMINISTIC FINITE AUTOMATA 49

— Now we can construct an automaton, in which there is

* one state for each class
x from each state all those transitions, which the initial states
in the class have

— The state is non-deterministic, if we can move from it to more
than one state with one character

— In example state I is nondeterministic, because by a we can move
to state I or state II

e Step 3: k-equivalence = (k + 1)-equivalence

— If there are no more nondeterministic states in M then the algo-
rithm finishes and returns M

— Otherwise refine the division of each undeterministic state of M
further:

x Divide the initial states inside the class into separate classes
such that from each class there are only similar transitions
* Repeat step 3
— In our example we divide the class I

— After that there are no more nondeterministic states and the al-
gorithm finishes

e Final result

a b
I. — 1|21 |31
312,11 |3, 1
I1: 24,111 2,11
Im: « 43,1 5, ITI
«— 51,1 |4,1III

D
Bl
D

()
o
O

50 LUKU 2. REGULAR LANGUAGES AND FINITE AUTOMATA
)
)
b

2.4 Nondeterministic finite automata

a

b

e helps to create conncetion between finite automata and regular langua-
ges

— deterministic and nondeterministic automata recognize exactly sa-
me languages

— nondeterministic automata recognize exactly regular languages
= So deterministic automata recognize exactly regular languages

e In nondeterministic automaton the transition function connects for a
pair of previous state and input character (¢, z) a set of possible succes-
sor states

e Non-Deterministic automaton accepts a string if some path of pos-
sible states leads to final state. If such a path doesn’t exist the non-
deterministic automaton rejects the input string

e E.g. in the figure the automaton accept string abbaba, because it can
be handled in the following way:

(o, abbaba)(qo, bbaba)(qo, baba)
(q07 aba) (q17 ba) (q27 CL) (Q3a 6)

e On the other hand we can also reach rejecting state

(go, abbaba)(qo, bbaba)(qo, baba)
(qOJ aba) (qo; ba) (qu a) (q07 6)

e Non-Deterministic automaton can be thought to process all possible
derivations parallelly.

2.4. NONDETERMINISTIC FINITE AUTOMATA o1

Deterministinen Epadeterministinen
laskenta laskenta

O/O\O
I
/ VAN

O O

O=" 0= 0= 0= 0

I

O
© hyvaks
| /S yvaksy
O O

hyvaksy tai hylkaa hylkaa

e Definition: Nondeterministic finite automaton is a quintuple M =
(Q,%,6,q, F), in which
— (is a finite set of states
— ¥ is input alphabet,
— 0:Q x X — P(Q) is (setvalued) transition function,
— ¢o € (is initial state and
— F C @ a set of final states.

e The transition function of the automaton in the fig.

a b
—=q | {90, 1} | {@}
¢ 0 {g.}

| {e} 0
—q | {s) | {s}

e Now the error state can be expressed by emptyset

e (q,w) can lead directly to configuration (¢', w'), (¢, w) - (¢',w"), if w =

M
aw' and ¢’ € 6(q,a). Configuration (¢',w') is a possible immediate
successor of (g, w)

52 LUKU 2. REGULAR LANGUAGES AND FINITE AUTOMATA

Otherwise definitions same as earlier

Deterministic automata are special case of the nondeterministic ones
= All languages, which can be recognized by former, can also be recog-
nized by latter

But also vice versa: deterministic and nondeterministic finite automata
are equally powerful

2.4.1 Determinization

Given nondeterministic automaton M, construct the corresponding de-
terministic automaton M:

1. Create the states of M S C P(Q)

— i.e. the powerset of the states of M: P(Q)

— Mark set of states P(Q) = {0, s1, S, .-, S }, in which empty
set corresponds error state and £k = 2" — 1

2. Add the transitions between states of M-
- 5 _a>3j7 in which Sj = U{ql|f(Qaa) = qlaq € 8

— i.e. the successor set of s; by reading a consists of all such
states ¢’, which can be reached from the states of s;

3. Initial state {qo}

4. Favorable states: all such states, which contain the original favo-
rable state ¢ i.e. all s;, g5 € g

5. Remove all states, which cannot be reached from the initial state
6. Minimize automaton

— divide into favorable and other states

— refine the class division until compatible with transition func-
tion

e Example:

2.4. NONDETERMINISTIC FINITE AUTOMATA a3

O
)

OO
—U OO

e Clause: Let A = L(M) language recognized by some nondeterministic

finite automaton M. Then there exists a deterministic automaton M ,

—~

for which L(M) = A.

*Proof: Let A= L(M), M =(Q,%,6, q, F). Let’s construct a determ.
automaton M = (Q, Y, 4, do, F), which simulates the behaviour of M
in its all possible states parallelly. States of M correspond state sets of

M
Q@ = P@,
AO = {QO}a
F = {SCQ|S contains some gy € F'},

0(S,a) = |Jd(q,0).

geS

—~

Let’s check that L(M) = L(M). The equivalence follows, when we
prove that for all z € ¥* and ¢ € Q:

(QO;l')AI;*(q, €) < ({9}, x)AI:J*(S, €) and ¢ € S.

Induction by the length of x:

L. Jz| = 0: (g0, €)-"(g, €) & ¢ = qo-
Also ({go0}, 6);*(5, €) & S ={q}-

54 LUKU 2. REGULAR LANGUAGES AND FINITE AUTOMATA

2. Induction assumption: claim holds when |z| < k.

3. |z| = k + 1: then = = ya for some y, |y| = k, for which the claim
holds by induction assumption. Now

(40, %) = (do, ya)-" (g, €)

3¢ € @ s.e. (g0, ya)-"(¢'; a) and (¢, a) - (g, €)

3¢ € @ se. (@,y)-"(¢ €) and (', a) - (g €)

J¢' € @ se. ({90}, y) *(S',€) and ¢' € S" and ¢ € 0(q', a)
({20}, 9)E7(5", €) and Hq €S se qei(d,a)

({a0}, y)E"(S",€) and g € U 6(d,a) =4(5",a)

qEes!

(R

3

({‘Zo}a?/a);*(s',a) and ¢ € 0(5",a) = S
({40} v (",0) and (,0) £ (5.¢) amd g € §

M

({qo},7) = ({QO},ya)AI:l*(S, €) and g € S.

3

3

2.4.2 Pattern matching by nondeterministic automaton

Nondeterministic automata are suitable for describing pattern matching problems.
However, for program implementation we have to determinize the automa-
ton. Earlier we noticed that in the worst case the corresponding deterministic
automaton consists of exponential number of states compared to the origi-

nal one. Fortunately in pattern matching problems the determinization al-
gorithm produces an automaton, which contains equal number of states with

the original nondeterministic automaton, and which is also minimal automa-
ton!.

E.g. Let’s have alphabet {M,I,U}. Does the string contain pattern MIU?
Corresponding nondeterministic automaton:

Let’s determinize:

2.4. NONDETERMINISTIC FINITE AUTOMATA

A
(o) @#@

Kuva 2.1: Nondeterministic MIU-automaton.

M,l,U

M I U

0 0 0 0
A {0} {0,1}=E | {0}=A {0}=A
B {1} 0 {2}=C 0
C {2} 0 0 {3}=D
D {3} {31=D {31=D {3}1=D
E {0,1} {0,1}=E [{0,2}=F | {0}=A
F {0,2} {0,3})=E | {0}=A {0,3}=G
G {0,3} {0,1,3}=L | {0,3}=G | {0,3}=G
H {1,2}] {2}=C {3}y=D
I {1,3} {3}=D {2,3}=J {3}=D
J {2,3} {3}=D {3}=D {3}=D
K {0,1,2} |{0,1}=E |{0,2}=F {0,3}=G
L {0,1,3} |{0,1,3}=L | {0,2,3}=M | {0,3}=G
M {0,2,3} |{0,1,3}=L|{0,3}=G | {0,3}=G
N {1,2,3} |{3}=D {2,3}=J {3}=D
O {0,1,2,3} | {0,1,3}=L | {0,2,3}=M | {0,3}=G

M,l,U

)

Draw the diagram!

Remove the redundant states, which cannot be reached from the initial state,
and combain the final states (according to minimization algorithm).

Ul M

-
@ —=(-©

Kuva 2.2: Minimal deterministic MIU-automaton.

M,l,U

LUKU 2. REGULAR LANGUAGES AND FINITE AUTOMATA

26

FEINer g Ay
f.n.w—o..?ttw Evf

T8 43Y 1 a0

g

el TY
EEE et L

#of R DR, -

N vy,

.
e
e
.
T

e

f.u..;f:f_i{

P Yl

B My g

il -...n_ca..» r-.ﬂm o

Rt 275
nxl.‘_.wuv
RN RS

Jof op

-

e Qi u..u......t—J

f

\\ﬂ»\e:.m;ﬁa

.JNGF.C.E “are £
.,,H_, T T e o eogeoy
LEc el frp sy b Egr et .

A = ﬁz«...n.\

S —
i) ..I.s e T g

ey 1\&. fhadppn gty nJr
N &

LIRS e Ea I S I L LT RS
ot . sty ,m.//(r

[ql_u:x.:u.f w

e f @k fof Snpgeiee £ R R _..uwzn_a__rv

N da ™ E tm oy f R ..d.ai_.m g
f& FOEr Eé_& fls '3

.

3 m.aw:. FrArg wne x«.ﬁiq*? ey

Em&ﬁ»ﬁc_w

e, UM bd whoyiw - \\\
e il Faq __:»Op.u..a__uﬁ.\\‘\ ;f...r. e

—— S

2.4. NONDETERMINISTIC FINITE AUTOMATA 57

A comic about nondeterministic automaton consulting the doctor.

1. The automaton has two states: happy and tired. "Doctor, I have so
undeterministic feeling. I am naturally happy, but when I am turned
on in the morning, I don’t know, if I am tired or happy”

2. ”If T was happy, I stay happy, but if I was tired, turning off makes me
thrustrated.”

3. "Don’t worry. Let’s determinize you a little. You have eight possible
states, but if you are in the morning happy, you can never be only tired
or thrustrated or (tired or thrustrated) or (happy or tired or thrustra-
ted).” In the upper automaton states: happy, (happy or tired), (happy
or thrustrated), (happy, tired or thrustrated). In the other automaton
states: tired, thrustrated, (tired or thrustrated).

4. ”You can get thrustrated only if the user first turns you on and then
turns you off, and does nothing afterwords” In the automaton states:
happy, (happy or tired), (happy or thrustrated). What we learnt: Never
turn off a tired machine.

