
Classification of binary vectors by using DSC distance
to minimize stochastic complexity

Pasi Fr€aanti *, Mantao Xu, Ismo K€aarkk€aainen

Department of Computer Science, University of Joensuu, P.O. Box 111, Fin-80101 Joensuu, Finland

Received 17 October 2001; received in revised form 28 February 2002

Abstract

Stochastic complexity (SC) has been employed as a cost function for solving binary clustering problem using

Shannon code length (CL distance) as the distance function. The CL distance, however, is defined for a given static

clustering only, and it does not take into account of the changes in the class distribution during the clustering process.

We propose a new DSC distance function, which is derived directly from the difference of the cost function value before

and after the classification. The effect of the new distance function is demonstrated by implementing it with two

clustering algorithms.

� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Binary vector classification has been widely

used in DNA computing and human chromosome

study, and in solving taxonomy problems from

biomedical area. Statistical models are usually

applied to describe and solve prediction and tax-

onomy problems. For example, Rissanen (1987,

1996) has introduced a model known as stochastic

complexity (SC), which is an extensible explana-
tion for Shannon information theory (Kontkanen

et al., 1999).

To be a cost function of classification, SC needs

to be approximated by a simple model (Rissanen,

1987). Gyllenberg et al. (1994, 1997, 2000) has given

a simple and practical approximation of SC for
binary vector classifications. Thereafter, SC has

been employed as a generic evaluation function in

solving binary clustering problems as follows. The

clustering problem is first formulated as an opti-

mization problem. Approximation solutions are

then found for every reasonable number of groups.

SC is applied for measuring the goodness of the

various clustering results.
Individual clustering can be generated using any

algorithms such as the generalized Lloyd algorithm

(GLA) (Linde et al., 1980), and the randomized

local search (RLS) Fr€aanti and Kivij€aarvi, 2000. A

better idea is to integrate the SC cost function

directly in the clustering algorithm as done in

Gyllenberg et al. (1997) and Fr€aanti et al. (2000).

The vector-to-cluster distance for the classification
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of the vectors must then be re-defined correspond-

ingly. Euclidean distance (L2-norm) provides the

optimal classification of the data vectors for the

minimization of the MSE, but not for the SC.

The optimal classification for SC is given by the

Shannon code length (CL) function (Gyllenberg
et al., 1997). It represents the entropy of the binary

vector when coded by the probability model of the

particular cluster.

Surprisingly, the CL distance introduces a new

problem that never arises with the L2-distance.

This is illustrated in Fig. 1, in which we classify the

black point according the two existing clusters.

The probability distribution of the leftmost cluster
indicates the point belongs to this class with a low

probability. Nevertheless, the probability distri-

bution of the rightmost cluster have zero variance

in the horizontal dimension ðrx ¼ 0Þ resulting in

zero probability and infinite entropy. As a conse-

quence, the point will be classified to the leftmost

cluster.

This infinite entropy problem happens often in
the classification of multi-dimensional binary data

vectors. It has therefore been necessary to make

modifications to the existing clustering algorithms

when SC has been applied as a cost function.

Previously, the problem has been solved in Gyl-

lenberg et al. (1997) and Fr€aanti et al. (2000) by

applying the clustering algorithms first using the

sub-optimal but less problematic L2-distance. The
CL distance is then applied in the last stage of

the algorithm when the global clustering structure

has already settled down and only fine-tuning of

the solution takes place. The drawback of this

approach is that similar patch should be made for

every clustering algorithm that is to be applied

with the SC.

In this paper, we propose a more general solu-
tion to the infinity problem by proposing a new

DSC distance function. The distance function is

derived directly from the difference of the cost

function value before and after the classification. It

therefore implicitly takes into account the change

in the class distribution caused by the re-classifi-

cation of the data vector, and in this way, avoids
the infinity problem. The DSC is general in the

sense that it applies to any clustering algorithm

and no more patches are therefore needed. The

effect of the new distance function is demonstrated

by implementing it with two clustering algorithms.

The rest of the paper is organized as follows. In

Section 2, we define the clustering problem of bi-

nary vectors, and give the simplified formalization
of the SC. The SC function is then applied within

two clustering algorithms as the cost function, and

the CL distance is employed in the RLS and GLA

algorithms as a practical vector-to-cluster distance.

In Section 3, we introduce the new DSC function

derived from the SC difference of the old and new

classification when a data vector is moved from

one class to another. In Section 4, we make per-
formance comparisons of the different variants

including the RLS and GLA algorithms, and the

DSC, CL and L2 distance functions.

2. Clustering by minimizing SC

We use the following notations:

N: number of data vectors,

M: number of groups,

D: dimension of vectors,

X: set of N data objects X ¼ fx1; x2; . . . ; xNg,
P: partition indices of xi : P ¼ fpi j i ¼ 1; . . . ;

Ng,
C: set of cluster centroids C ¼ fcj j j ¼ 1; . . . ;

Mg.

The goal of the clustering is to partition a given

set of N data vectors into a number of groups so

that a given cost function is minimized. In the

clustering process, we must solve both the number

of clusters (M) and their location (ci). The clus-

tering result is described by the partition (P) of the
data set by giving for each vector (xi) the cluster

index (pi) of the group, which it belongs to. WeFig. 1. Illustrative example of the problem in the CL distance.
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consider a set of d-dimensional binary data vec-

tors.

2.1. Stochastic complexity

SC can be applied to the clustering by finding
the minimum description of the data via using a

clustering model. SC measures the information

content of the data, and it is defined as the shortest

possible code length for the data obtainable by

using a set of class distributions. SC includes both

the model parameters and the coding of the data in

the measurement.

Suppose that we have classified the data vectors
into M groups described by the partition of the

data. The model of the class j can then be de-

scribed by the probability distribution within the

class in each dimension:

cij ¼ nij=nj ð1Þ
where nj is the number of binary vectors in the

class j, and nij is the number of vectors having the
ith coordinate value 1. The probability vector cj of

the class j is also the centroid (average vector) of

the cluster.

The simplified approximation of the SC func-

tion in Gyllenberg et al. (1997) can be described

using the class distribution models as:

SC ¼
XM
j¼1

nj
Xd

i¼1

h
nij
nj

� �
þ
XM
j¼1

�nj log
nj
N

� �

þ d
2

XM
j�1

log maxð1; njÞ ð2Þ

where h measures the entropy of a binary distri-
bution

hðpÞ ¼ �p logðpÞ � ð1 � pÞ logð1 � pÞ ð3Þ
Since every vector is classified to some group, it is

known that
P

nj ¼ N . Moreover, N logN in the

middle term is a constant and, therefore, the

equation can be simplified as:

SC 	
XM
j¼1

nj
Xd

i¼1

h
nij
nj

� �
þ
XM
j¼1

�nj log nj þ
d
2



XM
j¼1

log maxð1; njÞ ð4Þ

However, the simplified Eq. (4) above could make

SC negative. The first part of the SC function

measures the intra-class information as the code

length when every data vector is coded according

to the class probability model. The code length is
calculated by multiplying the number of vectors in

each cluster (nj) by the average entropy (h) of the

cluster. The second part measures the inter-class

information as the code length of the partition. It

can be calculated by the number of vectors in each

cluster (nj) multiplied by the average entropy of

the corresponding cluster index. The third part

measures the information of the model as the code
length of the class distribution when described by a

series numbers between ½1::nj�.

2.2. Clustering algorithm

The SC can be applied for the clustering prob-

lem as follows. We first find approximation solu-

tions for every reasonable number of groups using
any clustering algorithm. The solutions are then

evaluated, and the one that minimizes the SC is the

final result of the clustering. This search strategy

can use any clustering algorithm to find the indi-

vidual solutions. In the following, we recall two

clustering algorithms: the GLA by Linde et al.

(1980), and the RLS by Fr€aanti and Kivij€aarvi
(2000).

The pseudocode of the GLA is shown in Fig. 2.

The algorithm takes any initial solution (here the

partition P) as an input, and iteratively fine-tunes

the solution by repeating two operations in turn.

The first operation calculates the centroids of the

clusters, and the second operation re-partition the

data vectors according to the new set of centroids.

Fig. 2. Pseudocode for the GLA.
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The algorithm is iterated until no more improve-

ment appears in the solution. The method is simple

to implement, and has been widely used for the
clustering problem as such, or integrated with

more complicated methods.

The pseudocode of the RLS is shown in Fig. 3.

The method takes any initial solution, which is

then improved by a sequence of operations. At

each iteration phase, the algorithm creates a new

candidate solution by making a small change to

the current clustering structure. First, a randomly
chosen cluster centroid (cj) is replaced by a ran-

domly chosen data vector (xi). This moves the

cluster location to another part of the vector space.

The partition is then adjusted by a local repartition

operation, which consists of the two steps as

shown in Fig. 4. In the first step, the old cluster is

removed by re-partitioning its data vectors to

other clusters. In the second step, the newly cre-
ated cluster is populated by attracting data vectors

from the neighboring clusters. The modified clus-

tering is fine-tuned by the application of the GLA.

The new candidate solution is then evaluated and

accepted only if it improves the previous solution.

Otherwise, the candidate solution is discarded and

the previous solution remains as the starting point

for the next iteration.

The GLA and the RLS are both applicable for

the clustering task and also rather simple to im-

plement. The RLS is less sensitive to the initial-
ization because it is capable of making global

changes in the clustering structure (by random

swapping of the clusters), and therefore, correct

the incorrect settlement of the initial clustering. If

the GLA is to be used, it should be repeated sev-

eral times in order to reduce the dependency on the

initialization.

2.3. Shannon code-length distance

The clustering algorithms employ a distance

function d, which measures the vector-to-cluster

distance, and is used for the classification of the

vectors during the clustering process. Usually the

distance function is defined as the Euclidean dis-

tance (L2-norm) between the data vector xi and the
particular cluster centroid cj:

dEðxi; cjÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXd

k¼1

kxik � cjkk2

vuut ð5Þ

This gives optimal classification for the minimi-

zation of the MSE but not for the SC. The optimal

classification for the SC is given by the Shannon

code-length function CLðxi; cjÞ in Gyllenberg et al.

(1997).

dCLðxi; cjÞ ¼ �
Xd

i¼1

ð1
�

� xiÞ logð1 � cijÞ þ xi log cij
�

� log
nj
N

ð6Þ

It measures the code length when the data vector

(the summation term in the equation) and its class

index (second term in the equation) are coded

using the given model. In principle, the CL dis-

tance is well defined, but in practice, it has a fun-
damental problem in its definition, which will be

explained by the following example.

Consider a single cluster c1 consisting of the

following three data vectors: x1 ¼ ð0; 0; 0Þ, x2 ¼
ð0; 1; 0Þ and x3 ¼ ð1; 0; 0Þ. The corresponding class

Fig. 3. Pseudocode for the RLS.

Fig. 4. Pseudocode for the local repartition operation.
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probability distribution of the cluster is c1 ¼ ð0:33;
0:33; 0:00Þ. The distances of the vectors can now be

calculated using the CL distance:

dCLðx1; c1Þ ¼ 0:58 þ 0:58 þ 0:00 ¼ 1:17

dCLðx2; c1Þ ¼ 0:58 þ 1:58 þ 0:00 ¼ 2:17

dCLðx3; c1Þ ¼ 1:58 þ 0:58 þ 0:00 ¼ 2:17

The second term of Eq. (6) is omitted in this ex-

ample for simplicity. Let us then consider a fourth

vector x4 ¼ ð0; 0; 1Þ, which is equally close to the

cluster according to the Euclidean distance, but

the CL distance gives the following result:

dCLðx4; c1Þ ¼ 0:58 þ 0:58 þ1 ¼ undefined

The problem can appear when there is a uniform

bit distribution in any dimension, and the data

vector has different value in the same position. The

homogenous bit distribution indicates that there is

no uncertainty and the entropy of the contradict-

ing value would therefore approach infinite. This is
a serious flaw especially in the local re-partition

procedure of the RLS. It creates new clusters

starting from a singular cluster, which evidently

has uniform bit distribution. As a consequence, no

other data vectors (except equal ones) can ever be

classified to this cluster.

The problem of the CL distance is that even

though it measures the uncertainty of the classifi-
cation, it does not take into account the uncer-

tainty of the model itself. In other words, the bit

distribution of the class model is indeed homoge-

neous, but the model is only an approximation and

subject to change during the clustering process.

Zero-probability is therefore not a feasible ap-

proximation of the classification.

The infinite values could be avoided by pre-
venting the centroids to take values 0 and 1. This

can be achieved, for example, given binary data

vector x, by taking the centroid values to be mean

vector of x and cj. If some coordinate of cj equals

to 0 or 1 value, the number of vectors in jth cluster,

nj can be taken as a parameter of CL distance

function. Obviously, cj can be replaced with a new

vector, which is the centroid of jth cluster after
vector x is put into cluster j.

cij ¼
njcij þ xi
nj þ 1

cij 6¼ xi ð7Þ

If cj ¼ x, CL distance is adopted as log2 ðNÞ. An-
other condition on CL distance value is considered

as follows:

xi log cij þ ð1 � xiÞ logð1 � cijÞ ¼ 0

cij ¼ xi; cj 6¼ x ð8Þ

This patch, however, does not remove the problem
itself as it merely assigns a low probability instead

of a zero value. Additional modifications have

therefore been necessary for the clustering algo-

rithms so that the CL distance could have been

used properly in the GLA and in the RLS. For

example, in the algorithms presented in Gyllenberg

et al. (1997) and Fr€aanti et al. (2000) the CL dis-

tance is applied only in the last step of the clus-
tering process when the global clustering structure

has already settled down, and only fine-tuning of

the solution takes place. The problem of this ap-

proach is that it is not trivial to determine the stage

of the clustering process, when it would be safe

enough to start to use the CL distance.

To sum up, the problem with the CL distance is

fundamental in its nature. It is therefore better to
fix it than to find patch for every clustering algo-

rithm that is to be applied.

3. DSC distance function

We introduce a new vector-to-cluster distance

function denoted as DSC distance. It is based on a
design paradigm, in which the distance function is

derived directly from the difference of the cost

function value before and after the classification of

a data vector. The main advantage of this design

philosophy is that it implicitly takes into account

of the changes in the clustering model caused by

the classification. It is also general in the sense that

it does not depend on the chosen clustering algo-
rithm and should therefore be applicable with any

distance-based clustering method.

The DSC distance function is always defined

relative to a given model. We can therefore assume

that we have a model, for which we can calculate

the SC value. If we then consider the distance
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calculation as a movement of the data vector from

one group to another, we can define the dis-

tance function as the difference in the SC of the

clustering before and after the movement of the

data vector. Given two classes j1, j2 and a binary

vector x, which we consider to move from the class
j1 to class j2, the SC function in (2) value after the

movement is:

SC 	
XM
j 6¼j1;j2

nj
Xd

i¼1

h
nij
nj

� �
þ

X
j 6¼j1;j2

ðnj log 2ðnjÞÞ

þ d
2

XM
j6¼j1;j2

log maxð1; njÞ � ðnj1 � 1Þ


 logðnj1 � 1Þ � ðnj2 þ 1Þ logðnj2 þ 1Þ

þ
Xd

i¼1

ðnj1
�

� 1Þh nij1 � xi
nj1�1

� �

þ ðnj2 þ 1Þh nij2 þ xi
nj2 þ 1

� ��

þ d
2
ðlog maxð1; nj1 � 1Þ

þ log maxð1; nj2 þ 1ÞÞ þ N logN ð9Þ

We can then calculate the difference between the
SC function values of the old clustering (before the

movement) and the new one (after the movement)

as:

SC-diffðx; j1; j2Þ ¼
Xd

i¼1

nj1
��

� 1
�
h

nij1 � xi
nj1 � 1

� �

� nj1h
nij1
nj1

� �

þ ðnj2 þ 1Þh nij2 þ xi
nj2 þ 1

� �

� nj2h
nij2
nj2

� ��
þ ðnj1 � d=2Þ


 log nj1 þ ðnj2 � d=2Þ

 log nj2 � ðnj2 þ 1 � d=2Þ

 logðnj2 þ 1Þ � ðnj1 � 1 � d=2Þ

 logðnj1 � 1Þ nj1 > 1

SC-diffðx; j1; j2Þ ¼
Xd

i¼1

nj2
��

þ 1
�
h

nij2 � xi
nj2 � 1

� �

� nj2h
nij2
nj2

� ��

þ ðnj2 � d=2Þ log nj2

þ ðd=2 � nj2 � 1Þ logðnj2 þ 1Þ

nj1 ¼ 1 ð10Þ

The SC-diff takes zero value if j1 ¼ j2. Negative

values are obtained when the movement of the

vector improves the solution, and positive values

otherwise. The SC-diff could now be applied as

such in the cases when we re-classify a vector in an

existing solution.
In the SC-diff function we assume that the given

vector is already classified into some class. In

general, however, this is not the case but we must

be able to define a more general distance function

that depends only on the vector xi and on the

candidate cluster cj. For example, in the reparti-

tion procedure of the RLS algorithm, we classify

vectors whose previous class has been removed.
More general DSC function can be derived from

(10) as follows.

The classification can be considered as a two-

step procedure, in which we first remove the vector

xi from the class j1 and then add it to the class j2
For a given vector xi the cost of the removal is

constant. This means that the parameters N, nj1 ,
nij1 are fixed in the classification, and as a conse-
quence, we can consider only the cost of adding

the vector in class j2 and ignore the removal part in

the formula. Thus, the DSC ðj1 6¼ j2Þ can be de-

fined merely as the cost of the addition

DSCðx;Cj2Þ ¼
Xd

i¼1

nj2
��

þ 1
�
h

nij2 þ xi
nj2 þ 1

� �

� nj2h
nij2
nj2

� ��

þ ðnj2 � d=2Þ log nj2

þ ðd=2 � nj2 � 1Þ logðnj2 þ 1Þ

þ logN ð11Þ
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This gives the same result as the SC-diff with the

difference of a constant. The only exception is

when we measure the distance of xi to the cluster,

in which it is already included ðj1 ¼ j2Þ. In this

case, we should use ðnj1 � 1Þ as the class size in-
stead of nj1 because the class size does not increase

due to the classification. Thus, if the previous

classification is known, we should apply the fol-

lowing equation for this special case:

DSCðx;Cj2Þ ¼
Xd

i¼1

nj1h
nij1
nj1

� ��

� ðnj1 � 1Þh nij1 � xi
nj1 � 1

� ��

þ ðd=2 � nj1Þ log nj1
þ ðnj1 � 1 � d=2Þ logðnj1 � 1Þ
þ logN

j1 ¼ j2; nj1 > 1

DSCðx;Cj2Þ ¼ logN j1 ¼ j2; nj1 ¼ 1 ð12Þ

Hence, DSC distance as in Eq. (11) is applicable as

vector-to-cluster distance in all cases, although it
underestimates the distance in the case when the

vector is already included in the class. The special

case of (12) should therefore be used when appli-

cable to give more exact value.

4. Test results

We use three binary data sets to test the new

method: DNA-1, DNA-2, Normal. The features of

the first two sets (DNA-1 and DNA-2) were ex-

tracted from analysis of DNA samples of fishes
(presence or absence of given DNA fragment) in

biological research experiments. There are 215 52-

dimensional binary vectors in (DNA-1) and 260

60-dimensional vectors in DNA-2. The third set

(Normal) was artificially created by generating 265

binary vectors into 10-dimensional vector space

with 12 clusters.

We study first the DNA-1 and DNA-2 sets when
clustered using the RLS and GLA methods. The

RLS was performed 80 iterations. The results in

Figs. 5–8 show that the DSC distance and L2-distance

Fig. 5. Clustering results by the RLS algorithm for DNA-1.

Fig. 6. Clustering results by the GLA algorithm for DNA-1.

Fig. 7. Clustering results by the RLS algorithm for DNA-2.
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come up with much better results than CL distance

in RLS algorithm. It seems that there is no

big difference between DSC distance and L2-

distance when they are employed in RLS. The

difference, however, can be significant when the

correct number is to be determined in the stepwise

search.
The result with the GLA is quite different from

that of the RLS, mainly because the variance of

the results is much greater. The CL distance still

performs worse than the L2-distance, but the DSC

distance is now clearly better than the L2-distance

almost with respect to every number of clusters. It

is expected that the correct result would be reached

more reliably using the DSC distance. The draw-
back of the DSC distance is takes much more time

to compute than the L2-distance.

Table 1 summarizes the clustering and classifi-

cation results for the Normal data set. It is the only

data set for which the real classification is known,

and thus, classification rate could be calculated.

The results show that employing RLS by DSC

distance gives the best performances both in terms
of best clustering result (smallest SC values), and

the highest classification rate. The RLS algorithm

found the correct number of clusters also with the

L2-distance and CL distance but the corresponding

classification rates were smaller. The GLA, how-

ever, was able to find the correct result (12 clusters)

only by using the DSC distance.

5. Conclusions

We proposed a new vector-to-cluster distance in

the classification problems of binary vectors by

minimizing SC. The distance function was applied

both in the GLA and RLS algorithms.

Experiments show that RLS by DSC distance
gives the best clustering performance in minimizing

SC among all the variants considered, and the

highest classification rate. In most cases, the mod-

ified CL distance performs even worse than the

L2-distance. It is somehow difficult for the stepwise

GLA to deliver satisfactory results in solving the

correct number of clusters, even by using the DSC

distance. The L2-distance is moderately effective to
classify simple data. Among the three distances, the

DSC distance is the most precise to minimize sto-

chastic complexity.

Our approach by using DSC distance is general

in its nature as the same design paradigm can be

applied with any other cost function too.

Fig. 8. Clustering results by the GLA algorithm for DNA-2.

Table 1

The classification results of the RLS and GLA algorithms with the L2-distance, CL-distance and DSC-distance

RLS algorithm GLA algorithm Real classifi-

cationL2 CL DSC L2 CL DSC

SC 1865.2 1867.2 1857.6 1924.1 1920.6 1862.5 1856.5

Number of

clusters

12 12 12 6a 6a 12 12

Classification

rate

96.98% 92.83% 98.87% 74.34% 87.55% 91.32% 100%

aThe classification rates are calculated from the clustering of 12 clusters even though smaller SC-value was found with 6 clusters.
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