
Exercise session 8
1. Simulate the behaviour of a given Turing machine as a game. (Your exer-

cise teacher will have some transition diagrams of di�erent size of Turing ma-
chines.) If there are enough students in the group, you can make a competition
between the machines in recognizing a language. Each student corresponds a
state, performs a required writing operation on the tape, moves the reading
head and gives the control to the correct successor state. The accepting or
rejecting �nal state reports the result. (One point for each participant of the
game!)

2. What does the following Turing machine do? Simulate its behaviour with
di�erent input strings of as and bs!

a/A,R

a/a, R
b/b, R
A/A,R
B/B,R

</A,L
A/A,L
B/B,L

>/>,R

A/a,R
B/b,R

</<,L

</<,L

a/a,R
b/b,R
A/A,R
B/B,R

b/B,R </B,L

b/b,L
a/a,L

B/B,R

A/A,R

a/a,L
b/b,L

3. Construct a standard Turing machine, which subtracts one from the input
binary string. I.e. an integer n is given as a binary string x, in which the most

1

signi�cant bits are left and least signi�cant right (e.g. 8=1000). If n > 0, the
machine replaces x by the binary representation of integer n−1. If n = 0, the
tape remains the same, and the machine moves to the rejecting �nal state.

4. Construct a standard Turing machine, which lists all words in language 1n,
n = 0, 1, The machine begins with emty tape, and generates unary numbers
1, 11, 111, 1111, ... (Notice! Your machine will never halt.)

5. Construct a Turing machine, which generates binary representations of all nat-
ural numbers 0,1,00,01,10,11,000,001,... You can represent the binary numbers
as the least signi�cant bit on left.

6. Construct a Turing machine, which reads the input string, until it �nds two
consecutice as. The input alphabet is {a, b}.

7. Construct a Turing machine, which divides the input number represented as
binary number by two, if it is even. With odd numbers the machine transfers
to the rejecting �nal state. The binary numbers are represented
a) the most signi�cant bit on right
b) the most signi�cant bit on left

8. Construct a standard Turing machine, which recognizes the language {wwR|w ∈
{a, b}∗}.

9. Construct a standard Turing machine, which transform the string w into string
wwR (w ∈ {a, b}∗).

10. Construct a standard Turing machine, which recognizes the language
{w ∈ {a, b}∗|w contains equal number of a's and b's}.

11. Construct a 2-tape Turing machine, which gets input string w ∈ {a, b}∗ on its
1. tape, and writes string wR (=w in reversed order) onto 2. tape.
(Hint: Yoi can simulate ε-transitions with Turing machines by transitions
a/a, S or b/b, R, in which S is a new direction �stay�.)

12. Let's consider the following nondeterministic Turing machine:
M = ({q0, q1, q2, qf}, {0, 1}, {0, 1}, δ, q0, qf , qno),
whose transition diagram is de�ned as

2

δ(q0, 0) = {q0, 1, R), (q1, 1, R)}
δ(q1, 1) = {q2, 0, L)}
δ(q2, 1) = {q0, 1, R)}
δ(q1, <) = {qf , <,R)}

What does the machine do? Hint: simulate its behaviour with di�erent binary
strings. (You can use JFLAP, if you want.)

13. Construct a nondeterministic Turing machine, which recognizes the language
{ww|w ∈ {a, b}∗}.

14. Consider the nondeterministic Turing machine TEST_COMPOSITE (look
at the English material given to you), which recognizes composite numbers.
Could you make a prime tester machine by changing the accepting and reject-
ing states of the machine? Justify your answer!
More challenging:

15. Construct a standard Turing machine, which begins with empty tape and
generates as many 1s as possible on its tape before halting.(The machine
must halt �nally!) The machine can be composed of at most 3 states and the
accepting �nal state.

16. Describe (unformally) a nondeterministic Turing machine, which recognizes
the following language: The words of the language are of form w1#w2#...#wn

for any n such that for all i wi ∈ {a, b}∗ and for some j wj is the binary
representation of integer j. N.B.! Utilize the nondeterminism as much as
possible, i.e. prefer much branched but short paths. (The machine guesses
the correct path nondeterministically.)

17. Describe (unformally) a nondeterministic Turing machine, which solves the
Hamilton circle problem: given a directed graph, decide if there is a path which
goes through all vertices exactly once before returning back to the starting
vertex. (Hint: you can use a multiple tape Turing machine for representing
the graph as an adjecent list or matrix. You can suppose that alphabets a, ..., z
are enough for naming the vertices.)

3

