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Polygonal approximation of closed discrete curves
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Abstract

Optimal polygonal approximation of closed curves differs from the case of open curve in the sense that the location of the starting
point must also be determined. Straightforward exhaustive search would take N times more time than the corresponding optimal algorithm
for an open curve, because there are N possible points to be considered as the starting point. Faster sub-optimal solution can be found
by iterating the search and heuristically selecting different starting point at each iteration. In this paper, we propose to find the optimal
approximation of a cyclically extended closed curve of double size, and to select the best possible starting point by search in the extended
search space for the curve. The proposed approach provides solution very close to the optimal one using at most twice as much time as
required by the optimal algorithm for the corresponding open curve.
� 2006 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Approximation of polygonal discrete curves aims at find-
ing a subset of the original vertices so that a given objective
function is minimized. The problem can be formulated in
two ways:

(a) Minimum-distortion problem: given an N-vertex polyg-
onal curve P, approximate it by another polygonal curve
Q with a given number of segments M so that the ap-
proximation error is minimized.

(b) Minimum-rate problem: given an N-vertex polygonal
curve P, approximate it by another polygonal curve Q
with minimum number of segments so that the approx-
imation error does not exceed a given maximum toler-
ance �.

Sometimes the problems are referred as min-� and min-#
problem, respectively [1]. In the case of open curve, the
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problems can be solved by dynamic programming (DP)
algorithm [1–9], or by A∗-search algorithm [10]. The time
complexity of these algorithms varies from O(N2) to
O(N3). Heuristic algorithms also exist: split [11–13], merge
[14–20], dominant points detection [21–24], sequential
tracing [25–27], genetic algorithms [28–31], tabu search
[31,32], ant colony methods [33,34], particle swarm method
[35]. These algorithms are fast but they lack the optimality.

In the case of closed curve, we have to find optimal allo-
cation of all approximation nodes including also the starting
point. A straightforward solution is to try all N vertices of P
as a starting point for an algorithm designed for open curve,
and to choose the one with the minimal number of segments
[6] or the minimal error [8]. Actually, for the minimum-
distortion problem the number of vertices to be tested is
(N − M) [8], but this is still O(N) for small M.

It was shown in Ref. [2] that the minimum-rate problem
for closed curve can be solved as the all-pairs shortest path
problem for a graph of N vertices by an algorithm of com-
plexity O(N3). Considering that the time complexity of the
optimal minimum-rate algorithm for open curve is O(N2)

[2], we have the same proportion between the processing
time for closed and open curve, which is O(N).
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Fig. 1. Illustration of an input closed curve P1 (left), and twofold curve P2 constructed from the vertices of P1 in a cyclic manner (right).

In Refs. [4,9] the minimum-rate problem with L2 [4] and
L1 [9] error measures were considered, and algorithms for
open curve based on the shortest path problem were pro-
posed. For the closed curve, they proposed to test each ver-
tex of a segment of the curve as a starting point. In this way,
the number of vertices to be tested is reduced from O(N)

to O(N/M), on average, but this is still large, especially for
the problems with a small values of M. On the other hand,
the optimal selection of the starting point is more critical
especially for small values of M.

Two fast heuristic methods were proposed in Refs. [36,37]
for the starting point selection for minimum-distortion prob-
lem. First, polygonal approximation with the optimal algo-
rithm for an open curve [8] is performed using a random
starting point. A new starting point is selected among the
approximating nodes of Q based on certain rules, and this
point is used for the second run of the optimal algorithm [8].

Another possibility would be to ignore the optimality
at the first place and use the optimal algorithm developed
for open curve without considering the problem of starting
point.

To sum up, existing heuristics for starting point selection
are sub-optimal [36,37] whereas the optimal choice is time
consuming [2,4,6,8,9]. Thus, the problem of finding the op-
timal approximation efficiently for a closed contour is still
unsolved. The existing heuristic approaches can be summa-
rized by the fact that they iterate the search by using one of
the approximation nodes as a new starting point for the sub-
sequent iterations. After every run, however, the information
from the previous iteration is lost, and the search starts from
scratch.

In this paper, we propose to use the information from the
previous run by performing dynamic programming search
in an extended state space constructed for a twofold curve
(see Fig. 1). All parts of the shortest path in the extended
state space have be analyzed to find such a sub-path with
conjugate states that provides minimum for the cost function
in question (approximation error or the number of segments).

Pair of conjugate states in the extended state space defined
by two points on the twofold curve which are produced by
the same point on the input closed curve. It is expected
that the proposed approach provides better solution than the
existing heuristic algorithms in a comparable time because
of using all available information.

The proposed approach is illustrated in Fig. 1. Approxi-
mation with DP algorithm for open curve with the vertex 1
as the starting point is given by segments 1-2-4-7-8. Opti-
mal starting point and the corresponding approximation of
the original contour can now be found by analyzing the ap-
proximation of the twofold curve P2. In this example, we
obtain the solution as the segments 2-4-7-2.

The rest of the paper is organized as follows. In Section
2, we give the problem formulation, recall the dynamic pro-
gramming approach of [8] for minimum-distortion approx-
imation of open curves, including approximation algorithm
with reduced search [38], and present a new algorithm for
the optimization of the starting point by searching in the
extended state space. In Section 3, we apply the proposed
approach to the case of minimum-rate problem. Experimen-
tal results and discussions are then given in Section 4, and
conclusions are drawn in Section 5.

2. Minimum-distortion problem for closed curve

2.1. Problem formulation

We define a closed N -vertex polygonal curve P in
two-dimensional space as the ordered set of vertices
P = {p1, p2, . . . , pN } = {(x1, y1), (x2, y2), . . . , (xN , yN)},
where the last vertex coincides with the first one: pN = p1.
The problem is stated as follows: approximate the closed
polygonal curve P by another closed polygonal curve Q
with a given number of linear segments M so that the total
distortion (approximation error) E(P, M) is minimized.
The optimal approximation Q of a closed curve P is the
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set of nodes {q1, q2, . . . , qM+1} that minimizes the cost
function E(P, M) with L2 measure:

E(P, M) = min{qm}

{
M∑

m=1

e2(qm, qm+1)

}
, (1)

here qM+1 = q1 = p1 = pN . The problem also can be re-
ferred as rate-constrained problem. Error of the approxima-
tion of curve segment {pi, . . . , pj } with the corresponding
linear segment (qm, qm+1) is the sum of squared Euclidean
distances from each vertex pk ∈ {pi, . . . , pj } to the line
segment (qm, qm+1):

e2(pi, pj ) =
k=j−1∑
k=i+1

d2(k; pi, pj ), (2)

where qm = pi and qm+1 = pj .
The Euclidean distance d(k; pi, pj ) from a point pk =

(xk, yk) to the approximating line segment y = ai,j x + bi,j

can be calculated by the following expression:

d(k; i, j) = |yk − ai,j xk − bi,j |√
1 + a2

i,j

. (3)

The coefficients ai,j and bi,j of the line are calculated from
the coordinates of the end points pi and pj :

ai,j = (yj − yi)/(xj − xi),

bi,j = yi − ai,j xi . (4)

To solve the optimization task we first recall the optimal
dynamic programming algorithm of Perez and Vidal [8] for
open curves.

2.2. Dynamic programming approach

Optimal approximation of an open N-curve P1 with M line
segments is the set nodes {q2, q3, . . . , qM} that minimizes
the cost function E(P1, M):

E(P1, M) = min{qm}

{
M∑

m=1

e2(qm, qm+1)

}
, (5)

here we assume that the first and the last approximation
nodes are fixed: q1 = p1, qM+1 = pN .

Let us define a discrete two-dimensional state space
�1 = {�(n, m) : n = 1, . . . , N ; m = 0, . . . , M}. Every
point �(n, m) in the state space �1 represents the sub-
problem of approximating of an n-vertex polygonal curve
{p1, p2, . . . , pn} by m line segments. The state space �1 is
bounded by left L(m), right R(m), bottom B(n) and top
T (n) borders as follows (see Fig. 2):

L(m) =
{

m + 1, m = 0, 1, . . . , M − 1,

N, m = M,

R(m) =
{

1, m = 0,

N − M + m, m = 1, 2, . . . , M,

Fig. 2. Illustration of the state space �1 for approximation of an N-vertex
curve P1 with M line segments.

B(n) =
{0, n = 1,

1, n = 2, . . . , N − M,

n − N + M, n = N − M + 1, . . . , N,

T (n) =
{

n − 1, n = 1, . . . , M,

M − 1, n = M + 1, . . . , N − 1,

M, n = N.

The complete problem is represented by the goal state
�(N, M) (see dark grey square on Fig. 2). In the state space
�1, we define a cost function C(n, m) as the error of the
optimal approximation for the n-vertex curve {p1, . . . , pn}
by m linear segments.

For solving the problem in question we have to find the
weighted shortest path from the start state �(1, 0) to the
goal state �(N, M). The optimization problem can be solved
by the dynamic programming algorithm with the follow-
ing recursive expressions for cost function C(n, m) for all
�(n, m) ∈ �1:

C(n, m) = min
L(m−1)� j<n

{C(j, m − 1) + e2(pj , pn)},
A(n, m) = arg min

L(m−1)� j<n

{C(j, m − 1, j) + e2(pj , pn)}. (6)

Here A(n, m) is the parent state that provides the minimum
value of the cost function C(n, m) for a state �(n, m), and
e2(pj , pn) = e2(qm, qm+1) is the approximation error of
the curve segment {pi, . . . , pj } with the corresponding line
segment (qm, qm+1). The dynamic programming algorithm
is detailed in Fig. 3. The optimal path H(m) in the state
space �1 is restored by backtracking from the goal state
�(N, M) to the start state �(1,0).

The time complexity of the DP algorithm is O(M(N −
M)2). For the sake of simplicity, we refer it as O(MN2)

because usually M>N . The space complexity is defined by
the area of the state space, which is O(MN).

2.3. Reduced search approach

The main idea behind the reduced search (RS) algorithm
[38] is to reduce the time consuming search in the state space
by exploring only a small but relevant part of the state space.
To define which part should be explored, an initial solution
is generated using any fast heuristic algorithm. The solution
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Initialization:

C(1,0) = 0 

FOR n = 2 TO  N  DO

  C(n,0) = ∞

END 

Recursion:

FOR m = 1  TO  M  DO

  FOR n = L(m)  TO R(m) DO 

cmin = ∞ 

FOR  j = L(m−1) TO n-1 DO

c = C(j, m−1-B(n)) + e2(pj, pn) 

   IF(c < cmin) 

Cmin = c,

 Jmin = j 

ENDIF 

END 

D(n, m − B(n)) = cmin

A(n, m − B(n)) = jmin

  END 

END 

E = C(N,M)

Backtracking to find the optimal path H:

H(M+1)= N

FOR m = M+1 TO 2 DO 

  H(m−1) = A(h(m), m − B(H(m)))

END

Fig. 3. Pseudo code of the dynamic programming algorithm for mini-
mum-distortion problem.

Fig. 4. Illustration of the bounding corridor of width W = 3 in the state
space �1. The reference path H0 is marked with grey circles.

defines a reference path in the state space �1. A bounding
corridor of width W is then constructed along this path, and
the minimum cost path is searched within the corridor using
DP algorithm (see Figs. 4 and 5).

Any fast heuristic algorithm for the minimum-distortion
problem can be used to construct the reference path H0.

We use algorithm Merge-L2 [19,20] to construct a reference
path because this algorithm gives smaller approximation er-
ror with measure L2. For closed curve the advantage of the
merge algorithm is that the result does not depend on the
choice of the starting point because any two adjacent seg-
ments can be merged. The complexity of the merge algo-
rithm is O(N log N).

The time complexity of the near-optimal RS algorithm is
O(W 2N2/M), and the speed-up is proportional to (W/M)2

in comparison to the time complexity of the full search. The
space complexity is O(WN). We set the corridor width as
W = √

M to keep the processing time fixed to O(N2) for
all M.

2.4. Solution for closed curve

In heuristic approach [36,37] for closed curve approxi-
mation, a new starting point is selected among the nodes
obtained at the preliminary run of the optimal approxima-
tion algorithm [8]. This provides a solution that is close to
the optimal one, especially for a large number of segments.
However, for a small number of M, the solution can be far
from the optimal. The main reason for non-optimality is that
after the first run, the search starts again from scratch and
loses the information of the previous run.

To solve the problem, we offer to perform the dynamic
programming search in state space �2 constructed for an
open (2N − 1)-vertex curve P2, obtained from the input
curve P. In other words, we continue the search along closed
contour P beyond the end point until we reach the end point
second time. To reduce the processing time we apply the
reduced search approach [38].

The algorithm consists of four steps:

(1) Find approximation QR for P with Merge-L2 algorithm,
select a starting point for P2 among the nodes of QR ,
and get a reference solution;

(2) Construct the bounding corridor in the state space �2
using the reference solution;

(3) Perform DP search in the bounding corridor to construct
solutions for all sub-problems;

(4) For every state in the second half of the bounding
corridor (n�N) backtrack the shortest path to find
a such sub-path with conjugate states that provides
minimum difference of the cost function between the
states. The starting point is the first node of the found
sub-path.

Let us consider the last step of the algorithm in details. We
backtrack the optimal path H(�g)={h(1), . . . , h(mg)} from
the state �g to the start state �(1, 0); here �g = (ng, mg) ∈
�2 and ng �N ; mg �M . We refer two states �1=�(n1, m1)

and �2 = �(n2, m2) on the optimal path H(�g) as conju-
gate states if (1) they represent two vertices pn1 and pn2 of
twofold curve P2 produced by the vertex pn1 in the input
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Fig. 5. Illustration of the bounding corridor in the state space �2 with corridor width W = 3. Sub-path of the optimal path H(�g) with conjugate states
is emphasized.

closed curve P, and (2) the difference of the segments num-
ber between the states is M, which is the case if n2 =n1 +N ,
and m2 = m1 + M , (see Fig. 5). The sub-path of H(�g) be-
tween the two conjugate states corresponds to the optimal
approximation Q of the closed curve P with M linear seg-
ments starting from the point n1. The approximation error
E(�1,�2) for Q is then given by the difference of the cost
function for the conjugate states �1 and �2:

E(�1,�2) = C(�2) − C(�1), (7)

where �1 = �(h(m − M), m − M), and �2 = �(h(m), m).
To find the optimal starting point n1, we have to find a

pair of conjugate states on the path H(�g) for all possible
goal states �g so that it minimizes the approximation error
E(�1, �2):

Eopt = min{�g}

{
min

M �m�mg
{C(h(m), m)

−C(h(m − M), m − M)}} , (8)

nopt = arg min{�g}

{
min

M �m�mg
{C(h(m), m)

−C(h(m − M), m − M)}} − (N − 1). (9)

Among all shortest paths there is at least one path with con-
jugate states: path for the state �g = �(N, M); it is marked
by ‘×’ in Fig. 5.

The complexity of the search for optimal sub-path with
conjugate states is O(WMN), which is defined by the to-
tal number of goal states O(NW), and the number of steps
O(M) to check a single path.

3. Minimum-rate problem for closed curve

3.1. Problem formulation

The minimum-rate problem is stated as follows: approx-
imate the N-vertex closed polygonal curve P by another
closed polygonal curve Q with a minimum number of line
segments M so that the approximation error E(P ) is less
than a given error bound �. The approximation error E with
measure L∞ is defined as the maximum Euclidean distance
from the vertices of the curve P to the approximation line
segments of curve Q:

E(P ) = max
1�m�M

{d(qm, qm+1)}, (10)

where d(pi, pj ) = maxi �k � j {d(k; pi, pj )}, and qm = pi ,
qm+1 = pj . The problem can be referred as distortion-
constrained problem.

3.2. Solution for fixed end points

To find minimum-rate approximation for the closed curve
P with a fixed starting point, a feasibility graph G1=G(P, �)
is constructed on vertices of the curve P for the given error
tolerance � [1–7] (see Fig. 6). Nodes V = {v1, v2, . . . , vN }
of the graph G1 are vertices {p1, p2, . . . , pN } of the curve
P. A pair of nodes vi and vj is connected by an edge ei,j

if the approximation error d(pi, pj ) for the curve segment
{pi, pi+1, . . . , pj } by the line segment (pi, pj ) is less than
a given error tolerance: d(pi, pj )��.

The solution for the problem is the shortest path in the
feasibility graph G1. To find the shortest path in directed
acyclic graph, we introduce one-dimensional discrete state
space �1 = {�(n) : n = 1, . . . , N} of size N (see Fig.
7). Every point �(n) in the state space �1 represents the
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Fig. 6. Feasibility graph G1 = G(P, �) constructed on the test shape #1 with a fixed starting point for error tolerance � = 30 (left), and the solution with
M = 6 line segments as the shortest path in the graph G1 (right).

Initialization:

C(1) = 0 

Recursion:

FOR n = 2 TO N  DO 

   R (n) = ∞

   FOR j = n-1TO 1 DO 

 IF edge(j,n) ∈ G 

THEN

 IF C(n) > C(j) +1 

THEN

  C(n) = C(j)+1 

  A(n) = j

  ENDIF

ENDIF 

   END 

END 

Backtracking to find the optimal path H:

M=R(N)

H(M+1)=N 

FOR m = M+1 TO 2 DO 

   H(m−1) = A(H(m)) 

END

Fig. 7. Pseudo code of the dynamic programming algorithm for the
shortest path in the feasibility graph G1.

sub-problem of the shortest path finding from the first node
v1 of G1 to the node vn. The cost function C(n) ≡ C(�(n))

for state �(n) is given as the minimum number of edges in

Fig. 8. State space �1 for test shape #1. The shortest path is labelled with
arrows and the values of the cost function C(n). The minimum number
of approximating segments is M = C(23) − C(1) = 6 − 0 = 6.

the shortest path. The minimum number of approximating
line segments M is given by cost function value for the goal
state �(N) : M = C(N). The cost function C(n) is calcu-
lated for all n = 1, . . . , N by dynamic programming:

C(n) = min
1� j<n

(vj ,vn)∈G1

{C(j) + 1}, (10a)

A(n) = arg min
1� j<n

(vj ,vn)∈G1

{C(j) + 1}. (10b)

After completing the DP search, optimal solution H is back-
tracked using the array of parent states A(n) (see Figs. 7, 8).
The complexity of the minimum-rate algorithm is defined
by the complexity of the algorithm for the feasibility graph
construction, which is O(N2) [2], and by the complexity of
the shortest path construction, which is also O(N2).

3.3. Solution for closed curve

With heuristic approach [36,37] the optimal result can be
obtained by two iterations of the algorithm for open curve,
and the corresponding processing time is TH = 2T1, where
T1 is processing time for one run of the optimal algorithm
for the open curve. To make the new algorithm competitive
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Fig. 9. Feasibility graph G2 = G(P2, �) constructed on the twofold curve P2 for error tolerance � = 30 (left), and the optimal approximation with M = 5
line segments as the optimal sub-path with conjugate state.

Fig. 10. Extended state space �� for curve P� for test shape #1. The
shortest path is labelled with arrows and values of the cost function C(n).
Conjugate states �(5) and �(28) are emphasized. The minimum number
of approximating segments is M = C(28) − C(5) = 6 − 1 = 5.

with the heuristic approaches we have to achieve equal or
better result but faster.

Let us consider an �-fold curve P�, and construct a fea-
sibility graph G�, where � is a non-integer number: ��1
(see Fig. 9). In other words, we continue the cyclic search
along the curve P2 up to ��N�th vertex for the shortest path
construction in the extended feasibility graph G�. To bound
the processing time T� by an upper limit 2T1, the parameter
� is restricted to 1���2.

To find the shortest path H in the directed acyclic graph
G�, we introduce an extended one-dimensional state space
�� = {�(n) : n = 1, . . . , ��N�} of size ��N�, and define
cost function C(n) in the space (see Fig. 10). We define
two states �(i) and �(j) as conjugate, if there is exactly
(N − 1) vertices between vertices pi and pj of P� : j = i +
N − 1. In other words, the conjugate states �(i) and �(j)

correspond to vertices pi and pi+N−1 on �-fold curve P�
that are produced by the same vertex pi of the input curve
P. In the state space �1, there is only one pair of conjugate
states: �(1) and �(N), see Fig. 8.

The proposed algorithm for closed curve consists of three
steps:

(1) Construct an extended feasibility graph G� for �-fold
curve P�.

(2) Construct the shortest paths to all goal nodes in the
graph G�;

(3) For every goal node vk ∈ G� backtrack the shortest
path H(vk) and find such a pair of nodes vi and vj on
the path H(vk) that corresponding states �(i) and �(j)

are conjugate and the number of edges in the sub-path
connecting the nodes vi and vj is minimal.

Consider the shortest path H(vk) for some goal node vk ∈
G� and k�N . The number of edges in the sub-path between
nodes vi and vj of the path is defined as the difference of
the cost function for the corresponding states �(i) and �(j):
M =C(j)−C(i). In such a way, the number of approximat-
ing line segments for the closed curve P for starting point
pi is defined as the difference of cost function for conjugate
states �(j) and �(j).

To solve the minimum-rate problem, we have to test the
shortest paths to all goal states vk ∈ G� to find such conju-
gate states �(i) and �(i + N − 1) for nodes vi , vi+N−1 ∈
H(vk) that the difference of cost function values is minimal:

M = min
vi ,vi+N−1∈H(vk)

{C(i + N − 1) − C(i)}.

The algorithm is illustrated by Fig. 10 for test shape #1.
The found pair of conjugate states �(5)–�(28) for v5, v28 ∈
H(vk) gives the minimal difference of cost functions values:
M = C(28) − C(5) = 5, the optimal starting point is the
vertex p5.

The complexity of the search for the conjugate states is
defined by the number of goal states to be checked, which is
O(N), and the number of nodes in the shortest path, O(M).
In total, this yields to O(MN), which is much smaller than
the complexity of the core algorithm O(N2).

During the search, we have to backtrack shortest paths
H(vk) for all goal nodes vk ∈ G� and k > N . If the fold-
factor � is large enough, some node v∗

k can belong to the
optimal solution H(opt). Following back from the goal node
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v∗
k to the first node v1 of the graph G� we could restore

the optimal solution H(opt) as a sub-path of the path H(v∗
k ).

However, the first nodes of the restored path H(v∗
k ) do not

necessarily belong to the globally optimal path H(opt) be-
cause its location can be distorted by non-optimal selection
of the starting point, i.e. v1 /∈ H(opt).

The influence of the starting point selection on the subse-
quent approximating nodes is diminishing when we go fur-
ther from the node v1. In other words, when we continue the
search in the extended graph G�, we increase the probabil-
ity for finding such a goal state v∗

k ∈ H(opt) that beginning
from a node of H(v∗

k ) the location of other nodes is not af-
fected anymore by non-optimality of the starting point, and
the pair of conjugate states for nodes vi, vi+N−1 ∈ H(v∗

k )

gives global minimum of the number of segments.

4. Results and discussion

Experiments are provided for the set of test shapes shown
in Fig. 11. The test set includes images of different type
(digitized contour and vector maps), smoothness and size.
The shape #1 is used mainly to illustrate the algorithm. The
shapes #2 and #3 are examples of a noisy and a smooth
contour, respectively. The shape #4 is a large vector contour
of France of size N = 6663.

The optimality of the solutions for minimum-distortion
problem is measured by the fidelity (F), and for minimum-
rate problem by the corresponding efficiency parameters
[39]. For the shapes #2 and #3, the average fidelity and ef-
ficiency are calculated with respect to the optimal solution
obtained by trying all possible starting points. For the shape
#4, the optimal result have been estimated by testing 200
random starting points.

4.1. Minimum-distortion problem

We compare the following algorithms for the minimum-
distortion approximation:

(1) FS-1: one run of the full search DP algorithm [8] with
a random starting point;

Fig. 11. The set of test shapes: #1: simulated contour; #2: simulated noisy contour; #3: digitized contour Leaf; #4: contour of France.

(2) FS-2: two runs of full search DP algorithm [8] with the
starting point selection as in [36];

(3) RS-�2: proposed algorithm with bounded search in the
extended state space.

In FS-1, the starting point is chosen randomly and the
results presented here are averages over all tested starting
points. In FS-2, the starting point for the second run is chosen
heuristically as proposed in Ref. [36].

Experiments in Figs. 12–14 and Tables 1–3 show that the
heuristic methods (FS-1 and FS-2) find the optimal result
only occasionally, and the average fidelity is usually less
than 100% for small M.

The results of the RS-�2 are significantly better and the
average fidelity of the solution is usually 100%. Thus, the
algorithm finds the optimal solution with rare exceptions
(see Fig. 12). The superiority of the proposed algorithm
RS-�2 over the heuristic ones is most noticeable for small
values of M (see Figs. 12–14). As for greater number of
segments (M > 20), when the heuristic algorithm FS-2 is
more efficient, the proposed algorithm is much faster than
the FS-2 and yet it provides 100% fidelity.

Fig. 12. The average fidelity of the minimum-distortion approximation
for the shape #2 with the algorithms FS-2 and RS-�2.
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Fig. 13. Average fidelity of minimum-distortion approximation for the
shape #3 with the algorithms FS-2 and RS-�2.

Fig. 14. The average fidelity of minimum-distortion approximation for
the shape #4 with the algorithms FS-2 and RS-�2.

Table 1
The shape #2: average fidelity (F) and processing time (T ) for the
algorithms FS-1, FS-2, and RS-�2

M FS-1 FS-2 RS-�2

F (%) T (s) F (%) T (s) F (%) T (s)

5 82.0 0.012 95.1 0.023 99.2 0.035
10 91.5 0.023 99.4 0.047 100 0.020
15 88.3 0.035 99.99 0.070 100 0.015
20 97.1 0.045 99.98 0.089 100 0.011
30 97.2 0.058 99.97 0.116 100 0.010

So, performing search in the extended state space for
twofold curve we can analyse much more sub-solutions to
find the best one. On the other hand, restricting search in the
space by the bounding corridor we reduce the processing
time.

Table 2
The shape #3: average fidelity (F) and processing time (T ) for the
algorithms FS-1, FS-2, and RS-�2

M FS-1 FS-2 RS-�2

F (%) T (s) F (%) T (s) F (%) T (s)

5 61.2 0.07 97.9 0.14 100 0.21
10 72.7 0.14 97.0 0.28 100 0.12
15 86.5 0.22 99.6 0.44 100 0.08
20 90.4 0.29 100.0 0.58 100 0.07
30 95.5 0.44 99.95 0.88 100 0.07

Table 3
The shape #4: average fidelity (F) and processing time (T ) for the
algorithms FS-1, FS-2, and RS-�2

M FS-1 FS-2 RS-�2

F (%) T2 (s) F (%) T2 (s) F (%) T (s)

6 65.5 3.5 98.1 6.9 100 7.9
10 91.8 5.4 99.4 10.8 100 5.3
15 88.9 8.8 99.9 17.6 100 3.7
20 93.6 12.8 99.7 25.6 100 2.9
50 98.0 34.3 99.99 68.5 100 2.8

The question whether we can obtain the optimal solution
for any curve and for any value of M is still open. Even
though this is rare and usually happens only with very small
values of M, the search can get stuck in a local minimum.
Even when extending the search to space �K for K-fold
curve (K=3, 4, . . .) we cannot theoretically guarantee 100%
fidelity of the solution. From practical point of view, how-
ever, the proposed algorithm gives solution very close to the
optimal one for 500–5000-vertex curves in 0.1–10 s using
our current computer with 3 GHz processor.

4.2. Minimum-rate problem

The second series of experiments was performed using
the proposed algorithm for the minimum-rate problem. We
compare the following algorithms:

(1) FS-1: one run of the full search DP in the state space
�1 for a random starting point in P;

(2) FS-2: two runs of the full search DP in the state space
�1 with the starting point as in [36];

(3) FS-��: proposed algorithm with the DP search in the
extended state space �� (see Fig. 10).

For the heuristic method FS-2 with two iterations of the DP
algorithm, the processing time is always 2T1, where T1 is
the processing time of one run. For the tested shapes, the
minimum number of segments was obtained in most cases.

In the case of the proposed algorithm, FS-��, the trade-off
between the processing time and efficiency can be controlled
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Fig. 15. Average efficiency of the proposed algorithm FS-�� for the minimum-rate problem for the shape #2 (left), and the sample result for �=30 (right).

Fig. 16. Average efficiency of the proposed algorithm FS-�� for the minimum-rate problem for the shape #3 (left), and the sample result for �=6 (right).

by changing the parameter � within the range from 1.0 (no
optimization) up to 2.0. In practice, for the tested shapes
the global minimum was achieved for ��1.5 including the
worst case when a large error tolerance value � was used
(see Figs. 15–17 and Tables 4–6). For smaller values of �,
and large number of segments, respectively, the fold-factor
� can be even less than 1.5 (see Figs. 15–17).

5. Conclusions

We have introduced a new approach for polygonal ap-
proximation of closed curves based on the corresponding
optimal dynamic programming algorithm for open curves.
The information from the previous run is exploited by per-

forming dynamic programming search in an extended state
space constructed for a twofold curve.

For minimum-distortion approximation, dynamic pro-
gramming search in extended state space finds the optimal
approximation with a high probability. On the other hand,
reducing the search by bounding corridor along a reference
solution we can keep the processing time small.

Then proposed approach, DP search in the extended state
space, was also propagated on the case of minimum-rate
problem. The processing time of the new algorithm for
closed curve is about 1.5 of the processing time for the
open curve. The trade-off between the processing time
and efficiency can be controlled by changing the num-
ber of processed vertices in the second run along the
curve.
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Fig. 17. Average efficiency of the proposed algorithm FS-�� for the minimum-rate problem for the shape #4 (left), and the sample result for �=0.4 (right).

Table 4
The shape #2: average efficiency (Eff.) and processing time (T ) for the
algorithms FS-1, FS-2, and FS-��(� = 1.5)

� Mmin FS-1 FS-2 FS-��

Eff. (%) T1 (s) Eff. (%) T2 Eff. (%) T (s)

20 17 96.1 0.009 100 0.017 100 0.014
30 9 92.6 0.017 100 0.036 100 0.027
40 7 88.9 0.023 100 0.048 100 0.038
60 4 76.5 0.040 97.1 0.080 100 0.065

Table 5
The shape #3: average efficiency (Eff.) and processing time (T ) for the
algorithms FS-1, FS-2, and FS-��(� = 1.5)

� Mmin FS-1 FS-2 FS-��

Eff. (%) T1 (s) Eff. (%) T2 (s) Eff. (%) T (s)

1.0 48 98.1 0.014 100 0.027 100 0.021
2.0 25 97.2 0.036 100 0.071 100 0.058
4.0 16 95.6 0.060 100 0.122 100 0.095
6.0 12 94.0 0.078 100 0.160 100 0.125

Table 6
The shape #4: average efficiency (Eff.) and processing time (T ) for the
algorithms FS-1, FS-2, and FS-��(� = 1.5)

� Mmin FS-1 FS-2 FS-��

Eff. (%) T1 (s) Eff. (%) T2 (s) Eff. (%) T (s)

0.1 74 98.9 1.5 100 3.0 100 2.3
0.2 32 97.2 7.5 100 15.0 100 13.2
0.5 12 94.3 34.7 100 69.7 100 47.5
1.0 6 89.2 97.9 100 188.3 100 159.1

In general, the proposed approach cannot guarantee 100%
optimality of the obtained approximation solution, but with
the analysis of the extended state space, we can get optimal
or very close to the optimal solution in relatively short time.
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