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Abstract:

In this paper, we summarize the main achievements made in the 4-years PUMS
project during 2003-2007. In addition to the reported research progress, the
emphasis is on the practical implementations, how we have moved from Matlab
and Praat scripting to C/C++ implemented prototype applications in Windows,
Unix, Linux and Symbian environments, with the motivation to enhance
technology transfer. We summarize how the baseline methods have been
implemented in practice, and how the results are expected to be utilized
commercially and otherwise after the project. Brief view for future research
challenges is outlined.

During the project, we had two main goals: (1) have a solid baseline that is close
to the state-of-the-art, (2) implement this method in all relevant platforms.
Besides this, there were no strong exact agenda but all intermediate goals were
constructed annually due to the course of progress, reflecting the feedback from
our partners, and according to our own understanding what we should do next
and what we are capable of. One cannot predict the future and set specific
innovative research goals. The only way to reach higher goals is via hard
thorough working, but also allowing enough freedom of research along the way
to give room for new innovations, which may or may not appear. The project has
also been a long learn-by-doing process as well.
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1. Introduction

This article documents the work done in speech & image processing unit (SIPU) during
the nationwide 4-years PUMS® project funded by Tekes?. The document covers the
history, results, potential applications and future prospects of the research. The project
was initiated by Tomi Kinnunen’s doctoral studies during 1999-2005, which inspired
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several projects jointly with other universities, industrial partners, and technology
agency joint projects.

At an early stage, the research group participated in an earlier SUOPUHE? project
during 2001-02 as a sub-contractor for University of Helsinki, where prof. Antti
livonen’s group needed tools for automatic evaluation of features that were manually
and semi-automatically extracted from speech signal. In its simplest form, the work
meant just numerical comparison of feature sets of given two speech samples, but in
practice, it turned out to be another case of challenging pattern recognition problem
with questions such as how to model the speakers, how to train the models, how to
measure dissimilarity, how to deal with mismatch of training and testing conditions,
how to combine different feature sets by data fusion, and all the practical aspects that
needed to be solved. The earliest programs (DiscrTest, ProfMatch) originate from this
period.

Own project was then initiated in 2002 but the pressure from outside led the group to
join forces with other speech technology research groups having similar project plans in
closely related fields either in speech recognition, speech synthesis, or speech-dialogue
applications, which eventually turned into a large nationwide four years PUMS project.
It included all the most important research groups in Finland, several government
organizations and companies working in speech technology and its applications. During
the first year, the project was coordinated by Tampere university of Technology (prof.
Jaakko Astola) but since then university of Turku (prof. Jouni Isoaho) took over the
coordinating duty.

Our main focus was on the speaker recognition problem (Fig. 1) but some secondary
issues also were worked upon, namely voice activity detection (VAD), which was
seemingly simple but necessary sub-component needed by several partners. They all
had their own solutions but no one seemed to be happy with their existing methods, and
desired to find a better solution. Thereafter, this problem was studied extensively during
the latter stage of the project, and results are reported here as well.
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1.1 Speaker recognition history

Despite expectations, the state of art is still based on the same short-term mel-frequency
cepstral coefficients (MFCCs), features that were invented already in 1980 [Davis’80],
augmented by their first and second order derivatives, normalized by cepstral mean
subtraction technique [Atal’74, Furui’81], and modeled as Gaussian mixture models
(GMM) adapted from a so-called universal background model (UBM) [Reynolds’00].
The recognition accuracy of the implementation depends a lot on implementation
details, proper normalization and training the models in matched acoustic and technical
environments, especially avoiding mismatch of channel and other technical factors.

In the beginning, it was unclear how much each factor affects the recognition accuracy,
and which processing steps would be vital for successful recognition. During the
process, however, these matters were concretely learned by trial-and-error manner
within the evolving implementations and during the numerous tests and infamous
demonstrations that typically failed 50% of the time when presented in wider public.

At the same time, most of the newest methods were implemented only by Matlab
simulations, Praat scripts, and separate C-language components. These lack the
capability for being able to make ad hoc live demonstrations, larger systematic testing,
or provide the methods for project partners or end user as such. The users were not
expected to be engineers or computer science professionals, but forensic researchers,
police officers, military persons, R&D people at companies utilizing speech technology
or developing innovative voice-based systems in completely other fields.

During the project, these methods were implemented step by step in C and C++
languages, and several prototype software systems were built (Fig. 2). These all went
through major evaluation steps, and the current versions are Sprofiler 2.3, WinSprofiler
2.3, and EpocSprofiler 2.2.1. The software itself is not made as the result of the project
but the systems have been given for free use for the project partners, with the exception
of the mobile phone systems after the version 1.0, which haven been copyrighted by
NRC and its usage is limited to research only. Therefore, only the EpocSprofiler 1.0
was released within the PUMS project.

Speaker profiler

Sprofiler (left), WinSprofiler (middle), and EpocSprofiler (right).



1.2 Research group in Joensuu

The research was carried on in the Speech & Image Processing Unit* in University of
Joensuu, lead by Prof. Pasi Frénti. The composition and roles of the members in the
team changed a lot during the years (Fig. 3). In the early stage, the research issues were
mainly solved and supervised by Dr. Tomi Kinnunen even though he spent most of his
time in finalizing his thesis, and then two years working in a collaborative institute in
Singapore® in Dr. Haizhou Li’s group®. Later due to the course of progress, others
started to contribute more to the research development, and the core of the group
formed of Dr. Ismo Karkkainen, Juhani Saastamoinen and Ville Hautaméaki who were
all present throughout the entire project and made significant contributions.

In addition, several junior members were recruited and served in the project with
various time periods and success, namely Evgeny Karpov, Marko Tuononen, Evgenia
Chernenko, Rosa Gonzalez Hautamaki, Radu Timofte, llja Sidoroff, and Andrei
Oprisan. Evgeny Karpov implemented the first versions of recognition libraries and the
first Symbian demonstrator. Marko Tuononen and Evgenia Chernenko were responsible
for the VAD development. Rosa Gonzalez Hautaméki assisted, performed the work on
FO feature, and implemented the speech filtering part. Radu Timofte developed and
implemented the methods for keyword spotting, and performed the latest VAD
development. Ilja Sidoroff and Andrei Oprisan were main contributors for the Windows
GUI development.

In addition, Dr. Pavel Kopylov, Victoria Yanulevskaya, Andrei Mihaila, Olga
Grebenskaya, Vibhor Jain, Harsh Gupta, Sergey Pauk, Teemu Kilpeldinen, Eeva
Polonen, Timo Viinikka and Pekka Nykanen all contributed to the project either by
working in another closely related project, or by completing their MSc thesis related to
PUMS. In specific, Pavel Kopylov solved all technical issues for the access control
prototype with the help of Harsh Gupta. Victoria Yanulevskaya and Andrei Mihaila
worked for the Symbian development.

* http://cs.joensuu.fi/sipu/
> Institute for Infocomm Research (I°R)
® Speech & Dialogue Processing Lab (http://sdp.i2r.a-star.edu.sg/)




Figure 3: Research group in a meeting in 2005.
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2. Speaker recognition

The method of our baseline uses MFCC features, and centroid models (i.e. vector
quantization) for speaker modeling. Delta features and normalization components were
not used at first, simply because they were not needed for the first benchmark data used
(TIMIT). Background model was also missing because this was not necessary in
speaker identification but it later turned out to be a vital component. After the dproject
ended, the baseline method had been changed to MFCC with its 1% and 2™ order
derivatives, utterance level mean/variance normalization, VAD for silence removal, and
UBM for background modeling.

The feature set of the baseline implementation remained the same all the way, even
though several longer term features were studied, implemented, experimented and
ended up into the prototype software as additions. Yet, the baseline method is still
composed of the same features and most improvement in the recognition accuracy
originated from those additional processing and modeling steps mentioned above.

Biggest catalyst for finding out the critical components and bottlenecks of the method
was the participation to NIST’ speaker recognition evaluation (SRE) competition® in
2006. From this competition and the latter findings showed interesting results that the
simplified variant of the state-of-the-art provides almost the same results with only the
carefully fine-tuned baseline method.

2.1. Feature sets used

Our baseline method is based on the mel-frequency cepstral coefficients (MFCCs),
which is a quantized representation of the short-term spectrum (Fig. 4). The audio
signal is first divided into 30 ms long frames with 10 ms overlap. Each segment is then
converted into spectral domain by fast Fourier transform (FFT), filtered and warped
according to a psycho-acoustically motivated mel-scale, in which lower frequency
components are emphasized more than the higher frequency components. Each feature
vector consists of 12 magnitudes representing the spectrum after log+DCT conversions,
plus the corresponding 1% and 2" derivatives to model the change and acceleration of
the spectrum.

The lowest MFCC coefficient (referred to as CO) represents the log-energy of the frame,
and is removed as a form of energy normalization. A two-pass feature normalization,
so-called cepstral-mean subtraction (CMS) [Atal’74, Furui’81] is then performed for
each coefficient to have zero mean and unit variance over the utterance. This is a
necessary step and useful for off-line testing. In real-time application, an on-line
normalization such as feature warping [Pelecanos’01] or RASTA filtering
[Hermansky’94] should be implemented instead. In WinSprofiler 2.3, both of these
techniques have been implemented.

The main benefit of using MFCC is that it is the same feature as used in speech
recognition, and the same signal processing components can therefore be used for both.
This is also its main drawback: the feature tends to capture more speech than speaker

" National institute of standards and technology
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related information. If the MFCC features are applied as such, it is a danger that the
recognition happens mostly based on the content than on the identity of the speaker.
This can be overcome by normalization and background modeling but it affects the
matching phase by making it less intuitive and apparently more complicated to
implement. Another similar feature, linear prediction cepstral coefficients (LPCC), was
also implemented and tested but the MFCC remained our choice of practice.
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Figure 4. lllustration of a sample spectrum and its approximation by MFCC.

2.2. Longer term features: FO and LTAS
Besides the short-term features, two longer-term features were studied:

» Long-term average spectrum (LTAS)
» Long-term distribution of the fundamental frequency (FO)

The first one was motivated by the facts that it includes more details about the spectrum
than MFCC, which is filtered to 12 coefficients only; and being average over longer
time period it could be more robust on changes in conditions. On the other hand, it was
also criticized by the same reasons: it represents only averaged information over time
and all information about variance is evidently lost. Moreover, it is not expected to
include much more information than is captured in the MFCC representation. However,
earlier results suggested that LTAS calculated for /a/ phonemes could provide
improvement over MFCC [Kinnunen, Eurospeech’03], and therefore, we decided to
study it further.

We had the following research questions and hypotheses for the experiments:

» How does the recognition accuracy of LTAS compare with MFCC?
» How does computational cost of LTAS compare with MFCC?

* Can LTAS and MFCC be fused for improved accuracy?

» Isthere any reason to use LTAS in automatic recognition?

Especially the last question was rather strong in our mind as our intuition was that this
was expected to be mostly a useless feature. Nevertheless, it was first studied in a



student project [Pauk’06], and more detailed later in [Kinnunen’06]. The results (Fig. 5)
confirm that the feature is mostly useless, and the following conclusions were drawn:

» Verification accuracy of LTAS: it is much worse than that of MFCC.

» Computational speed of LTAS: it is much faster than MFCC (Table 1).
* Fusion of LTAS and MFCC is not recommended.

» No other reason to use LTAS was found.

To sum up, even though LTAS is used in forensic research for visual examination, its
use in automatic analysis has no proven motives. With the exception that as being faster
to compute, it could potentially be used as a fast pre-selection tool but so far none of us
considered this important enough worth to further studies.
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Figure 5: An attempt to improve the baseline by adding LTAS via classifier fusion. The
difficulty of tuning the fusion weights is shown left, and the corresponding results of the
best combination is shown right for NIST 2001 corpus.

Table 1: Computing times (s) of the different LTAS variants compared to the MFCC.

Featu_re Matching Total
extraction
Single LTAS 0.3+0.1 <0.01 0.3
Single LTAS + Tnorm 0.3+0.1 1.840.2 2.1
Short-term LTAS 0.2+0.1 <0.01 0.2
Short-term LTAS + Tnorm 0.2+0.1 1.8+0.2 2.0
MFCC+GMM 2.6+0.1 0.6+0.9 3.2

Fundamental frequency, on the other hand, does contain speaker-specific information,
which is expected to be independent of the speech content. Since this information is not
captured by MFCCs, it can potentially improve recognition accuracy of the baseline
system. However, it is not trivial to extract the FO feature, and how to use it in the
matching process. These issues were extensively studied [Gonzalez’05]. At this stage,
plain FO and its histogram model were used but later the method was revised to contain
combination of FO, its derivative (delta), and the log-energy of the frame



[Kinnunen’05]. This combination is referred to as prosody vector, and it was
implemented in WinSprofiler 2.0.

The results support that the recognition accuracy of FO is consistent despite the change
of conditions (Fig.6). In clean conditions, no improvements were obtained in
comparison to the MFCC baseline, but the inclusion of FO improved the results on noisy
conditions (additive factory noise with 10 dB SNR) according to our tests. Whether this
translates to real-life applications was not verified. In the NIST evaluations (Section
2.3), the effect of FO is mostly insignificant (or even harmful), probably because the
SNR of NIST files is better than the 10 dB noise level in our simulations.
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Figure 6: Experimental results supporting noise robustness of FO.

2.3. Speaker modeling and matching

After feature extraction, the problem is to measure the similarity or dissimilarity of
a given test sample from the trained models in a speaker database. The question is either
from which speaker model the test sample originates from (identification task), or
whether the sample is close enough to a claimed speaker model (verification task).

In the identification task, it is usually enough to find the closest match, or in some
applications (e.g. forensic research), find a smaller set (say 3-5) of the best matching
speakers for further investigations. In verification, the similarity must be measured
relative to a known (or assumed) background model, and draw conclusion whether the
sample should be accepted or rejected. A confidence (likelihood) is also desired as well.

Traditional solution is to model the distribution of the feature vectors either by a set of
Gaussian mixtures (GMM model), where the sample is clustered, and each cluster is
represented by a mean vector, covariance matrix, and a mixture weight (see Fig. 7).
A simpler solution is to use only the cluster centroids and assume equal variance. This



is often referred to as vector quantization (VQ) model because this is what the process
essentially resembles.

The choice of the clustering algorithm and model was extensively studied
[Kinnunen'08, Hautamdki’08]. We found out that the simpler VQ model provides
similar results with significantly simplified implementation. Nevertheless, both methods
have been used and implemented in WinSprofiler 2.0, whereas only VQ model and its
derivatives (developed later outside of the PUMS project) have been used in
EpocSprofiler.
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Figure 7: Speaker models by centroids (VQ) and Gaussian mixture model (GMM).

Earlier in the process we mostly focused on the identification task and had overlooked
the problems related to the verification task. The NIST evaluations in 2006, however,
focused only on the verification task. We suddenly found out that the preliminary
results made using VQ-matching were dramatically worse than that of the GMM/UBM
model without any apparent reason.

It turned out that the background normalization (UBM) is a crucial component for the
success of the verification. Existing solution known as maximum a posteriori (MAP)
adaptation was originally formulated for the GMM-based model [Reynolds’00]. The
essential difference to standard clustering method is that the model is not really trained
to match the feature vectors as such, but instead, to model the difference from the
background model (Fig. 8). Similar solution for the VQ model was then formulated
during the project [Hautaméki’08], which solved the training problem.

In principle, the same VQ and GMM modeling approaches and MAP adaptation
generalizes to other features such as FO [Kinnunen’05]. In the case of one-dimensional
features such as LTAS, a simpler distance-based approach (Euclidean or Kullback-
Leibler) is used. The same problem of adaptation might exist even though rather
straightforward ad hoc solution was implemented for FO feature.
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Figure 8: Illustration of the MAP adaptation process.

In addition to modeling a single feature set, a solution is needed to combine the results
of independent classifiers. A linear weighting scheme optimized using Fisher’s
criterion was first used in [Kinnunen-Interspeech’03] but later, majority voting was
found out to provide more practical when at least three independent classifiers were
present [Kinnunen-SPECOM’04]. Both of these have been implemented in
WinSprofiler 2.0 because of their generality, even though the training of the proper
fusion weights should be addressed by the user.

More sophisticated solutions were used in NIST evaluations developed by our
collaborators at I°R [Tong’06]. These were based on artificial neural networks (ANNSs)
or support vector machines (SVMs). General consensus in the follow-up NIST
workshop was that fusion itself is needed to achieve the best result, but it is not
important which fusion method exactly is used (NN or SVM) but something better than
a simple linear weighting was recommended.

On the other hand, it also seems that people tend to avoid fusion in practical solutions
because the additional parameter tuning is non-trivial. In this sense, the performance of
the method in WinSprofiler 2.0 could be further improved but it is uncertain if it is
worth it, or would work in practical application. The use of data fusion is more or less
meant for experimental purpose, and not considered as a part of the baseline.

2.4. NIST competition

NIST organizes annually or bi-annually a speaker recognition evaluation (NIST SRE)
competition where all interested parties (research group or company) can participate.
The organizers have collected speech material and then release part of it as training
material, where each sample is labeled by speaker’s identity, gender and language
spoken. At the time of evaluation, NIST then sends a set of verification trials (about
50.000 in the main category alone) with claimed identity to the participants to analyze.
Each participant must send their recognition results (accept or reject claim, and
likelihood score) within 2-3 weeks, augmented by a brief documentation of their
recognition method used. Each participant is allowed to submit three systems (primary
submission and two others).

11



Results were released for the participants and presented in a workshop in June 2006
before the Speaker Odyssey workshop [ODYSSEY’06]. Each participant gave
presentation of their submitted system, and organizers presented the overall summaries
from different subtasks.

We decided to participate when the possibility to send a joint submission with the I°R
realized. They had enough manpower necessary for extensive testing, and previous
experience on similar language recognition evaluation in 2005 where they were ranked
3", This made it realistic to participate since otherwise too large efforts would have
been required being away from basic research and development.

In order to avoid overlap, the work load was originally divided so that we focused on FO
and a few experimental features modeled by VQ and histogram models, whereas I°R
focused on fusion, GMM-UBM, SVM and ANN models, and some of their own
inventions previously used in the language recognition competition [Ma’07]. Both
partners had their own implementations of the basic features (MFCC, LPCC). The
combinations that showed the best results with previous year NIST corpora were
selected.

The main idea was to include three independent classifiers, and calculate overall result
by classifier fusion. A variant of the baseline (SVM-LPCC) [Campbell’06] with T-norm
[Auckenthaler’00] was one component, FO another one, and GMM tokenization
[Ma’06] the third one (Fig.9). In this way, different levels of speaker cues are
extracted: spectral (SVM-LPCC), prosodic (F0), and high-level (GMM tokenization).
Our implementations of GMM and FO components were used, whereas the SVM and
ANN components and the other basic features were provided by I°R. The LPCC feature
is based on linear predictive coding (LPC) model, which is a parametric model of the
shape. It was chosen since it showed slightly better results than the MFCCs.

Our hypothesis for using FO was that it could make the system more robust in case the
testing data included samples with mismatched acoustic and technical conditions from
the training data. However, most of the material was in matched conditions.
Furthermore, the results indicate that the threshold learning might become easier, but
this was neither confirmed nor disproved by the results. Overall, the effect of FO was
marginal.

SVM-LPCC
Subsystem — pr—g
Acoustic subsystem
N SVM L
combiner 5
p— ©
FO <
Subsystem o
o
Prosodic subsystem ‘é’
L Neural net L, 3
i
7 GMM token 3 combiner
subsystem —
“High-level” subsystem

Figure 9: System diagram of the joint submission made by Infocomm at Singapore and
University of Joensuu to the NIST speaker recognition evaluation in 2006.
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In total, there were 96 submitted systems from the 36 participants from 17 different
countries. In the primary task (Lconv-1conv), our main submission was ranked 7" out of
36 primary submissions, and our best submission was ranked 16" out of 81 among all
submissions (Fig. 10). The corresponding equal error rate (EER) was about 7%
compared to 4% of the best system [Brummer’07]. However, our method provided 4"
best result in the 10sec-10sec test case (least training material) with 21% EER, just after
the CRIM submission (17%), and the two I°R solo submissions (21%) among the 24
submissions in this category.

Best Cur Median Worst
0oz 003 555 0.1 0.2 03 04 DgUB
DCF

Figure 10: Plot of the results in the primary task (1conv-1conv) according
to the DCF cost function (slightly different from EER value) used by NIST.

Our submission did not include revolutionary innovations, and it was merely
a combination that worked best according to extensive tests made using corpora of the
previous years. The FO and GMM token subsystems were something that was not used
by many, but they did provide improvement when used jointly with the baseline by
classifier fusion (see Fig. 11).

At the same time, the method providing the best performance in 1conv-1conv category
[Brummer’07] was constructed by a combination of several MFCC-based subsystems
similar to ours, combined by SVM-based data fusion. The group at the Brno University
of Technology (BUT) reported also simplified variant of their method [Burget’07],
showing that similar result can be achieved based on the carefully tuned baseline
method without fusion and using multiple sub-systems. Based on analytical comparison
with our MFCC baseline, the main components missing are heteroscedastic linear
discriminant analysis (HLDA) [Kumar’98, Burget’07] and eigenchannel normalization
[Burget’07]. Besides those, we expect the difference in performance to be mostly due to
a tuning of the models and parameters.
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Figure 11: Influence of each component separartely and jointly in our NIST
submission.

2.5. Affecting factors

Since the mismatch of training conditions and application environment played an
important role, we studied the relative importance of several factors in [Saastamoinen-
SPECOM’05]. The factors were divided into three types: technical (T), speech related
(S) and data dependent (D) factors. According to the tests made using an early MFCC
baseline resulted roughly in the following order of importance of the factors:

noise (T)

different microphone (T),

disguise (S),

quality of the sample (T),

text reading versus conversational speech (S),
sample length (D),

language (D),

text-dependency (D).

N R~LNE

Technical factors were the most crucial for the recognition accuracy, namely noise and
the change of microphone. It is noted that the type and amount of noise should be
studied further to draw stronger conclusions. Changing of voice (deliberate or
subconscious) had also significant effect as the style of reading (text reading vs.
spontaneous speech) had a small effect as well. This arises an interesting hypothesis:
intruding to a system could be possible by imitation contrary to common expectations.

Technical factors were considered further by studying how Symbian implementation,

quality of the microphone in mobile phone, and the GSM coding affect the recognition
accuracy. The limitations of the Symbian environment (no floating points) were solved
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by revising the implementation of the fast Fourier transformation in [Saastamoinen-
JASP’05], but the quality of the audio system of mobile phone still weakened the
recognition accuracy, as shown in Table 2.

However, it was observed in a student project [Viinikka’04] that the mismatch of
conditions (GSM coded or raw speech signal) had the most significant effcet on
recognition accuracy. Any coded test sample would match to another coded sample
rather than the correct uncoded sample indicating the vulnerability of the system to
channel mismatch. A possible solution would be to code all samples via GSM coding
but this cannot provide solution for the general channel normalization issue, which
remains unsolved.

Table 2: Recognition accuracy for mobile phone environment.

Avg. recognition rate std. dev.
FLOAT, Symbian audio 83.2% 4.38
FLOAT, PC audio 100.0 % N/A
FIXED, Symbian audio 76.0 % 2.83
FIXED, PC audio 100.0 % N/A

Data-dependent factors had the least effect in the sense that it did not matter much
which phrase was used in the training [Saastamoinen-SPECOM’05]. Utilization of text
information itself is two-sided. On one hand, if the language spoken is known, using
time-dependent matching (DTW) can improve the accuracy in case of very short (1.9 s)
test samples, and when every user had own password [Gupta’05]. Short samples can be
the case in real-time access control system but, on the other hand, it is desired that the
system would be text-independent.

2.6. Keyword spotting and other tasks

The goal of keyword spotting is to search through audio content based on input queries
as text, phonetic transcription or spoken sample, and to return the positions of possible
occurrences and the corresponding confidence scores. An easy way to perform word
spotting would be to obtain transcription of the speech by large vocabulary continuous
speech recognizers (LVCSRs), and then performing text retrieval on the transcription.
However, this approach does not solve the problem of searching arbitrary keywords
from continuous speech.

For the task, we developed a speaker and vocabulary independent method based on so-
called pseudo-phonemes [Timofte’06]. A prototype of this has been implemented in
WinSprofiler 2.3. The method first constructs models for all phonemes in a given
language (Finnish and English are supported), and matching scores are computed for
each possible location in the audio material. The search is then performed by dynamic
programming using the calculated scores as cost function, to find the most probable
occurrences. The method in WinSprofiler achieved equal error rate (EER) of 3.3 % and
figure of merit (FOM) of 46 % with TIMIT corpus. A slower improved variant reached
the rates of 2.5 % (EER) and 59 % (FOM) for the same corpus [Timofte’07].
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Speaker clustering was also studied in [Grebenskaya’05] by clustering speakers into 4
classes (1 female and 3 male classes). Different HMM models were then trained for
each class separately, but the results provided only minor improvement and the topic

was not studied further.
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Figure 12: System diagram of the keyword search using so-called pseudo-phonemes.
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3. Voice activity detection

During the PUMS project, it became apparent that many of the participants needed
voice activity detection (VAD), and nobody seemed to be too happy about the existing
solutions. The problem is to segment a given input signal into parts that contain speech
and the parts that contain background (Fig. 13). This can be done at the frame-level or
by combining neighboring frames to achieve longer (e.g. 1 second resolution) segments
as the final output. We carried out extensive study of several existing solutions, and
developed a few new ones during the course of the project. We considered three
different applications.

0.6 [ B R T T T T T T 1
<————speech non-speech———>

0.4 B
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0 i
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0.4 4
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Figure 13: From speech waveform to VAD decisions.

3.1. Applications

In forensic application (Fig.14), there are lots of recordings collected by
eavesdropping, and automatic annotating would be needed to save manual work.
Biggest challenge is the recording quality. It can vary from a quiet hotel where the
microphone can record speech even from the neighbor room, or in aloud music
restaurant where it is difficult to even human to recognize what was spoken. Typical
audio material is a record of 24 hours a day, and can be days or even weeks long in
total.

As an example of interactive voice-based dialogue system, we considered the bus
timetable system called Busman [Turunen’05]. It provides bus route and timetable
information for the city of Tampere, Finland. The user can request certain bus routes
such as “Which bus goes from the Central square to the railway station?”, or timetable
information such as “When does next bus leave from the Central square to Hervanta?”
The purpose of voice activity detector in the system is to detect when the user is
speaking, and to extract speech from the input (Fig. 15).

In speaker recognition, we want to model the speaker only from the parts of a recording
that contain speech. It is therefore important to use a conservative threshold to make
sure that the frames used in the modelling actually do contain speech. If there is lack of
speech material, a compromise might need to be taken between having enough training
material, and not having too many non-speech frames included. The segmentation can
be performed directly at the frame-level.
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Figure 15: Voice activity detection in the Bus-Stop application.

For evaluation, we use the four data sets summarized in Table 3. NIST 2005 SRE data
set is recorded over telephone network and its original purpose is to evaluate speaker
verification methods. Only a small subset was selected and manually annotated by the
authors. Bus stop data set is recorded over telephone line, and it contains human speech,
synthetic speech and DTMF tones. In Lab recording, we simulated forensic
eavesdropping application by recording in our laboratory using a hidden distance
microphone.

NBI data sets are extracts from a legal eavesdropping recordings made during real
criminal investigations by National Bureau of Investigation®. Materials are recorded
over distant microphone (covert listening device), in extremely challenging conditions,
microphone is placed in a location most useful for a forensic investigator. Sometimes
microphone is very close to the suspect and in some recordings microphone is not even
in the same room.

® Keskusrikospoliisi (KRP), http://www.poliisi.fi/krp
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Table 3: Speech segmentation data sets.

. . . Sampling Duration Total
Material Recording Files rate (kHz) per file duration
NIST - 14
2005 Telephone 15 8 5 minutes 1:14:45
Bus-Stop Telephone 94 8 1.5 - 9 minutes 3:08:13
Lab Labtec PC mic. 1 441 over 4 hours 4:14:42
NBI Covert Il_stemng 4 16-44.1 20 minutes — 4:35:47
device 2 hours
3.2. Methods

We have experimented both real-time and batch processing variants. Real-time
operation is necessary in some VAD applications such as telecommunication and
speaker recognition, where latency is an important issue in practice. The application
should start to process the extracted feature vectors at the same time when the speaker is
still talking. In forensic skimming, on the other hand, real-time operation is not
necessary, and the segmentation can be performed as a background process.

VAD methods can also be classified according to whether separate training material is
needed (trained) or not (adaptive), see Table 4. Methods that operate without any
training are typically based on short-term signal statistics. We consider the following
non-trained methods: Energy, LTSD, Periodicity and the current telecommunication
standards: G729B, AMR1 and AMR2.

Trained VAD methods, on the other hand, construct separate model for speech and non-
speech based on annotated training data. The methods differ in what features are used,
and which modeling method is applied. We consider two methods based on MFCC
features (SVM, GMM), and one based on short-term time series (STS). All of these
methods were developed during the PUMS project. We also modified the LTSD method
so that the noise model was adapted from the training material instead of the beginning
of the file as in the original method.

Figure 16 shows an example of the process, where the speech waveform is transformed
frame by frame to the speech / non-speech decisions using the Periodicity-based method
[Hautamaki’07]. First, features of the signal are calculated, and smoothed by taking into
account the neighboring frames (five frames in our tests). The final decisions (speech or
non-speech) are made according to a user select threshold. In real applications, the
problem of selecting the threshold should also be issued. Here we consider only the
values of equal error rates, or report the entire operating curve for all possible
thresholds.

19



Speech waveform

Raw periodicity

TR ‘w rN T
05 Ll i
0 il e A
0 10 20 30 40 50 60 70 80
Smoothed periodicity (window size = 5)
[ A : ‘ ‘
05
% 10 20 30 40 50 60 70 80

Detected speech (solid) vs. ground truth (dashed)

S ol | T S

70 80

30

Figure 16: Demonstration of voice activity detection from framewise

scores to longer segments using Periodicity method [Hautamaki’07].

Comparisons of the EER results of the different methods are summarized in Table 4,
and their performance when varying the acceptance threshold are demonstrated in
Figure 17. For G729B, AMR, and STS, we have set the threshold when combining
individual framewise decisions to 1-second resolution decisions by counting the

proportion of speech and non-speech frames in each segment.

Table 4: EER comparison (%) of the VAD methods with the four data sets.

NIST | B
VAD method 2005 | stop | Leb | NEI
Energy [Tong’06] 1.5 14.6 16.8 | 30.0
, | LTSD[Ramirez’04] 400 | 19.2| 144 318
%_ Periodicity [Hautaméki’07] 3.2 21.9 99| 214
§ G729B [ITU’96] 8.9 6.5 79| 133
AMRL1 [ETSI’99] 5.5 5.7 72| 218
AMR2 [ETSI’99] 8.4 7.4 51| 16.1
SVM [Kinnunen’07] 11.6 5.2 195| -
€ | GMM [Kay'98] 88| 75| 97| -
E LTSD [Ramirez’04] 1.3 62| 149 --
STS [Timofte’07] 7.1 3.9 86| --

For the NIST 2005 data, the simple energy-based and the trained LTSD provide the best
results. This is not surprising since the parameters of the method have been optimized
for earlier NIST corpuses through extensive testing, and because the energy of the
speech and non-speech segments is clearly different in most samples. Moreover, the
trained LTSD clearly outperforms its adaptive variant because the noise model
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initialization failed on some of the NIST files considering speech as non-speech in the
beginning, and caused high error values.

For Bus stop data, the energy is not anymore the decisive factor for recognizing speech
from background. The developed STS method performs best probably because being
able to learn (in training step) the temporal patterns that exist in the samples. Most of
the other methods (SVM, GMM, AMR1, G729B) give also reasonable results. Only the
methods that rely on energy or periodicity of the signal fail significantly more often.

The NBI data is the most challenging, and all adaptive methods have EER values higher
than 10%. The best method is G729B with the error rate of 13%. It is an open question
how much better results could be reached if the trained VAD could be used for these
data. However, in this case the training protocol and the amount of trained material
needed should be studied more closely. Overall, perfect VAD that would work in every
recording and environmental condition does not yet exists, according to our
experiments.
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Figure 17: Comparison of the VAD methods for NIST 2005 and Bus stop data.

For WinSprofiler 2.3, we have implemented the three VAD methods that performed
best in NIST data: LTSD, Energy and Periodicity. Their effect on speaker verification
accuracy is reported in Table 5. The advantage of using VAD in this application with
NIST 2006 corpus is obvious, but the choice between Energy and Periodicity is unclear.

Table 5: Effect of VAD in speaker verification performance (in EER %).

NIST 2001 NIST 2006
model size 512 | model size 64 Model size 512
No VAD 13.6 16.0 44.4
LTSD 124 13.7 35.8
Energy 9.3 10.4 16.6
Periodicity 8.5 9.6 16.8
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4. Implementations

Experimentation using Praat and Matlab is rather easy and good for quick testing of
new ideas, but not so good for technology transfer and for larger development. In the
PUMS project, our aim was to have the baseline methods implemented in C/C++
language for demonstrating the research results, performing large scale tests, and to
allow the methods to be tested by the project partners with more critical eyes.
Compatibility was also desired in order to allow software integration with the products.
External testing by people outside of our research group gave us also a better
perspective to usability issues and more practical view to the results.

4.1. Development cycles

Early research was done mostly by Matlab simulations, but the first C-implementations
were made by student projects by Ville Hautaméki (matching) and Teemu Kilpeldinen
(feature extraction). First Srlib library (1.0) was built on the basis of those two and first
complete C-language matching program (Sprofiler) was implemented in 2002.
Research and Matlab experiments were also carried on for classifier fusion as this
component was going to be needed later if additional feature sets were going to be used
within the prototype software.

At the same time, another software (ProfMatch) was implemented during the sub-
contracting with the university of Helsinki to perform simple template-based matching
and calculate mean square error (MSE) scores for pre-calculated features. This was
used for testing new experimental features studied in Prof. livonen’s group, and
extracted using Praat and semi-automatic processing. They also implemented their own
Windows interface for it using Tck/Tk-scripts (see Fig. 18).

N sprofiler
B Winsprofiler 4

Figure 18: View of the software architecture in 2003.

Meanwhile, we developed Windows prototype using C and C++ languages, first by
Evgeny Karpov in late 2003, and the first published version WinSprofiler 1.0 was
completed in the first half of 2004 by Evgeny Karpov, Olga Grebenskaya and Pavel
Kopylov. It was used as the primary testbench whereas we used its command line
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variant (Sprofiler) for all large scale testing. WinSprofiler 1.0 was built on top of an
improved speaker recognition library Srlib2, which has clear specifications of the
functionalities of the training and matching operations, and their input and output data

types.

The motivation for Srlib3 was to develop modularity further and support Symbian in the
same library as well, instead of having separate implementation for the mobile and other
environments. These were implemented by Juhani Saastamoinen, Andrei Mihaila and
Victoria Yanulevskaya. Despite of having working prototypes, too much of the
functionalities was mixed with the user interface and all improvements in either part
were too difficult to implement in practice with reasonable resources (Fig. 19).

Keyword search WinSprofiler

< Windows (JoY)
DB Mobile

support Series 60 (JoY)

VAD SRLIB:

_ |~ MSE
FO extraction | — | np—

fusion by weighted MSE

LTAS — |

— MFCC

Figure 19: Plans for improvements to be made in 2004.

In order to avoid multiple updates for all software, the library was eventually re-
constructed step-by-step as a background work by Juhani Saastamoinen and Ismo
Kérkkéinen. This finally ended up to a significant upgrade of the library in 2006 and
2007, which was renamed to PSPS2 (portable speech processing system 2), see Fig. 20.
Main motivation of this large but invisible work was that the software should be
maintainable also after the project would end. To sum up, the following life cycle of the
recognition library has appeared during the project: Srlibl (2003) — Srlib2 (2004) —
Srlib3 (2005-2006) — PSPS2 (2006-2007).

As a consequence, all the functionality in WinSprofiler was re-written to support the
new architecture of the PSPS2 library so that all unnecessary dependencies between the
user interface and the library functionality were finally cleared. This happened as a
background project during the last project year (2006-07), and was made mostly by Ilja
Sidoroff and Andrei Oprisan. Eventually a new version (WinSprofiler 2.0) was released
in Spring 2007, and soon after a series of upgrades were released: 2.1 (June-07) —» 2.11
(July-07) > 2.2 (Aug-07) —» 2.3 (Oct-07).
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Figure 20: Example of the configurable architecture of PSPS2
using joint MFCC and FO calculation without any hard coding.

4.2. Design solutions for the implementation

The new version (WinSprofiler 2.0) is written completely using C++ language,
consisting of the following components (Fig. 21):

» Database library to handle storage of the speaker profiles.

» Audio processing library to handle feature extraction and speaker modelling.

» Recognition library to handle matching feature streams against speaker models.
» Configurable audio processing and recognition components.

» Graphical user interface.

The GUI part is based on 3 party C++ development libraries, wxWidgets. Existing
libraries were also used for the audio component: libsndfile and portaudio. Database
support was implemented using SQLite3. All the rest was then implemented by us:
signal processing, speaker modeling, matching and graphical user interface. The new
version was extensively tested, and the functioning of the recognition components was
verified step-by-step with the old version (WinSprofiler 1.0). The new library
architecture is show in Fig. 21, and the internal class structure in Fig. 22.
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Figure 22: Internal class structure of WinSprofiler 2.0.

4.3. Symbian implementation

During the first project year, the development of a Symbian implementation was also
started with the motivation to implement a demo application for Nokia S60 series
phones. Research was carried on for faster matching techniques by speaker pruning,
quantization and faster search structures [Kinnunen’06]. The existing baseline (Srlib
2.0) was converted to Symbian environment in order to have real-time signal processing
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and MFCC feature extraction including instant on-device training, identification, and
text-independent verification from spoken voice samples.

The development was made co-operatively with Nokia Research Center during the first
project year, and the first version (EpocSprofiler 1.0) was published in April 2004. The
Symbian development was then separated from PUMS and further versions of the
software (EpocSprofiler 2.0) were developed separately, although within the same
research group, using the same core library code, and mostly by the same people.

The main challenge was that the CPU was limited to fixed-point arithmetic. Conversion
from float-point to fixed-point itself was rather straightforward but the accuracy of the
fixed-point MFCC was insufficient. Improved version was developed [Saastamoinen-
JASP’05] by fine-tuned intermediate signal scaling, and more accurate 22/10 bit
allocation scheme of the FFT, as illustrated in Fig. 23.

Two voice model types were implemented: centroid model with MSE-based matching
as the baseline and a new much faster experimental modelling method called
background cell histogram model and entropy-based matching was developed for
EpocSprofiler 2.0 (report is under progress). In identification, training and recognition
response of the new histogram models is about 1 second on a database of 45 speakers,
whereas the training and identification of the older baseline method was more than 100
times slower. In verification, the recently developed background model called VQ-
UBM [Hautamé&ki’08] was also utilized in the implementation.
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 I——

‘/_/ FFT layer output (part of it)
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Figure 23: Developed information preserving FFT (22/10 scheme) for Symbian.

4.4. Access control demonstrators

For access control demos, a software called DoorSprofiler was developed in 2005 on
the basis of WinSprofiler 1.0. It is compatible with Securitas’ SOAP system and ESMI’s
door control systems. Real working prototype was implemented in SIPU laboratory in
Joensuu Science Park using ESMI door controller unit and a simple short-cut to a door
opening relay, in order to avoid any interfering to the access control unit used in the rest
of the house, see Fig. 24.
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Figure 24: Example of DoorSprofiler in action.

A support for Kone’s elevator OPC server control system was designed and
implemented for LiftSprofiler software, where a two-class classification was designed:
staff and non-staff users. Verification threshold was set to have low false rejection (FR)
rate so that staff could always enter the lift conveniently. Letting a few non-staff people
to use the lift is not considered harmful: false acceptance (FA) rate is not so critical.

A real demonstrator was designed for an elevator in Science Park. Even though it has
not yet been installed in real-life, all implementations to make such installation in
practice has been made for the scenario shown in Fig. 25.
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Figure 25: Designed system for implementing voice-based elevator calling.
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5. Summary of the main results

The main results of the project can be summarized in the three demonstrators:

o WinSprofiler demonstrator (Windows)
e Mobile phone demonstrator (Nokia Series S60)
e Door access control demonstrator in Joensuu Science Park.

The first prototype supports the following operations:

Speaker modeling and matching (batch processing and real-time recognition)
Keyword spotting (support for Finnish and English languages)

Voice activity detection (also in VoiceGrep software)

Digital filtering for band elimination.

Some of the software (namely Srlib 1.0, WinSprofiler 1.0, EpocSprofiler 1.0,
VoiceGrep 0.2 software) are available as project results, whereas the others are
copyrighted by the University of Joensuu, and available only as binaries. Other results
of the project include the publications and theses listed in the end of this report.

5.1. Recognition results

Even though usability and compatibility are important issues for a practical application,
an important question for voice-based user authentication to be accepted into real
application, is the identification and verification accuracy the system can provide. We
have therefore collected here the main recognition results of the methods developed
during the project, and made an attempt to compare them with the state-of-the-art
(according to NIST evaluation), and provide indicative results from comparisons with
existing commercial programs.

Table 6: Databases that have been used in the evaluation.

Corpus Trials Speakers tr;;r}g;h d(;fta I;zgtgégtgf
NIST 2001 (core test) 22,418 174 2 min 2-60's
NIST 2006 (core test) 53,966 731 5 min 5 min
Sepemco 494 45 12-60 s 9-60 s
TIMIT 184,900 430 15-35s 5-15s
NBI data 62 62 42-150s 10-93s

We have also used (or considered) TIMIT, Helsinki corpus, OGI and Estonian
SpeechDAT corpora earlier in the project. However, once we achieved 0% error rates
for the first two corpora, we have limited all the large-scale testing for the NIST and
Sepemco databases. Other NIST corpora have also been used occasionally, namely
NIST 1999, 2002, 2004 and 2005, or a smaller subset for reducing the processing time.
The results for the NBI databases have been provided by Tuija Niemi-Laitinen at the
Crime laboratory in National Bureau of Investigation, Finland.
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The following versions have been included here:

o WinSprofiler 1.0: An early demo version from 2005 using only the raw MFCC
coefficients without deltas, normalization, and VAD. VQ model of size 64 is
used. This version has also been used in DoorSprofiler version 1.0 and the door
demo.

o WinSprofiler 2.0: A completely new version that was released in May 2007,
although the recognition library PSPS2 was developed already in late 2006.
Main differences were use of GMM-UBM, deltas, and normalization. The first
version did use neither VAD nor gender information (specific for NIST corpus).

e WinSprofiler 2.11: Version released in June 2007, now included gender
information (optional) and several VADs, of which the periodicity-based
method [Hautamdki’07] has been used for testing. The newer version 2.3
includes also areal-time matching and audio filtering, but has the same
recognition method.

o EpocSprofiler 2.1: Symbian version from October 2006. Corresponds to
WinSprofiler 1.0 except that the histogram models are used instead of VQ.

o |IRJ: The joint submission to NIST competition based on the LPCC-SVM,
GMM tokenization and FO features, and fusion by NN and SVM. Energy-based
VAD. This system does not exist as a program, as the results have been
constructed manually from the results of several scripts.

o NIST state-of-the-art: The results released by the authors providing the winning
method in NIST competition as a reference.

The main results (verification accuracy) are summarized in Table 7 as far as available.
The challenging NIST 2001 corpus has been used as the main benchmark since summer
2006. Most remarkable lesson is that, even though the results were reasonable for the
easier datasets (TIMIT), they are devastating for WinSprofiler 1.0 when NIST 2006 was
used. The most remarkable improvements have been achieved in the latter stage of the
project since the release of the PSPS2 library used in WinSprofiler 2.11. The overall
development in recognition accuracy during the project is also visualized in Fig. 26 by
using the detection error trade-off (DET) plots.

Another observation is that the role of VAD was shown to be critical for NIST 2006
evaluation (45% vs. 17%), but this did not generalize to Sepemco data (7% vs. 13%).
This arises the questions whether the database could be too specific, and how much the
length of training material would change the design choices and parameters used (model
sizes, use of VAD). Although NIST 2006 has a large number of speakers and huge
amount of test samples, the length of the samples is typically long (5 minutes).
Moreover, the speech samples are usually easy to differentiate from background by
a simple energy-based VAD. The background noise level is also rather low.
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Table 7: Summary of verification (equal error rate) results (0 % is best) using the NIST
2001, NIST 2006 and the Sepemco database.

. NIST NIST 2006
Version Sepemco | TIMIT 2001 10sec Lconv
EpocSprofiler 2.1 (2006) 12% 8 % 48 % 46 %
WinSprofiler 1.0 (2005) 24 % 33% 43 % 48 %
WinSprofiler 2.0 (no-vad) 7% 3% 16 % 40 % 45 %
WinSprofiler 2.11 (2007) 13% 9% 11% 31% 17 %
NIST submission (1IRJ) 22 % 7%
State-of-art [Brummer’07] 4%
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Figure 26: Development of the recognition accuracy during the project (NIST 2006).

5.2. Comparisons with NBI data

Speaker identification comparisons with three selected commercial software (ASIS,
FreeSpeech, VoiceNet) are summarized in Table 8 using NBI material obtained by
phone tapping (with permission). Earlier results with WinSprofiler 1.0 for different
dataset have been reported in [Niemi-Laitinen’05]. The current data (TAP) included two
samples from 62 male speakers: the longer sample was used for model training and the
shorter one for testing. The following software have been tested:

o WinSprofiler, Univ. of Joensuu, Finland, www.cs.joensuu.fi/sipu/

o ASIS, Agnitio, Spain, http://www.agnitio.es

e FreeSpeech, PerSay, Israel, http://www.persay.com

o VoiceNet, Speech Technology Center, Russia, http://www.speechpro.com
e Batvox, Agnitio, Spain, http://www.agnitio.es

The results are summarized as how many times the correct speaker is found as the first
match, and how many times among the top-5 in the ranking. WinSprofiler 2.11
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performed well in the comparison, which indicates that it is at par with the commercial
software (Table 8).

Besides the recognition accuracy, WinSprofiler was highlighted as having good
usability in the NBI tests, especially due to its ease of use, fast processing, and the
capability to add multiple speakers into the database in one run. Improvements could be
made for more user-friendly processing and analysis of the output score list though.

Overall, the results indicated that there is large gap between the recognition accuracy
obtained by the latest methods in research, and the accuracy obtained by available
software (commercially or via the project). In NIST 2006 benchmarking, accuracy of
about 4 to 7% could be reached by the state-or-the-art methods such as in [Bummer’07],
and by our own submission (1IRJ).

Direct comparisons to our software WinSprofiler 2.11, and indirect comparisons to the
commercial software gave us indications of how much is the difference between “what
is” (commercial software, our prototype) and “what could be”. It demonstrates the fast
development of the research in this area, but also shows the problem that tuning towards
one data can set lead undesired results for another data set.

Table 8: Recognition accuracies (100% is best) of WinSprofiler 2.11 and several
commercial software for NBI data (TAP).

Software Used Failed Top-1 Top-5
Samples samples

ASIS 51 11 67 % 92 %

WinSprofiler 2.11 (*) 51 11 53 % 100 %

WinSprofiler 2.11 62 0 53 % 98 %

FreeSpeech 61 1 74 % 98 %

VoiceNet 38 24 29 % 52 %

(*) Selected sub-test with those 51 samples accepted by ASIS.
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6. Applications

Voice-based recognition is not mature enough to be used as such for person
identification in access control. It is applicable mainly in situations where traditional
methods (key, RFID, passwords) or other biometrics (fingerprints, iris) are not
available, and when user-convenience is preferred over security. Influence of
background noise and changes in conditions affect too much the recognition accuracy.

The methods, however, can be useful in certain niche applications as such. In the
following, we list potential applications roughly in the order in which the methods are
currently usable:

« forensic research (supportive tool, useful already) [Niemi-Laitinen’06]

« border control (additional security, could be implemented in near-future)
« internet banking (additional security, technically possible)

call-centers (cost savings, requires improved quality)

helpdesks (additional security / cost saving, useful for the first motive)
tele-conferencing (speaker segmentation, potentially useful)

audio mining (speaker diarization, potentially useful)

« access control (non-critical scenarios, high technical challenges)

In forensic research, any additional piece of information can guide the inspections to the
correct tracks. Even if 100% matching cannot be reached, it can be enough to detect the
correct suspect high in ranking. Augmented with keyword spotting, voice activity
detection and audio filtering, software such as WinSprofiler can serve as a practical tool
(Fig. 27). The final version of the software supports the following:

Speaker recognition and audio processing.

Speaker profiles in database.

Several models per speaker.

Digital filtering of audio files (version 2.3).

MFCC, FO + energy and LTAS features.

GMM and VQ models (with and w/o UBM)

Voice activity detection by energy, LTSD and periodicity-based methods.
Keyword search (support for Finnish and English languages).

o Fully portable (Windows, Linux and potentially Mac OS X).
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Figure 27: Screenshot of keyword search in WinSprofiler 2.13.

In border control, voice can be easily recorded and processed as a background process
for providing additional information and invoking an alert when obvious mismatch
appears. In network banking, the person identity should be checked by more reliable
means. Since most new laptops already have built-in microphone, speaker verification
can be used in the background for providing additional security as soon as voice-based
dialogues will be adopted in the software. In these two applications, it would be
important to keep the false alarms small enough but being still able to detect certain
misuse situations.

In call-center application, realistic cost saving can be achieved assuming that every call
answered by human costs roughly 10 times more than when dealt automatically by
computer. VVoice-based user identification can be used for directing the user faster to the
proper service person, or into some extent, automate the service in cases when the
customer is seeking for basic information easily found by computer after the person
have been identified. Moreover, since the calls happen via somewhat controlled
environment (mobile or landline phones), the system is expected to be more reliable
than the other applications using remote recordings and unknown conditions.

In helpdesks, personal service is provided but the customer needs to be verified
remotely by asking certain questions concerning address, social security number or
similar information. Again, voice-based verification could be used if high confidence
detection is made during the conversation, or otherwise, it could provide additional
security information in case of obvious fraud situations.

In tele-conferencing (Fig. 28), exact identification is not necessarily needed but it might

be enough to separate different speakers from each other. Biggest challenges are
varying acoustic and technical conditions, and the case of over-lapping speakers.
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Figure 28: Application scenario for teleconferencing.

In access control (Fig. 29), voice-based system could be used via door phone, or when
the access is asked remotely via mobile phone — either as such or combined with
password detection. Biggest obstacles to make voice-based system in practice are the
need for having at least some level of security without losing convenience that the
RFID-based verification has. Uncontrolled voice conditions in distant voice recording
in case of door phone and remote voice control gives also technical challenges.

Open the door

Claim: lo
Juhani. A

Verification

Let me in!

)) )) Identification

%%
Keep the door
Database of users locked

Figure 29: Voice-based user authentication in an access control application.

The prototype applications developed during the project have aimed at simulating these
potential applications. The main prototypes that have been developed are:
o WinSprofiler: Windows-based demonstrator for voice-based identification,
large-scale testing of recognition accuracy, and a practical tool for forensic
purposes and other similar security applications.
VoiceGrep: Tool for voice detection from long audio recordings (hours or even
days). Methods are also implemented in WinSprofiler (Fig. 30).
EpocSprofiler: Mobile phone demonstrators for speaker identification and
verification in Symbian operating system, see Fig. 31.
o DoorSprofiler: Real door-control system installed in SIPU laboratory in Joensuu
Science Park as a demonstrator to simulate access control system, see Fig. 24.
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Figure 31: Example of the Symbian demonstrator (EpocSprofiler 2.0)
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7. Conclusions and discussion

Main philosophy throughout the project was to study the methods thoroughly to gain
deeper understanding about what is essential, how the models should be used, and then
implement the settled baseline in practice. This can be seen as a slight lag between the
fast developing state-of-the-art, and what has been put into the prototype software as the
baseline. However, the gained knowledge makes it possible to transfer new incremental
improvements to practical application much faster than mere Matlab prototyping.

Intuitively, longer term features should provide better recognition results. In practice,
state-of-the-art techniques have been mostly converged to the use of short term features
such as MFCC, LPCC, and their variants (deltas, normalization). Current challenges lay
more on the technical side. Normalization due to channel mismatch and change of
condition are more vital issues than which features should be used, and our findings
confirm this.

The problem of using text-dependent information is a two-sided sword. Intuitively,
being able to recognize (and normalize) the unknown speech sample according to its
textual content would be useful for speaker recognition. On the other hand, technical
matters dominate matching too much, and tuning the speaker models according to the
content would not be robust against recognition errors (or assumptions) of the spoken
language or exact textual content. Password dependency is also an undesired feature of
most recognition systems.

Moreover, current methodology already makes the recognition relative to the content in
an indirect (and text-independent) way by using the so-called background model. Thus,
any feature matching is already put into a context and only the difference to the
assumed background model is what makes the difference in the decision in practice.

As a future work, the following three points are worth to consider:

1. Usability issues in general including: how to setup system fast and easily, and how
to train the background model. Can the user models be trained remotely off-site, and
can previously recorder training samples used in different conditions.

2. Using the pseudo-phonemes for capturing longer-term text-independent features,
similarly as was used for VAD in [Timofte’2007].

3. Study recognition and synthesis as inverse problems. Better understanding how to
separate the speech content, acoustic environment and speaker characteristic in the
recognition process could be learned better by being able to model speaker identity
in synthesis as well. This would require us to be able to build model-based
synthesizer based on the same features used in recognition, and to add or remove
(short-term) speaker characteristics. If this can be successfully performed, then the
key knowledge can be utilized in the opposite, speaker recognition problem as well.
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