Exercise session 4

1. Tranform the following automaton to deterministic!

- 2. Give nondeterministic finite automata to accept the following languages. Try to take advantage of nondeterminism as much as possible.
 - a) The set of strings over alphabet $\{0, 1, ..., 9\}$ such that the final digit has appeared before.
 - b) The set of strings over alphabet $\{0, 1, ..., 9\}$ such that the final digit has *not* appeared before.
 - c) The set of strings over alphabet $\{0,1\}$ such that there are two 0's separated by a number of 1's that is a multiple of 4. Note that 0 is an allowable multiple of 4.
- 3. Remove all ϵ -transitions from the Goblins' Gingerbread automaton and transform it to deterministic!

(See http://cs.joensuu.fi/pages/whamalai/tepe04/redhood.pdf)

- 4. What kind of language does the Goblins' Gingerbread automaton recognize? Describe the language as a regular expression!
- 5. Give the regular expressions corresponding the following automata!

- 6. Construct the finite automata corresponding the following regular expressions! $a)(ab)^*(ba)^* \bigcup aa^*$ $b)((ab \bigcup abb)^*a^*)^*)$
- 7. Let M_1 and M_2 be automata, which recognize languages $L_1 = (ab)(ab)^*$ and $L_2 = (ba)(ba)^*$. Construct an ϵ -automaton, which recognizes language $(L_1 \cup L_2)^*$. Remove ϵ -transitions from the automaton!