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Abstract: 

this paper, we summarize the main achievements made in the 4-years PUMS 
project during 2003-2007. In addition to d research progress, the 
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1. I

This 
th n
history, results, potential applications and future prospects of the research. The project 
was initiated by Tomi Kinnunen’s doctoral studies during 1999-2005, which inspired 

                                                

In 
 the reporte

phasis is on the practical implementations, how we have moved from Matlab 
d Praat scripting to C/C++ implemented prototype applications in Windows, 
ix, Linux and Symbian environments, with the motivation to enhance 
hnology transfer. We summarize how the baseline methods have been 
plemented in practice, and how the results are expected to be utilized 
mmercially and otherwise after the project. Brief view for future research 
allenges is outlined. 

ring the project, we had two main goals: (1) have a solid baseline that is close 
the state-of-the-art, (2) implement this method in all relevant platforms. 
sides this, there were no strong exact agenda but all

ructed annually due to the course of progress, reflecting the feedback from 
r partners, and according to our own understanding what we should do next 
d what we are capable of. One cannot predict the future and set specific 
ovative research goals. The only way to reach higher goals is via hard 
rough working, but also allowing enough freedom of research along the way 
give room for new innovations, which may or may not appear. The project has 
o been a long learn-by-doing process as well. 

ywords: Speech technology, speaker recognition, voice biometric, forensics 
earch, mobile applications, security applications. 

atistics: 40 pages, 31 figures, 8 tables, 11500 words, 64000 characters. 

ntroduction 

article documents the work done in speech & image processing unit (SIPU) during 
ationwide 4-years PUMS1 project funded by Tekes2. The document covers the e 

 
uheteknologian uudet menetelmät ja sovellukset – New methods and applications of 

eech technology (
1 P
sp http://pums.fi) 

ational Technology Agency of Finland (2 N http://www.tekes.fi) 
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At an early stage, the research group participated in an earlier SUOPUHE3 project 
du
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join forces with other speech technology research groups having similar project plans in 
closel
ap
It 
or
th
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O
iss
se ecessary sub-component needed by several partners. They all 
had their own solutions but no one seemed to be happy with their existing methods, and 
de
th
 
 

 projects jointly with other universities, industrial partners, and technology 
ency joint projects. 

ring 2001-02 as a sub-contractor for University of Helsinki, where prof. Antti 
onen’s group needed tools for automatic evaluation of features that were manually 
d semi-automatically extracted from speech signal. In its simplest form, the work 
eant just numerical comparison of feature sets of given two speech samples, but in 
actice, it turned out to be another case of challenging pattern recognition problem 
ith questions such as how to model the speakers, how to train the models, how to 
easure dissimilarity, how to deal with mismatch of training and testing conditions, 
w to combine different feature sets by data fusion, and all the practical aspects that 
eded to be solved. The earliest programs (DiscrTest, ProfMatch) originate from this 
riod. 

wn project was then initiated in 2002 but the pressure from outside led the group to 

y related fields either in speech recognition, speech synthesis, or speech-dialogue 
plications, which eventually turned into a large nationwide four years PUMS project. 
included all the most important research groups in Finland, several government 

ganizations and companies working in speech technology and its applications. During 
e first year, the project was coordinated by Tampere university of Technology (prof. 
akko Astola) but since then university of Turku (prof. Jouni Isoaho) took over the 
ordinating duty. 

ur main focus was on the speaker recognition problem (Fig. 1) but some secondary 
ues also were worked upon, namely voice activity detection (VAD), which was 
emingly simple but n

sired to find a better solution. Thereafter, this problem was studied extensively during 
e latter stage of the project, and results are reported here as well. 
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Figure 1: Overall system diagram for speaker recognition. 
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1.1 Speaker recogni
 
Despite expectations, the state of art is still based on the same short-term mel-frequency 
ce
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and which processing steps would be vital for successful recognition. During the 
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capability for being able to make ad hoc live demonstrations, larger systematic testing, 
or
ex
po
or
 
D
la
th er 
2.3, and EpocSprofiler 2.2.1. The software itself is not made as the result of the project 
bu
of
N
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tion history 

pstral coefficients (MFCCs), features that were invented already in 1980 [Davis’80], 
gmented by their first and second order derivatives, normalized by cepstral mean 
btraction technique [Atal’74, Furui’81], and modeled as Gaussian mixture models 
MM) adapted from a so-called universal background model (UBM) [Reynolds’00]. 
e recognition accuracy of the implementation depends a lot on implementation 
tails, proper normalization and training the models in matched acoustic and technical 
vironments, especially avoiding mismatch of channel and other technical factors. 

 the beginning, it was unclear how much each factor affects the recognition accuracy, 

ocess, however, these matters were concretely learned by trial-and-error manner 
ithin the evolving implementations and during the numerous tests and infamous 
monstrations that typically failed 50% of the time when presented in wider public.  

t the same time, most of the newest methods were implemented only by Matlab 
ulations, Praat scripts, and separate C-language components. These lack the 

 provide the methods for project partners or end user as such. The users were not 
pected to be engineers or computer science professionals, but forensic researchers, 
lice officers, military persons, R&D people at companies utilizing speech technology 
 developing innovative voice-based systems in completely other fields. 

uring the project, these methods were implemented step by step in C and C++ 
nguages, and several prototype software systems were built (Fig. 2). These all went 
rough major evaluation steps, and the current versions are Sprofiler 2.3, WinSprofil

t the systems have been given for free use for the project partners, with the exception 
 the mobile phone systems after the version 1.0, which haven been copyrighted by 
RC and its usage is limited to research only. Therefore, only the EpocSprofiler 1.0 
as released within the PUMS project. 

   
Figure 2: Prototype applications, in which the developed SRE system has been tested: 

Sprofiler (left), WinSprofiler (middle), and EpocSprofiler (right). 
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1.2 Research group in Joensuu 
 
The research was carried on in the Speech & Image Processing Unit4 in University of 
Jo
te
m
tim
Si
sta
fo
all
 
In
various time periods and success, namely Evgeny Karpov, Marko Tuononen, Evgenia 
Ch
O
fir
fo
F0
im
de
G
 
In
G
Pö  and Pekka Nykänen all contributed to the project either by 
working in another closely related project, or by completing their MSc thesis related to 
PU
pr
w

                                                

ensuu, lead by Prof. Pasi Fränti. The composition and roles of the members in the 
am changed a lot during the years (Fig. 3). In the early stage, the research issues were 
ainly solved and supervised by Dr. Tomi Kinnunen even though he spent most of his 

e in finalizing his thesis, and then two years working in a collaborative institute in 
ngapore5 in Dr. Haizhou Li’s group6. Later due to the course of progress, others 
rted to contribute more to the research development, and the core of the group 

rmed of Dr. Ismo Kärkkäinen, Juhani Saastamoinen and Ville Hautamäki who were 
 present throughout the entire project and made significant contributions. 

 addition, several junior members were recruited and served in the project with 

ernenko, Rosa Gonzalez Hautamäki, Radu Timofte, Ilja Sidoroff, and Andrei 
prisan. Evgeny Karpov implemented the first versions of recognition libraries and the 
st Symbian demonstrator. Marko Tuononen and Evgenia Chernenko were responsible 
r the VAD development. Rosa Gonzalez Hautamäki assisted, performed the work on 
 feature, and implemented the speech filtering part. Radu Timofte developed and 
plemented the methods for keyword spotting, and performed the latest VAD 
velopment. Ilja Sidoroff and Andrei Oprisan were main contributors for the Windows 
UI development. 

 addition, Dr. Pavel Kopylov, Victoria Yanulevskaya, Andrei Mihaila, Olga 
rebenskaya, Vibhor Jain, Harsh Gupta, Sergey Pauk, Teemu Kilpeläinen, Eeva 
lönen, Timo Viinikka

MS. In specific, Pavel Kopylov solved all technical issues for the access control 
ototype with the help of Harsh Gupta. Victoria Yanulevskaya and Andrei Mihaila 
orked for the Symbian development. 

 
4 http://cs.joensuu.fi/sipu/
5 Institute for Infocomm Research (I2R) 
6 Speech & Dialogue Processing Lab (http://sdp.i2r.a-star.edu.sg/) 
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: Research group in a meeting in 2005. Figure 3

 

1.3 PUMS personnel 
 
The following persons have been employed within PUMS for certain time periods: 

Head of the project 03-07 

To Senio 07 (IV) 
Ev 03-05 (I-I
Vi ojec
M Projec
Victoria Yanulevskaya Projec I) 
Ev Projec 06-07 (IV
Ro Projec 05-06 (III
Ilj Traine 06-07 (III
Ra 06-07 (IV
An 07 (IV) 

 
 

Pasi Fränti 
Juhani Saastamoinen Project manager 03-05 (I, II), 07 (IV) 
Ismo Kärkkäinen Senior researcher (PhD) 07 (IV) 

mi Kinnunen r researcher (PhD) 
geny Karpov Project researcher I) 

Prlle Hautamäki t researcher 03-06 (I-III) 
arko Tuononen t researcher 05-07 (III-IV) 

t researcher 06 (II
genia Chernenko t researcher ) 
sa Gonzalez t researcher ) 

a Sidoroff e -IV) 
du Timofte Trainee ) 
drei Oprisan Trainee 



 

2.

The method of our baseline uses MFCC features, and centroid models (i.e. vector 
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Th entation remained the same all the way, even 
though several longer term features were studied, implemented, experimented and 
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2006. From this competition and the latter findings showed interesting results that the 
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O equency cepstral coefficients (MFCCs), 
which is a quantized representation of the short-term spectrum (Fig. 4). The audio 
sig s long frames with 10 ms overlap. Each segment is then 
co  by fast Fourier transform (FFT), filtered and warped 
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 Speaker recognition 

antization) for speaker modeling. Delta features and normalization components were 
t used at first, simply because they were not needed for the first benchmark data used 
IMIT). Background model was also missing because this was not necessary in 
eaker identification but it later turned out to be a vital component. After the project 
ded, the baseline method had been changed to MFCC with its 1st and 2nd order 
rivatives, utterance level mean/variance normalization, VAD for silence removal, and 
BM for background modeling. 

e feature set of the baseline implem

ded up into the prototype software as additions. Yet, the baseline method is still 
mposed of the same features and most improvement in the recognition accuracy 
iginated from those additional processing and modeling steps mentioned above. 

ggest catalyst for finding out the critical components and bottlenecks of the method 
as the participation to NIST7 speaker recognition evaluation (SRE) competition8 in 

plified variant of the state-of-the-art provides almost the same results with only the 
refully fine-tuned baseline method.  

1. Feature sets used 
ur baseline method is based on the mel-fr

nal is first divided into 30 m
nverted into spectral domain
cording to a psycho-acoustically motivated mel-scale, in which lower frequency 
mponents are emphasized more than the higher frequency components. Each feature 
ctor consists of 12 magnitudes representing the spectrum after log+DCT conversions, 
us the corresponding 1st and 2nd derivatives to model the change and acceleration of 
e spectrum. 

e lowest MFCC coefficient (referred to as C0) represents the log-energy of the frame, 
d is removed as a form of energy normalization. A two-pass feature normalization, 
-called cepstral-mean subtraction (CMS) [Atal’74, Furui’81] is then performed for 
ch coefficient to

step and useful
rmalization such as feature warping [Pelecanos’01] or RASTA filtering 
ermansky’94] should be implemented instead. In WinSprofiler 2.3, both of these 

chniques have been implemented. 

e main benefit of using MFCC is that it is the same feature as used in speech 
cognition, and the same signal processing components can therefore be used for both. 
is is also its main drawback: the feature tends to capture more speech than speaker 

                                              
ational institute of standards and technolo7 N gy 

8 http://www.nist.gov/speech/tests/spk/2006
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ation. If the MFCC features are applied as such, it is a danger that the 
cognition happens mostly based on the content than on the identity of the speaker. 
is can be overcome by normalization and background modeling but it affects the 

atching phase by making it less intuitive and apparently more complicated to 
plement. Another similar feature, linear prediction cepstral coefficients (LPCC), was 

so implemented and tested but the MFCC remained our choice of practice. 
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Figure 4. Illustration of a sample spectrum and its approximation by MFCC. 

 
 
2.2. Lon
Besides the short

• Long-term average spectrum (LTAS) 
cy (F0) 

 
Th um 
than M C ; and being average over longer 
time p o and, it was 
also c c  over time 
and all information about variance is evidently lost. Moreover, it is not expected to 
in
ea
im
stu
  
W

ason to use LTAS in automatic recognition? 
 
Es
was e c

ger term features: F0 and LTAS 
-term features, two longer-term features were studied:  

• Long-term distribution of the fundamental frequen

e first one was motivated by the facts that it includes more details about the spectr
F C, which is filtered to 12 coefficients only

eri d it could be more robust on changes in conditions. On the other h
riti ized by the same reasons: it represents only averaged information

clude much more information than is captured in the MFCC representation. However, 
rlier results suggested that LTAS calculated for /a/ phonemes could provide 
provement over MFCC [Kinnunen, Eurospeech’03], and therefore, we decided to 
dy it further. 

e had the following research questions and hypotheses for the experiments: 

• How does the recognition accuracy of LTAS compare with MFCC? 
• How does computational cost of LTAS compare with MFCC? 
• Can LTAS and MFCC be fused for improved accuracy? 
• Is there any re

pecially the last question was rather strong in our mind as our intuition was that this 
xpe ted to be mostly a useless feature. Nevertheless, it was first studied in a 



 

student project [Pauk’06], and m
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• 
• 
• 

 
To sum p ch for visual examination, its 
use 
to
co
 

ore detailed later in [Kinnunen’06]. The results (Fig. 5) 
nfirm that the feature is mostly useless, and the following conclusions were drawn: 

• Verification accuracy of LTAS: it is much worse than that of MFCC. 
Computational speed of LTAS: it is much faster than MFCC (Table 1). 
Fusion of LTAS and MFCC is not recommended. 
No other reason to use LTAS was found. 

  u , even though LTAS is used in forensic resear
in automatic analysis has no proven motives. With the exception that as being faster 

 compute, it could potentially be used as a fast pre-selection tool but so far none of us 
nsidered this important enough worth to further studies. 
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Figure 5: An attempt to improve the baseline by adding LTAS via classifier fusion. The 
difficulty of tuning the fusion weights is shown left, and the corresponding results of the 
best combination is shown right for NIST 2001 corpus.  

T
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able 1: Computing times (s) of the different LTAS variants compared to the MFCC. 

 Feature 

Single LTAS 0.3±0.1 < 0.01 0.3 
Single LTAS + Tnorm 0.3±0.1 1.8±0.2 2.1 
Short-term LTAS 0.2±0.1 < 0.01 0.2 
Short-term LTAS + norm  0.2±0.1 1.8±0.2 2.0  T
MFCC+GMM 2.6±0.1 0.9  0.6± 3.2 

 

 
Fundamental f her hand, does eaker-s format
which is expec eech th ion is
captured by M ove n accu e base
system. Howe ial to extract the e, and h e it in the 
matching process. These issues were extensively studied [Gonzalez’05]. At this stage, 
plain F0 and its histogram model were used but later the method was revised to contain 
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ted to be independent of the sp

tentially impr
 content. Since is informat  not 
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mbination of F0, its derivative (delta), and the log-energy of the frame 



 

[Kinnunen’05]. Thi
im
 
The results support that the recognition accuracy of F0 is consistent despite the change 
of
co
co
tra
2.
SN

s combination is referred to as prosody vector, and it was 
plemented in WinSprofiler 2.0. 

 conditions (Fig. 6). In clean conditions, no improvements were obtained in 
mparison to the MFCC baseline, but the inclusion of F0 improved the results on noisy 
nditions (additive factory noise with 10 dB SNR) according to our tests. Whether this 
nslates to real-life applications was not verified. In the NIST evaluations (Section 

3), the effect of F0 is mostly insignificant (or even harmful), probably because the 
R of NIST files is better than the 10 dB noise level in our simulations. 
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Figure 6: Experimental results supporting noise robustness of F0. 

 
 
2.3. Speaker modeling and matching 
After feature e
a test sample from the trained models in a speaker database. The question is either 
from which speaker model the test sample originates from (identification task), or 
w aker model (verification task). 
 
In
ap
sp
re
sa
 
Tr
G
re
A 

xtraction, the problem is to measure the similarity or dissimilarity of 
given 

hether the sample is close enough to a claimed spe

 the identification task, it is usually enough to find the closest match, or in some 
plications (e.g. forensic research), find a smaller set (say 3-5) of the best matching 
eakers for further investigations. In verification, the similarity must be measured 
lative to a known (or assumed) background model, and draw conclusion whether the 
mple should be accepted or rejected. A confidence (likelihood) is also desired as well. 

aditional solution is to model the distribution of the feature vectors either by a set of 
aussian mixtures (GMM model), where the sample is clustered, and each cluster is 
presented by a mean vector, covariance matrix, and a mixture weight (see Fig. 7). 
simpler solution is to use only the cluster centroids and assume equal variance. This 
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The choice of the clustering algorithm and model was extensively studied 
[K
sim
ha
de
Ep
 
 

en referred to as vector quantization (VQ) model because this is what the process 
sentially resembles.  

innunen'08, Hautamäki’08]. We found out that the simpler VQ model provides 
ilar results with significantly simplified implementation. Nevertheless, both methods 

ve been used and implemented in WinSprofiler 2.0, whereas only VQ model and its 
rivatives (developed later outside of the PUMS project) have been used in 
ocSprofiler.  

 
 Speaker models by centroids (VQ) and Gaussian mixture model (GMM). 

e process we mostly focused on the identification task and had overlooked 
ated to the verification task. The NIST evaluations in 2006, however,

Figure 7:

 
Earlier in th
the problems rel
focus
results 
m  any apparent reason. 
 
It 
su
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to odel the difference from the 
background 
du
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ed only on the verification task. We suddenly found out that the preliminary 

made using VQ-matching were dramatically worse than that of the GMM/UBM 
odel without

turned out that the background normalization (UBM) is a crucial component for the 
ccess of the verification. Existing solution known as maximum a posteriori (MAP) 
aptation was originally formulated for the GMM-based model [Reynolds’00]. The 
sential difference to standard clustering method is that the model is not really trained 

atch the feature vectors as such, but instead, to m m
model (Fig. 8). Similar solution for the VQ model was then formulated 

ring the project [Hautamäki’08], which solved the training problem.  

 principle, the same VQ and GMM modeling approaches and MAP adaptation 
neralizes to other features such as F0 [Kinnunen’05]. In the case of one-dimensional 
atures such as LTAS, a simpler distance-based approach (Euclidean or Kullback-
ibler) is used. The same problem of adaptation might exist even though rather 
aightforward ad hoc solution was implemented for F0 feature. 
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Figure 8: Illustration of the MAP adaptation process. 

 
In addition to modelin ults 
of independent classifiers. A linear weighting scheme optimized using Fisher’s 
criteri
fo
pr
W
fu
 
M
co
or sus in the follow-up NIST 
workshop was that
im
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O
be
th
w se of data fusion is more or less 
m
 
 
2.
N
co
The organizers have collected speech material and then release part of it as training 
m al, where each sample is labeled by speaker’s identity, gender and language 
sp on, NIST then sends a set of verification trials (about 
50 e) with claimed identity to the participants to analyze. 
Ea
lik
re
su
 

g a single feature set, a solution is needed to combine the res

on was first used in [Kinnunen-Interspeech’03] but later, majority voting was 
und out to provide more practical when at least three independent classifiers were 
esent [Kinnunen-SPECOM’04]. Both of these have been implemented in 
inSprofiler 2.0 because of their generality, even though the training of the proper 
sion weights should be addressed by the user. 

ore sophisticated solutions were used in NIST evaluations developed by our 
llaborators at I2R [Tong’06]. These were based on artificial neural networks (ANNs) 

support vector machines (SVMs). General consen
 fusion itself is needed to achieve the best result, but it is not 

portant which fusion method exactly is used (NN or SVM) but something better than 
simple linear weighting was recommended.  

n the other hand, it also seems that people tend to avoid fusion in practical solutions 
cause the additional parameter tuning is non-trivial. In this sense, the performance of 
e method in WinSprofiler 2.0 could be further improved but it is uncertain if it is 

th it, or would work in practical application. The uor
eant for experimental purpose, and not considered as a part of the baseline. 

4. NIST competition 
IST organizes annually or bi-annually a speaker recognition evaluation (NIST SRE) 
mpetition where all interested parties (research group or company) can participate. 

ateri
oken. At the time of evaluati
.000 in the main category alon
ch participant must send their recognition results (accept or reject claim, and 
elihood score) within 2-3 weeks, augmented by a brief documentation of their 

cognition method used. Each participant is allowed to submit three systems (primary 
bmission and two others). 
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Results 
be
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W ded to participate when the possibility to send a joint submission with the I2R 
re
ex
3rd

be
 
In used on F0 
and a few experimental features modeled by VQ and histogram models, whereas I2R 
fo
in
pa
co
se
 
Th
by the baseline (SVM-LPCC) [Campbell’06] with T-norm 
[Auckenthaler’00] was one component, F0 another one, and GMM tokenization 
[M
ex
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sh
 
O
te
th
Fu
this w
m
 

were released for the participants and presented in a workshop in June 2006 
fore the Speaker Odyssey workshop [ODYSSEY’06]. Each participant gave 
esentation of their submitted system, and organizers presented the overall summaries 
m different subtasks.  

e deci
alized. They had enough manpower necessary for extensive testing, and previous 
perience on similar language recognition evaluation in 2005 where they were ranked 
. This made it realistic to participate since otherwise too large efforts would have 
en required being away from basic research and development.  

order to avoid overlap, the work load was originally divided so that we foc

cused on fusion, GMM-UBM, SVM and ANN models, and some of their own 
ventions previously used in the language recognition competition [Ma’07]. Both 
rtners had their own implementations of the basic features (MFCC, LPCC). The 
mbinations that showed the best results with previous year NIST corpora were 
lected. 

e main idea was to include three independent classifiers, and calculate overall result 
 classifier fusion. A variant of 

a’06] the third one (Fig. 9). In this way, different levels of speaker cues are 
tracted: spectral (SVM-LPCC), prosodic (F0), and high-level (GMM tokenization). 
ur implementations of GMM and F0 components were used, whereas the SVM and 
NN components and the other basic features were provided by I2R. The LPCC feature 
based on linear predictive coding (LPC) model, which is a parametric model of the 
ape. It was chosen since it showed slightly better results than the MFCCs. 

ur hypothesis for using F0 was that it could make the system more robust in case the 
sting data included samples with mismatched acoustic and technical conditions from 
e training data. However, most of the material was in matched conditions. 

thermore, the results indicate that the threshold learning might become easier, but r
as neither confirmed nor disproved by the results. Overall, the effect of F0 was 

arginal. 
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Figure 9: System diagram of the joint submission made by Infocomm at Singapore and 

University of Joensuu to the NIST speaker recognition evaluation in 2006. 
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In tot
co
36
su
co
be
th
su
 

al, there were 96 submitted systems from the 36 participants from 17 different 
untries. In the primary task (1conv-1conv), our main submission was ranked 7th out of 
 primary submissions, and our best submission was ranked 16th out of 81 among all 
bmissions (Fig. 10). The corresponding equal error rate (EER) was about 7% 
mpared to 4% of the best system [Brummer’07]. However, our method provided 4th 
st result in the 10sec-10sec test case (least training material) with 21% EER, just after 
e CRIM submission (17%), and the two I2R solo submissions (21%) among the 24 
bmissions in this category. 

 
Figure 10: Plot of the results in the primary task (1conv-1conv) according  
o the DCF cost function (slightly different from EER value) used by NIST. t

 
 
Our sub
a bination that worked best according to extensive tests made using corpora of the 
previous years. The F0 and GMM token subsystems were something that was not used 
by
cl
 
A
[B
sim ased data fusion. The group at the Brno University 
of Technology (BUT) reported also simplified variant of their method [Burget’07], 
sh
m
w
di
[B
a 
 

mission did not include revolutionary innovations, and it was merely 
com

 many, but they did provide improvement when used jointly with the baseline by 
assifier fusion (see Fig. 11). 

t the same time, the method providing the best performance in 1conv-1conv category 
rummer’07] was constructed by a combination of several MFCC-based subsystems 
ilar to ours, combined by SVM-b

owing that similar result can be achieved based on the carefully tuned baseline 
ethod without fusion and using multiple sub-systems. Based on analytical comparison 
ith our MFCC baseline, the main components missing are heteroscedastic linear 
scriminant analysis (HLDA) [Kumar’98, Burget’07] and eigenchannel normalization 
urget’07]. Besides those, we expect the difference in performance to be mostly due to 

tuning of the models and parameters. 



 
 Influence of each component separartely and jointly in our NIST 

submission. 
Figure 11:

 
 
2.5. Affe
Since the mismatch of training conditions and application environment played an 
im ortant role, we studied the relative importance of several factors in [Saastamoinen-
SP re divided into three types: technical (T), speech related 
(S tors. According to the tests made using an early MFCC 
ba

6. D), 
7. 
8. ).  

 
Techn racy, namely noise and 
the ch e unt of noise should be 
studie er conclusions. Changing of voice (deliberate or 
subcon nificant effect as the style of reading (text reading vs. 
sponta u ect as well. This arises an interesting hypothesis: 
intruding to a system could be possible by imitation contrary to common expectations.  
 
Te
qu
ac

cting factors 

p
ECOM’05]. The factors we
) and data dependent (D) fac
seline resulted roughly in the following order of importance of the factors: 

1. noise (T) 
2. different microphone (T), 
3. disguise (S), 
4. quality of the sample (T), 
5. text reading versus conversational speech (S), 

sample length (
language (D), 
text-dependency (D

ical factors were the most crucial for the recognition accu
 noted that the type and amoang  of microphone. It is

d further to draw strong
scious) had also sig
neo s speech) had a small eff

chnical factors were considered further by studying how Symbian implementation, 
ality of the microphone in mobile phone, and the GSM coding affect the recognition 
curacy. The limitations of the Symbian environment (no floating points) were solved 
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by revisi
JA
re
 
However, it was observed in a student project [Viinikka’04] that the mismatch of 
co
re
ra
ch
bu
re
 
 

Table 2: Recognition accuracy for mobile phone environment. 

 Avg. recognition rate std. dev. 
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ng the implementation of the fast Fourier transformation in [Saastamoinen-
SP’05], but the quality of the audio system of mobile phone still weakened the 

cognition accuracy, as shown in Table 2.  

nditions (GSM coded or raw speech signal) had the most significant effcet on 
cognition accuracy. Any coded test sample would match to another coded sample 
ther than the correct uncoded sample  indicating the vulnerability of the system to 
annel mismatch. A possible solution would be to code all samples via GSM coding 
t this cannot provide solution for the general channel normalization issue, which 
mains unsolved. 

FLOAT, Symbian audio 83.2 % 4.38 
FLOAT, PC audio 100.0 % N/A 
FIXED, Symbian audio 7   6.0 % 2.83
FIX 100.0 % N/A ED, PC audio 

 

Data-dependen fect in the se it did not ma ch 
which phrase was used in the training [Saastamoinen ’05]. Utilizati ext 
information itself is two-sided. On one hand, if the language spoken is known, using 
tim
te
th
sy
 

2.
Th
as mple, and to return the positions of possible 
occurrences and the corresponding confidence scores. An easy way to perform word 
sp h by large vocabulary continuous 
sp text retrieval on the transcription. 
H
fro
 
Fo
ca
W
la
ea dio material. The search is then performed by dynamic 
programming using the calculated scores as cost function, to find the most probable 
oc
fig
th
 

t factors had the least ef nse that tter mu
-SPECOM on of t

e-dependent matching (DTW) can improve the accuracy in case of very short (1.9 s) 
st samples, and when every user had own password [Gupta’05]. Short samples can be 
e case in real-time access control system but, on the other hand, it is desired that the 
stem would be text-independent. 

6. Keyword spotting and other tasks 
e goal of keyword spotting is to search through audio content based on input queries 
ext, phonetic transcription or spoken sat

otting would be to obtain transcription of the speec
eech recognizers (LVCSRs), and then performing 
owever, this approach does not solve the problem of searching arbitrary keywords 
m continuous speech. 

r the task, we developed a speaker and vocabulary independent method based on so-
lled pseudo-phonemes [Timofte’06]. A prototype of this has been implemented in 
inSprofiler 2.3. The method first constructs models for all phonemes in a given 
nguage (Finnish and English are supported), and matching scores are computed for 
ch possible location in the au

currences. The method in WinSprofiler achieved equal error rate (EER) of 3.3 % and 
ure of merit (FOM) of 46 % with TIMIT corpus. A slower improved variant reached 

e rates of 2.5 % (EER) and 59 % (FOM) for the same corpus [Timofte’07]. 
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Speaker c
cl
ea
w
 

lustering was also studied in [Grebenskaya’05] by clustering speakers into 4 
asses (1 female and 3 male classes). Different HMM models were then trained for 
ch class separately, but the results provided only minor improvement and the topic 
as not studied further. 
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Realtime keyword searching

 
: System diagram of the keyword search using so-called pseudo-phonemes. Figure 12

 



 

3.

During the PUMS project, it became apparent that many of the participants needed 
vo
so
an
by
as
de
di
 

 Voice activity detection 

ice activity detection (VAD), and nobody seemed to be too happy about the existing 
lutions. The problem is to segment a given input signal into parts that contain speech 
d the parts that contain background (Fig. 13). This can be done at the frame-level or 
 combining neighboring frames to achieve longer (e.g. 1 second resolution) segments 
 the final output. We carried out extensive study of several existing solutions, and 
veloped a few new ones during the course of the project. We considered three 
fferent applications.  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

-0.4

-0.2

0

0.2

0.4

0.6
speech non-speech

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 n1 n2 n3 n4 n5 n6 n7 n8n9 n9 n10

(sec)  
Figure 13: From speech waveform to VAD decisions. 

 
 
3.1. Applications 
In forensic application (Fig. 14), there are lots of recordings collected by 
eavesdropping, and automatic annotating would be needed to save manual work. 
Bi recording quality. It can vary from a quiet hotel where the 
m speech even from the neighbor room, or in a loud music 
re r
au
to
 
A
tim
in
su hich bus goes from the Central square to the railway station?”, or timetable 
information such as “When does next bus leave from the Central square to Hervanta?” 
Th
sp
 
In 
th
su
sp
m he segmentation can 
be performed di
 
 

ggest challenge is the 
icrophone can record 
stau ant where it is difficult to even human to recognize what was spoken. Typical 
dio material is a record of 24 hours a day, and can be days or even weeks long in 
tal.  

s an example of interactive voice-based dialogue system, we considered the bus 
etable system called Busman [Turunen’05]. It provides bus route and timetable 

formation for the city of Tampere, Finland. The user can request certain bus routes 
ch as “W

e purpose of voice activity detector in the system is to detect when the user is 
eaking, and to extract speech from the input (Fig. 15). 

speaker recognition, we want to model the speaker only from the parts of a recording 
at contain speech. It is therefore important to use a conservative threshold to make 
re that the frames used in the modelling actually do contain speech. If there is lack of 
eech material, a compromise might need to be taken between having enough training 
aterial, and not having too many non-speech frames included. T

rectly at the frame-level. 
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Figure 14: System diagram of forensic skimming application. 
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Figure 15: Voice activity detection in the Bus-Stop application. 

 

For evaluation, we use the four data sets summarized in Table 3. NIST 2005 SRE data
set is recorded 
verification methods. Only a small subset was sele ed and manually annotated by the 
authors. Bus stop data set is recorded over telephone line, and it contains human speech, 
sy
ea
m
 
N
cr
ov
m ced in a location most useful for a forensic investigator. Sometimes 
m rophone is very close to the suspect and in some recordings microphone is not even 
in
 

                                                

 
over telephone network and its original purpose is to evaluate speaker 

ct

nthetic speech and DTMF tones. In Lab recording, we simulated forensic 
vesdropping application by recording in our laboratory using a hidden distance 
icrophone. 

BI data sets are extracts from a legal eavesdropping recordings made during real 
iminal investigations by National Bureau of Investigation9. Materials are recorded 
er distant microphone (covert listening device), in extremely challenging conditions, 
icrophone is pla
ic
 the same room. 

 
9 Keskusrikospoliisi (KRP), http://www.poliisi.fi/krp
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Table 3

Material Recording Files z ile 
 

 

: Speech segmentation data sets.  

Sampling Duration  Total
rate (kH ) per f duration

NIS
200 s 5 T Telephon5 e 15 8 5 minute 1:14:4

Bus Telep 1.5 – 9 minute 3 

Lab tec P 1   ho

NB Covert l
d 16 – 44.1 inutes –  

ours  

-Stop hone 94 8 s 3:08:1

Lab C mic. 44.1 over 4 urs 4:14:42 

I istening 
evice 4 20 m

2 h 4:35:47

 
 
3.  Methods 
W nted both real-time and batch processing variants. Real-time 
op ary in some VAD applications such as telecommunication and 
sp
sh
sti
ne
 
V
ne
tra
no
sta
 
Tr
sp
an consider two methods based on MFCC 
features (SVM, GMM), and one based on short-term time series (STS). All of these 
m
so
of
 
Fi
fra
[H
ac in our tests). The final decisions (speech or 
non-speech) ect threshold. In real applications, the 
pr
va
th
 

2.
e have experime
eration is necess
eaker recognition, where latency is an important issue in practice. The application 
ould start to process the extracted feature vectors at the same time when the speaker is 
ll talking. In forensic skimming, on the other hand, real-time operation is not 
cessary, and the segmentation can be performed as a background process.  

AD methods can also be classified according to whether separate training material is 
eded (trained) or not (adaptive), see Table 4. Methods that operate without any 

ypically based on short-term signal statistics. We consider the following ining are t
n-trained methods: Energy, LTSD, Periodicity and the current telecommunication 
ndards: G729B, AMR1 and AMR2. 

ained VAD methods, on the other hand, construct separate model for speech and non-
eech based on annotated training data. The methods differ in what features are used, 
d which modeling method is applied. We 

ethods were developed during the PUMS project. We also modified the LTSD method 
 that the noise model was adapted from the training material instead of the beginning 
 the file as in the original method.  

gure 16 shows an example of the process, where the speech waveform is transformed 
me by frame to the speech / non-speech decisions using the Periodicity-based method 
autamäki’07]. First, features of the signal are calculated, and smoothed by taking into 
count the neighboring frames (five frames 

are made according to a user sel
oblem of selecting the threshold should also be issued. Here we consider only the 
lues of equal error rates, or report the entire operating curve for all possible 
resholds. 
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: Demonstration of voice activity detection from framewise  

scores to longer segments using Periodicity method [Hautamäki’07]. 
Figure 16

 

Comparisons
and their perform
Figure 17. For G729B, AMR, and STS, we have set the threshold when combining 
in
pr

 
 

 
VAD method 

NIST 
2005 

Bus 
stop Lab NBI 

 of the EER results of the different methods are summarized in Table 4, 
ance when varying the acceptance threshold are demonstrated in 

dividual framewise decisions to 1-second resolution decisions by counting the 
oportion of speech and non-speech frames in each segment.  

Table 4: EER comparison (%) of the VAD methods with the four data sets.  

Energy [Tong’06] 1.5 14.6 16.8 30.0 
LTSD [Ramirez’04] 40.0 19.2 14.4 31.8 
Perio i’07] 3.2 21dicity [Hautamäk 21.9 9.9 .4 
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G729B 8.9 [ITU’96] 6.5 7.9 13.3 
AMR 5.5 5 7 21.81 [ETSI’99] .7 .2  

A
da

pt
iv

e 

AMR 8.4 5 16.12 [ETSI’99] 7.4 .1  
SVM 5 19 ---  [Kinnunen’07] 11.6 .2 .5
GMM 8.8 7 9. ---  [Kay’98] .5 7
L 1.3 6.2 14.9 --- TSD [Ramirez’04] Tr

ai
ne

d 

STS 7.1 [Timofte’07] 3 8. --- .9 6
 
For the NIST 2005 da ased and the ed LT pro he b
results. This is not surprising since the parameters of th have bee imi
for earlier NI or ensive testing, and because the energy of the 
speech and no ee  different in t sam . M er, 
trained LTSD clearl aptive varian ecaus e n model 

ta, the simple energy-b  train
e method 

SD vide t
n opt

est 
zed 

ST c
n-sp

puses through ext
ch segments is clearly

ad
mos ples oreov

o
the 

y outperforms its t b e th ise 



 

init
be
 
For Bus stop data, the energy is not anymore the decisive factor for recognizing speech 
fro
ab
th
m
 
Th
than 10%. The best method is G729B with the error rate of 13%. It is an open question 
ho
da
ne
re
ex
 

ialization failed on some of the NIST files considering speech as non-speech in the 
ginning, and caused high error values.  

m background. The developed STS method performs best probably because being 
le to learn (in training step) the temporal patterns that exist in the samples. Most of 
e other methods (SVM, GMM, AMR1, G729B) give also reasonable results. Only the 
ethods that rely on energy or periodicity of the signal fail significantly more often. 

e NBI data is the most challenging, and all adaptive methods have EER values higher 

w much better results could be reached if the trained VAD could be used for these 
ta. However, in this case the training protocol and the amount of trained material 
eded should be studied more closely. Overall, perfect VAD that would work in every 
cording and environmental condition does not yet exists, according to our 
periments. 
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Figure 17: Comparison of the VAD methods for NIST 2005 and Bus stop data. 
 
 
For WinSprofiler 2.3, we have implemented the three VAD methods that performed 
best in NIST data: LTSD, Energy and Periodicity. Their effect on speaker verification 
accurac
NIST 2006 corpus is obvious, but the choice between Energy and Periodicity is unclear. 
 
 

y is reported in Table 5. The advantage of using VAD in this application with 

Table 5: Effect of VAD in speaker verification performance (in EER %). 

NIST 2001 NIST 2006  
model size 512 model size 64 Model size 512 

No VAD 13.6 16.0 44.4 
LTSD 12.4 13.7 35.8 
Energy 9.3 10.4 16.6 
Periodicity 8.5 9.6 16.8 

 



 

4.

Experimentation using Praat and Matlab is rather easy and good for quick testing of 
ne
PU
la
all
Co
Ex
pe
 
4.

Ea  Matlab simulations, but the first C-implementations 
w Ville Hautamäki (matching) and Teemu Kilpeläinen 
(fe
co
Re
co
w
 
A
co sinki to perform simple template-based matching 
and calcul scores for pre-calculated features. This was 
us
ex
W
 

 Implementations 

w ideas, but not so good for technology transfer and for larger development. In the 
MS project, our aim was to have the baseline methods implemented in C/C++ 

nguage for demonstrating the research results, performing large scale tests, and to 
ow the methods to be tested by the project partners with more critical eyes. 
mpatibility was also desired in order to allow software integration with the products. 
ternal testing by people outside of our research group gave us also a better 
rspective to usability issues and more practical view to the results. 

1. Development cycles 

rly research was done mostly by
ere made by student projects by 
ature extraction). First Srlib library (1.0) was built on the basis of those two and first 
mplete C-language matching program (Sprofiler) was implemented in 2002.  
search and Matlab experiments were also carried on for classifier fusion as this 
mponent was going to be needed later if additional feature sets were going to be used 
ithin the prototype software.  

t the same time, another software (ProfMatch) was implemented during the sub-
ntracting with the university of Hel

ate mean square error (MSE) 
ed for testing new experimental features studied in Prof. Iivonen’s group, and 
tracted using Praat and semi-automatic processing. They also implemented their own 
indows interface for it using Tck/Tk-scripts (see Fig. 18). 

 

sprofiler SpeakerProfiler
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Figure 18: View of the software architecture in 2003. 

 
Meanwhile, we developed Windows prototype using C and C++ languages, first by 
Evgeny Karpov in late 2003, and the first published version WinSprofiler 1.0 was 
completed in the first half of 2004 by Evgeny Karpov, Olga Grebenskaya and Pavel 
Kopylov. It was used as the primary testbench whereas we used its command line 
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variant (
im
fu
ty
 
The motivation for Srlib3 was to develop modularity further and support Symbian in the 
sa
en
V
fu
w
 

Sprofiler) for all large scale testing. WinSprofiler 1.0 was built on top of an 
proved speaker recognition library Srlib2, which has clear specifications of the 
nctionalities of the training and matching operations, and their input and output data 
pes.  

me library as well, instead of having separate implementation for the mobile and other 
vironments. These were implemented by Juhani Saastamoinen, Andrei Mihaila and 
ictoria Yanulevskaya. Despite of having working prototypes, too much of the 
nctionalities was mixed with the user interface and all improvements in either part 
ere too difficult to implement in practice with reasonable resources (Fig. 19). 

VAD

WinSprofiler
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Series 60 (JoY)

SRLIB:
MSE

GMM
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VQ

DB
pportsu

LTAS

F0
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 extraction
n by weighted MSE
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Figure 19: Plans for improvements to be made in 2004. 

 
In order to avoid multiple updates for all software, the library was eventually re-
constructed step-by-step as o 
Kärkkäinen. This fin
2007, which was renamed to PSPS2 (portable speech processing system 2), see Fig. 20. 
M
m
re
Sr
 
A
ne
us
ba
Si on (WinSprofiler 2.0) was released 
in
(J
 
 

a background work by Juhani Saastamoinen and Ism
ally ended up to a significant upgrade of the library in 2006 and 

ain motivation of this large but invisible work was that the software should be 
aintainable also after the project would end. To sum up, the following life cycle of the 
cognition library has appeared during the project: Srlib1 (2003) → Srlib2 (2004) → 
lib3 (2005-2006) → PSPS2 (2006-2007). 

s a consequence, all the functionality in WinSprofiler was re-written to support the 
w architecture of the PSPS2 library so that all unnecessary dependencies between the 
er interface and the library functionality were finally cleared. This happened as a 
ckground project during the last project year (2006-07), and was made mostly by Ilja 
oroff and Andrei Oprisan. Eventually a new versid

 Spring 2007, and soon after a series of upgrades were released: 2.1 (June-07) →  2.11 
uly-07) →  2.2 (Aug-07) →  2.3 (Oct-07). 
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Figure 20: Example of the configurable archi
using joint MFCC and F0 calculation w

 
 
4.2. Design sol

The new version (WinSprofiler 2.0) is written completely using C++ language, 
co

• 
 
The GUI 
librari w
suppo  by us: 
sig al o atching and graphical user interface. The new 
version was extensively test
ve
ar
 
 

ithout any hard coding. 

utions for the implementation 

nsisting of the following components (Fig. 21): 

• Database library to handle storage of the speaker profiles. 
• Audio processing library to handle feature extraction and speaker modelling. 
• Recognition library to handle matching feature streams against speaker models. 
• Configurable audio processing and recognition components. 

Graphical user interface. 

part is based on 3rd party C++ development libraries, wxWidgets. Existing 
atabase es ere also used for the audio component: libsndfile and portaudio. D

e3. All the rest was then implementedrt was implemented using SQLit
 pr cessing, speaker modeling, mn

ed, and the functioning of the recognition components was 
rified step-by-step with the old version (WinSprofiler 1.0). The new library 
chitecture is show in Fig. 21, and the internal class structure in Fig. 22. 



winsprofiler
Sqlite3

Portaudio

Libsndfile

ernal Libraries Internal librariesExt

database psps2

Internal libraries

KeywordSpotting

models

recognitionwxWidgets

soundobjects

Main program

 
Figure 21: Technical organization of the WinSprofiler 2.0 software. 

 
 

psps2-library
(all calculations)

 25

WinsprofilerApp
creates

MainFrame

SoundListCtrl
(audio view)

DbListCtrl
(database view)

contains

Action Dialogs
(AddSpeaker, MatchSpeaker etc)

invokes

invokes

DatabaseDocument
(interfaces Database-library)

displays

Compute*
(interfaces psps2)

invokes

requests results
request results

Database-library
(all database operations)

invokes

 
Figure 22: Internal class structure of WinSprofiler 2.0. 

 
 
4.3. Symbian implementation 

During the first project year, the developm so 
started with the mo ies 
phones. Research was carried on for faster matching techniques by speaker pruning, 
quantization and faster search structures [Kinnunen’06]. The existing baseline (Srlib 
2. nt in order to have real-time signal processing 

ent of a Symbian implementation was al
tivation to implement a demo application for Nokia S60 ser

0) was converted to Symbian environme
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and MFCC feature extracti
te
 
The development was made co-operatively with Nokia Research Center during the first 
pr
Sy
so
re
 
Th
from float-point to fixed-point itself was rather straightforward but the accuracy of the 
fix
JA
all
 
Tw
as elling method called 
background cel
Ep
re
w
tim
U
 

on including instant on-device training, identification, and 
xt-independent verification from spoken voice samples. 

oject year, and the first version (EpocSprofiler 1.0) was published in April 2004. The 
mbian development was then separated from PUMS and further versions of the 
ftware (EpocSprofiler 2.0) were developed separately, although within the same 
search group, using the same core library code, and mostly by the same people.  

e main challenge was that the CPU was limited to fixed-point arithmetic. Conversion 

ed-point MFCC was insufficient. Improved version was developed [Saastamoinen-
SP’05] by fine-tuned intermediate signal scaling, and more accurate 22/10 bit 
ocation scheme of the FFT, as illustrated in Fig. 23. 

o voice model types were implemented: centroid model with MSE-based matching 
the baseline and a new much faster experimental mod 

l histogram model and entropy-based matching was developed for 
ocSprofiler 2.0 (report is under progress). In identification, training and recognition 

sponse of the new histogram models is about 1 second on a database of 45 speakers, 
hereas the training and identification of the older baseline method was more than 100 

es slower. In verification, the recently developed background model called VQ-
BM [Hautamäki’08] was also utilized in the implementation. 
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X
32-bit integer, 22 bits used 16-bit integer, 10 bits used
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Crop-off for next layer: 10 bits  

 
Figure 23: Developed information preserving FFT (22/10 scheme) for Symbian.  

 
4.4. Access control demonstrators 

For access control demos, a software called DoorSprofiler was developed in 2005 on 
the bas
door control systems. Real working prototype was implemented in SIPU laboratory in 
Joensuu Science Park usi ller unit and a simple short-cut to a door 
op the access control unit used in the rest 
of the house, see Fi
 

is of WinSprofiler 1.0. It is compatible with Securitas’ SOAP system and ESMI’s 

ng ESMI door contro
ening relay, in order to avoid any interfering to 

g. 24.  
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A support for Kone’s elevator  control system was designed and 
implemented for LiftSprofiler software, where a two-class classification was designed: 
staff and non-staff users. Verification threshold was set to have low false rejection (FR) 
ra
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Figure 24

OPC server

te so that staff could always enter the lift conveniently. Letting a few non-staff people 
 use the lift is not considered harmful: false acceptance (FA) rate is not so critical. 

 real demonstrator was designed for an elevator in Science Park. Even though it has 
t yet been installed in real-life, all implementations to make such installation in 
actice has been made for the scenario shown in Fig. 25.  
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Figure 25: Designed system for implementing voice-based elevator calling.  

 
 



 

5.

The main results of the project can be summarized in the three demonstrators: 

• 
•  

 
Th  fi p

al-time recognition) 

• 
• 

 
Some ler 1.0, 
V ce p results, whereas the others are 
copyright
of
 
5.
 
Even though usability and compatibility are important issues for a practical application, 
an based user authentication to be accepted into real 
ap nd verification accuracy the system can provide. We 
ha
du
(a
ex
 
Ta

training data test data 
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 Summary of the main results 

• WinSprofiler demonstrator (Windows) 
Mobile phone demonstrator (Nokia Series S60)  
Door access control demonstrator in Joensuu Science Park.

e rst rototype supports the following operations: 

• Speaker modeling and matching (batch processing and re
• Keyword spotting (support for Finnish and English languages) 

Voice activity detection (also in VoiceGrep software) 
Digital filtering for band elimination. 

of the software (namely Srlib 1.0, WinSp
Gre  0.2 software) are available as project 

rofiler 1.0, EpocSprofi
oi

ed by the University of Joensuu, and available only as binaries. Other results 
 the project include the publications and theses listed in the end of this report. 

1. Recognition results 

 important question for voice-
lication, is the identification ap

ve therefore collected here the main recognition results of the methods developed 
ring the project, and made an attempt to compare them with the state-of-the-art 
ccording to NIST evaluation), and provide indicative results from comparisons with 
isting commercial programs. 

ble 6: Databases that have been used in the evaluation. 

Corpus Trials Speakers Length of  Length of  

NIST 2001 (core test) 22,418 174 2 min 2-60 s 
NIST 2006 (core test) 53,966 731 5 min 5 min 
Sepemco  494 45 12-60 s 9-60 s 
TIMIT 184,900 0 5 s  43 15-3 5-15 s
NBI 62 2-150 s   data 62 4  10-93 s

 
 
We have also used (or considered) IT, Helsinki corpus d Eston
SpeechD ra earlier in the pr eve e we ach  error r
for the fi pora, we have lim he la scale tes e NIST
Sepemco databases. Other NIST corpora have also been used occasionally, nam
NIST 1999, 2002, 2004 and 2005, or a smaller subset for reducing the processing time. 
The results for the NBI databases have been provided by Tuija Niemi-Laitinen at the 
Cr
 

 TIM , OGI an ian 
AT corpo oject. How

i l t
r, onc ieved 0% ates 

rst two cor ted al rge- ting for th  and 
ely 

ime laboratory in National Bureau of Investigation, Finland. 
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The following versions have been included here: 
• WinSprofiler 1.0: An early demo version from 2005 using only the raw MFCC 

use
dem

• Wi

coefficients without deltas, normalization, and VAD. VQ model of size 64 is 
d. This version has also been used in DoorSprofiler version 1.0 and the door 
o. 

nSprofiler 2.0: A completely new version that was released in May 2007, 
th

ver
• Wi

al ough the recognition library PSPS2 was developed already in late 2006. 
Main differences were use of GMM-UBM, deltas, and normalization. The first 

sion did use neither VAD nor gender information (specific for NIST corpus). 
nSprofiler 2.11: Version released in June 2007, now included gender 
ormation (optional) and several VADs, of which the periodicity-based inf

e
incl
rec

• Ep

m thod [Hautamäki’07] has been used for testing. The newer version 2.3 
udes also a real-time matching and audio filtering, but has the same 

ognition method. 
ocSprofiler 2.1: Symbian version from October 2006. Corresponds to 

ler 1.0 except that the histogram models are used instead of VQ. WinSprofi
• IIRJ: The joint submission to NIST competition based on the LPCC-SVM, 

GMM tokenization and F0 features, and fusion by NN and SVM. Energy-based 
D. This system does not exist as a program, as the results have been VA

• NIS
constructed manually from the results of several scripts. 

T state-of-the-art: The results released by the authors providing the winning 
thod in NIST competition as a reference. me

 
The m  
The ch e
2006. Mos ts were reasonable for the 
easier datasets (TIMIT), they are devastating for WinSprofiler 1.0 when NIST 2006 was 
us
pr
de
us
 
A
ev
Th
le es and parameters used (model 
sizes, use of VAD). Although NIST 2006 has a large number of speakers and huge 
am
M
a 
 
 

ain results (verification accuracy) are summarized in Table 7 as far as available. 
all nging NIST 2001 corpus has been used as the main benchmark since summer 

t remarkable lesson is that, even though the resul

ed. The most remarkable improvements have been achieved in the latter stage of the 
oject since the release of the PSPS2 library used in WinSprofiler 2.11. The overall 
velopment in recognition accuracy during the project is also visualized in Fig. 26 by 
ing the detection error trade-off (DET) plots. 

nother observation is that the role of VAD was shown to be critical for NIST 2006 
aluation (45% vs. 17%), but this did not generalize to Sepemco data (7% vs. 13%). 
is arises the questions whether the database could be too specific, and how much the 

ngth of training material would change the design choic

ount of test samples, the length of the samples is typically long (5 minutes). 
oreover, the speech samples are usually easy to differentiate from background by 
simple energy-based VAD. The background noise level is also rather low. 



 

Table 7
20

NIST 2006 

: Summary of verification (equal error rate) results (0 % is best) using the NIST 
01, NIST 2006 and the Sepemco database. 

Version Sepemco TIMIT NIST  
1con2001 10sec v 

EpocSprofiler 12 % 42.1 (2006) 8 % --- 48 % 6 % 
Wi 24 %  4nSprofiler 1.0 (2005) --- 33 % 4  3 % 8 % 
Wi 7 %   4nSprofiler 2.0 (no-vad) 3 % 16 % 40 % 5 % 
WinSprofiler 2.11 (2007) 13 % 9 % 11 % 31 % 17 % 
NI ---  ST submission (IIRJ) --- --- 22 % 7 % 
Sta --- te-of-art [Brummer’07] --- --- --- 4 % 
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ent of the recognition accuracy during the project (NIST 2006). 

ith NBI data 

Figure 26: Developm
 
 
5.2. Comparisons w
 
Spe
FreeSpeech, VoiceNet) are summarized in Table 8 using NBI material obtained by 
phone tapping (with permission). Earlier results with WinSprofiler 1.0 for different 
da ’05]. The current data (TAP) included two 
sam ple was used for model training and the 
sh

aker identification comparisons with three selected commercial software (ASIS, 

taset have been reported in [Niemi-Laitinen
ples from 62 male speakers: the longer sam

orter one for testing. The following software have been tested: 

• WinSprofiler, Univ. of Joensuu, Finland, www.cs.joensuu.fi/sipu/ 
• ASIS, Agnitio, Spain, http://www.agnitio.es 
• FreeSpeech, PerSay, Israel, http://www.persay.com 
• VoiceNet, Speech Technology Center, Russia, http://www.speechpro.com 
• Batvox, Agnitio, Spain, http://www.agnitio.es 

 
The result st 
match

s are summarized as how many times the correct speaker is found as the fir
king. WinSprofiler 2.11 , and how many times among the top-5 in the ran
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perform
so
 
Besides the recognition accuracy, WinSprofiler was highlighted as having good 
us
ca
m
 
O
obtai
so
ab
an
 
D
co  how much is the difference between “what 
is”
de
on
 
 
Ta and several 
com

Used Failed 

ed well in the comparison, which indicates that it is at par with the commercial 
ftware (Table 8).  

ability in the NBI tests, especially due to its ease of use, fast processing, and the 
pability to add multiple speakers into the database in one run. Improvements could be 
ade for more user-friendly processing and analysis of the output score list though. 

rall, the results indicated that there is large gap between the recognition accuracy ve
ned by the latest methods in research, and the accuracy obtained by available 

ftware (commercially or via the project). In NIST 2006 benchmarking, accuracy of 
out 4 to 7% could be reached by the state-or-the-art methods such as in [Bummer’07], 
d by our own submission (IIRJ).  

irect comparisons to our software WinSprofiler 2.11, and indirect comparisons to the 
mercial software gave us indications ofm

 (commercial software, our prototype) and “what could be”. It demonstrates the fast 
velopment of the research in this area, but also shows the problem that tuning towards 
e data can set lead undesired results for another data set.  

ble 8: Recognition accuracies (100% is best) of WinSprofiler 2.11 
mercial software for NBI data (TAP). 

Software Samples samples Top-1 Top-5 

ASIS 51 11 67 % 92 % 
WinSprofiler 2.11 (*) 51 11 53 % 100 % 
WinSprofiler 2.11 62 0 53 % 98 % 
FreeSpeech 61 1  74 % 98 % 
Vo 38  iceNet 24 29 % 52 % 

(*) Selected sub-test with those 51 samples accept  ASIS. 
 
 

ed by
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6.

Voice-based recognition is not mature enough to be used as such for person 
id
m
av
ba
 
Th
following, we list potential applications roughly in the order in which the methods are 
cu

tional security, could be implemented in near-future) 
• 
• l
• l
• le
• 
• 

 
In fore ic spections to the 
correc a the 
correct suspect ity 
de
(F

• 
• 
• SD and periodicity-based methods. 
• e ages). 
• S X). 

 
 

 Applications 

entification in access control. It is applicable mainly in situations where traditional 
ethods (key, RFID, passwords) or other biometrics (fingerprints, iris) are not 
ailable, and when user-convenience is preferred over security. Influence of 
ckground noise and changes in conditions affect too much the recognition accuracy. 

e methods, however, can be useful in certain niche applications as such. In the 

rrently usable: 
• forensic research (supportive tool, useful already) [Niemi-Laitinen’06] 
• border control (addi

internet banking (additional security, technically possible) 
ca l-centers (cost savings, requires improved quality)  
he  pdesks (additional security / cost saving, useful for the first motive)
te -conferencing (speaker segmentation, potentially useful) 
audio mining (speaker diarization, potentially useful) 
access control (non-critical scenarios, high technical challenges) 

ns  research, any additional piece of information can guide the in
t tr cks. Even if 100% matching cannot be reached, it can be enough to detect 

 high in ranking. Augmented with keyword spotting, voice activ
tection and audio filtering, software such as WinSprofiler can serve as a practical tool 
ig. 27). The final version of the software supports the following: 

• Speaker recognition and audio processing. 
• Speaker profiles in database. 
• Several models per speaker. 
• Digital filtering of audio files (version 2.3).  

MFCC, F0 + energy and LTAS features. 
UBM) GMM and VQ models (with and w/o 
TVoice activity detection by energy, L

K yword search (support for Finnish and English langu
Fully portable (Windows, Linux and potentially Mac O



 
gure 27: Screenshot of keyword search in WinSprofiler 2.13.  Fi

 
In border contro
for providing a
appears. In network banking, the person identity should be checked by more reliable 
m
ca
di
im
m
 
In
an
co
proper service person, or into some extent, automate the service in cases when the 
cu
ha
en
th
 
In
re
sim
de
se
 
In
be
va
 

l, voice can be easily recorded and processed as a background process 
dditional information and invoking an alert when obvious mismatch 

eans. Since most new laptops already have built-in microphone, speaker verification 
n be used in the background for providing additional security as soon as voice-based 
alogues will be adopted in the software. In these two applications, it would be 
portant to keep the false alarms small enough but being still able to detect certain 

isuse situations. 

 call-center application, realistic cost saving can be achieved assuming that every call 
swered by human costs roughly 10 times more than when dealt automatically by 
mputer. Voice-based user identification can be used for directing the user faster to the 

stomer is seeking for basic information easily found by computer after the person 
ve been identified. Moreover, since the calls happen via somewhat controlled 
vironment (mobile or landline phones), the system is expected to be more reliable 
an the other applications using remote recordings and unknown conditions. 

 helpdesks, personal service is provided but the customer needs to be verified 
motely by asking certain questions concerning address, social security number or 

ilar information. Again, voice-based verification could be used if high confidence 
tection is made during the conversation, or otherwise, it could provide additional 
curity information in case of obvious fraud situations. 

 tele-conferencing (Fig. 28), exact identification is not necessarily needed but it might 
 enough to separate different speakers from each other. Biggest challenges are 
rying acoustic and technical conditions, and the case of over-lapping speakers. 
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gure 28: Application scenario for teleconferencing.  

 

Fi

In access control (Fig en 
the access is asked rem
password detection. Biggest obstacles to make voice-based system in practice are the 
ne
RF
in
 

. 29), voice-based system could be used via door phone, or wh
otely via mobile phone – either as such or combined with 

ed for having at least some level of security without losing convenience that the 
ID-based verification has. Uncontrolled voice conditions in distant voice recording 

 case of door phone and remote voice control gives also technical challenges.  

IdentificationIdentification VerificationVerification
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Figure 29: Voice-based user authentication in an access control application. 

 
The prototype applications developed during the project have aimed at simulating these 
potential applications. The main prototypes that have been developed are: 

• W
la
purposes and other similar security applications. 

• Ep

• Do
Sci stem, see Fig. 24. 

inSprofiler: Windows-based demonstrator for voice-based identification, 
rge-scale testing of recognition accuracy, and a practical tool for forensic 

• VoiceGrep: Tool for voice detection from long audio recordings (hours or even 
days). Methods are also implemented in WinSprofiler (Fig. 30). 

ocSprofiler: Mobile phone demonstrators for speaker identification and 
verification in Symbian operating system, see Fig. 31. 

orSprofiler: Real door-control system installed in SIPU laboratory in Joensuu 
ence Park as a demonstrator to simulate access control sy



 
Figure 30: Voice activity detection in WinSprofiler. 

 
 
 

  
onstrator (EpocSprofiler 2.0)  Figure 31: Example of the Symbian dem
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7. o

Main philosophy throughout the project was to study the methods thoroughly to gain 
de
im
fa
ba
im
 
In
state-of-the-art techniques have been mostly converged to the use of short term features 
su
m
co
co
 
Th
being able to recognize (and normalize) the unknown speech sample according to its 
te ual content would be useful for speaker recognition. On the other hand, technical 
m
co
la
m
 
M
an
an  put into a context and only the difference to the 
assumed background model is what makes the difference in the decision in practice. 
 
A

1.

can previously recorder training samples used in different conditions. 
2. features, 

3.
sep
rec y 

h

   

 C nclusions and discussion 

eper understanding about what is essential, how the models should be used, and then 
plement the settled baseline in practice. This can be seen as a slight lag between the 

st developing state-of-the-art, and what has been put into the prototype software as the 
seline. However, the gained knowledge makes it possible to transfer new incremental 
provements to practical application much faster than mere Matlab prototyping. 

tuitively, longer term features should provide better recognition results. In practice, 

ch as MFCC, LPCC, and their variants (deltas, normalization). Current challenges lay 
ore on the technical side. Normalization due to channel mismatch and change of 
ndition are more vital issues than which features should be used, and our findings 
nfirm this. 

e problem of using text-dependent information is a two-sided sword. Intuitively, 

xt
atters dominate matching too much, and tuning the speaker models according to the 
ntent would not be robust against recognition errors (or assumptions) of the spoken 
nguage or exact textual content. Password dependency is also an undesired feature of 
ost recognition systems. 

oreover, current methodology already makes the recognition relative to the content in 
 indirect (and text-independent) way by using the so-called background model. Thus, 
y feature matching is already

s a future work, the following three points are worth to consider: 

 Usability issues in general including: how to setup system fast and easily, and how 
to train the background model. Can the user models be trained remotely off-site, and 

 Using the pseudo-phonemes for capturing longer-term text-independent 
msi ilarly as was used for VAD in [Timofte’2007]. 

 Study recognition and synthesis as inverse problems. Better understanding how to 
arate the speech content, acoustic environment and speaker characteristic in the 
ognition process could be learned better by being able to model speaker identit

in synthesis as well. This would require us to be able to build model-based 
synthesizer based on the same features used in recognition, and to add or remove 

ort-term) speaker characteristics. If this can be successfu(s lly performed, then the 
key knowledge can be utilized in the opposite, speaker recognition problem as well. 
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