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Fast and Memory Efficient Implementation
of the Exact PNN

Pasi Franti, Timo Kaukoranta, Day-Fann Shen, and Kuo-Shu Chang

Abstract—Straightforward implementation of the exact pair- mentation. It can also be used to produce an initial codebook
wise nearest neighbor (PNN) algorithm takesO(IN?) time, where  for the GLA, or it can be embedded into hybrid methods such as
N is the number of training vectors. This is rather slow in prac- 5 ganetic algorithm [7] or the iterative split-and-merge method
tical situations. Fortunately, much faster implementation can be - o
obtained with rather simple modifications to the basic algorithm. [6]. The greatest deficiency of the PNN, however, is its SIOW_
In this paper, we propose a faStO(TNZ) time imp|ementation of Speed. The method (referl’ed as the exact PNN) uses local Opt|'
the exact PNN, wherer is shown to be significantly smaller than mization for finding the code vectors to be combined. A straight-
N. We give all necessary data structures and implementation de- forward implementation of this requires & N?) time [8],
tails, and give time complexity of the algorithm both in the best which is rather slow for large training sets.

case and in the worst case. The proposed implementation achieves . . .

the results of the exact PNN with the sam€@(N') memory require- Several SUbOpt'mal modifications havg been prqposed in the
ment. literature for speeding up the PNN algorithm. Equitz proposed
anO(N - log V) time variant of the PNN, referred as tfaest
PNN{5]. It usesK-d tree for localizing the search for the code
vectors, and it merges several vector pairs at the same time.
The method, however, has not gained as much popularity as the

. INTRODUCTION exact PNN, probably because of its more complex implementa-

E consider the codebook generation problem involved tipn and suboptimal results. Another possibility is to generate a
the design of avector quantizerThe aim is to findd/ ~ Preliminary codebook of sizéf, (V > My > M) using the

code vectors (codebook)r a given set ofV training vectors GLA and then apply the exact PNN until the codebook reaches
(training set)by minimizing the average pairwise distance béls final size M [9].
tween the training vectors and their representative code vectordn the exact PNN, most of the computation originates from
There are several known methods for generating a codebook [l calculation of the pairwise distances. Since only two code
The most cited and widely used is tgeneralized Lloyd algo- Vectors are changed in each step of the PNN, most of the dis-
rithm (GLA) [2]. It starts with an initial solution, which is it- t@nce calculations are unnecessary. Kurita proposed to store all
eratively improved using two optimality criteria in turn until aPairwise distances into a heap structure for reducing the unnec-
local minimum is reached. essary calculations [10]. Oni@(N) updates are needed after

A different approach is to build the codebook hierarchicallgach step of the PNN, each taki@iflog V) time. The method
Theiterative splitting algorithn{3], [4] starts with a codebook thus performs the exact PNN @(N? - log V) time but it re-
of size one, where the only code vector is the centroid of the €itiresO(N?) memory, which is impractical for large training
tire training set. The codebook is then iteratively enlarged byS&tS:
splitting procedure until it reaches the desired size. Another hi-In this paper, we propose a fas(rN?) time implementa-
erarchical algorithm, thpairwise nearest neighbdPNN) [5], tion of the exact PNN, where is shown to be significantly
uses an opposite, bottom-up approach to the codebook geﬁ,@?aller thanN in practice. The main idea is to maintain a
ation. It starts by initializing a codebook where each trainingearest neighbor table, which contains the index of the nearest
vector is considered as its own code vector. Two code vectétyster for each cluster. The optimal cluster pair to be merged
are merged in each step of the algorithm and the process isGa0 be found by a linear search from the nearest neighbor
peated until the desired size of the codebook is reached.  table. The proposed method achieves the result of the exact

From the two hierarchical approaches, the PNN has higHaNN with rather simple modifications to the basic algorithm.

potential because it gives better results with a simpler impléhe method requires no complicated data structures and no
distance matrix is needed for storing the pairwise distances.

, . _ The proposed method thus performs the exact PNN using only
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get eact:h training vector as a code vector (m=N). clustera is defined as clustdrthat minimizes the cost function
epea betweenz and any other cluster
Find two nearest clusters S, and Sy to be merged. y
Merge the selected clusters; m«—m-1. —p i <d . ;
Update data structures. NNa=b ifdy <dojVaijasb )
Until m=M.

Note that the nearest neighbor is not symmetrical, NV, = b
Fig. 1. Structure of the exact PNN. does not implyV NV, = a. In the implementation, it is sufficient
to maintain for each cluster the code vect6t) the cluster
size (u;), and the nearest neighbor point&f ;) assigned with
cost value {;) indicating the amount of increase in distortion
We consider a set aW¥ training vectorsT;) in a K-dimen- if the clusters are merged. The memory requirement of the data
sional Euclidean space. The aim is to find a codeb@alf M structures iSD(V) in total.
code vectors@;) by minimizing the average squared distance
between the training vectors and their representative code vAe-Initialization
tors. The distance between two vectors is defined by their Eu-n the initialization phase, each training vect@)(is set as
clidean distance. Le¥ be a codebook an#t the partition of the its own code vector(;), and the sizes of the clusters;) are
training set. The distortion of the codeboOks then defined by set to one. In order to generate the nearest neighbor table, we
need to find nearest neighbor for every cluster. This is done by
. . 1 & 5 considering all other clusters as tentative neighbor and selecting
distortion(C') = Z 172, Cpill () the one that minimizes (3). The nearest neighbor pointe¥)
=1 and the merge distortionl() are stored in the nearest neighbor
whereP; is the partition index of training vectdF;. The basic table. There ar&(N?) pairs to be considered in total. Since the
structure of the PNN is shown in Fig. 1. The method starts (§pSt function can be calculatedd@(1) time the time complexity
initializing each training vectot; as its own code vectag;. Of the initialization phase i©(N?).
In each step of the algorithm, two nearest clustégsdnd.S;) o
are then searched and merg€ilisteris defined as the set of B. Finding the Two Nearest Clusters

Il. PAIRWISE NEARESTNEIGHBOR ALGORITHM

training vectors that belong to the same partition The clusters to be merged are the cluster pair minimizing (3).
In our method, this pair can be found by linear search from the
S, ={T;|P; = a}. (2) nearest neighbor table. The clusters are the one with the min-

imum d;-value and its nearest neighbdifN,;. This operation
The distancedost functiof between two clusters is defined agakesO(N) time.
the increase in the distortion of the codebook if the clusters are
merged. It is calculated as the squared Euclidean distanceCofMerging the Clusters
the cluster centroids (code vectors) weighted by the number ofVierging of the two clusters causes changes to all data struc-

vectors in the two clusters [5] tures. The merged clusters are denoted in the following by the
o indicesa andb. The codebook can be updated straightforwardly
do,p = ‘;b NICa — Cyl]?. (3) using the information stored in the data structure. The code

T Ty

vector of the combined cluster is the centroid of the training
The cost function is symmetrial{ , = d, ,) and it can be vectors in the cluster and it can be calculated as the weighted
5 - , @

calculated inD(K) time, assuming that,, n;, C,, andCy are average o, andC,

known. In the following, we considel( as constant and thus, naCl + 1Ch

the cost function can be calculated in constant time. Cayb = .
The exact variant of the PNN applies local optimization

strategy: all possible cluster pairs are considered and the d#yen, andn, are the number of training vectors in the two

increasing the distortion least (smallest cost function valuglysters. The size of the merged cluster is calculated as

is chosen. The clusters are then merged and the process is re-

peated until the codebook reaches the dizeStraightforward Nath = Na + M- (6)

implementation of the method tak€X V3) time because there

are O(N) steps in total, and in each step there arev?)

cluster pairs to be checked. D. Updating the Nearest Neighbor Table

The key question of the implementation is the maintenance of
the nearest neighbor table. It is obvious that the nearest neighbor
The proposed algorithm follows the basic structure of tHer the merged cluster must be resolved by considering all other
PNN method but the implementation of the individual stepdusters. This can be performed ¢ V)time. The rest of the
is slightly different. The main idea is to maintainrearest clusters can be classified into two groups: 1) clusters whose
neighbortable (v V), which contains the index of the neareshearest neighbor before merge wasr b, i.e., NN, = a or
cluster (VN;) for each cluster. The nearest neighbor for aNN; = b and 2) all other clusters.

(®)

Ng + M

The above calculations can be performed in a constant time.

IIl. FAST IMPLEMENTATION OF THE PNN
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It was shown in [13] that the cost function (3) is monotoni- TABLE |

cally increasing as a function of time. Therefore, only the clus- ~ T!ME COMPLEXITIES OF THREE VARIANTS OF THE EXACT PNN:
STRAIGHTFROWARD IMPLEMENTATION OF THE PNN WITHOUT

ters in the first group need to be updated. The update is per- any Extra DATA STRUCTURES(ORIGINAL M ETHOD), THE METHOD

formed for a clustes by finding such clustey thatd;_; is mini- THAT STORESALL PAIRWISE DISTANCESINTO A HEAP STRUCTURE

mized. This take®)(N) time for a single cluster. An important (KUR'T’?\'ISE A'\QE;:ONDE)I'G QE%I;F#iBT:v(O%EmS‘EHg;NG THE

question is therefore how many clusters belong to the first group.

We denote this number by. Original Kurita’s Our

method: method: method:

E. Amount of Necessary Updates Initialization phase: O(N) o(N?) o(N?)
We are interested in the question of how many clusters ¢ S'ngl;dmfvrvieni:?Z; ) o) o)

have the same cluster as their closest neighbor. This is clos « Morgo the chisters Og(\i )) o) o)

related to thekissing number problenwhich asks the highest o Recalculate distances o) o(N) o)

number of K-dimensional spheres that can be packed so tt « Update data structures o) o(N)

they all touch one sphere [14]. Unfortunately, the cluster di: O(N -log N)

tance function (3) is not Euclidean and therefore the kissir O(N -log )

number applies, for certain, only in the initial stage of PNN, an Merge phases in total: Oo(N*) | O(N?-10gN) | O(N?)

in cases when all cluster sizes are equal. It is thus possible tt

in the worst case, the same cluster can be the nearest neigt Algorithm in total: o(N?) | oN?-logN) | O(N?)

for all other clusters, and thus= O(N). This situation could

appear when there are one small cluster and all the rest are large.

Fortunately, this situation is not common in practice and the )
kissing number (even as an open problem in the general casd)©" further testing of the parameteisand k', we generated

indicates that is a function of the vector dimensidi. subsets of sizeV = (512, 1024, 2048, 4096) froiridge by

In a favorable case, two merged clusters are chosen randorffijldom sampling of the original set. All sets were further pro-
Since there is only one nearest neighbor pointer per each clusigpsed by eliminating one dimension of the vectors at a time, in
arandomly chosen cluster is the nearest neighbor for one cluQider to generate subsets with various length of vecthirs<(
on average. The average number of the updated pointers isth@rje'—' 16). In total, 60 different subse'ts were generarted. from
fore = 2 because there are two clusters involved in the mer§fd9& The number of code vectors is fixed &' = 256 in
operation. This shows that= O(1) in the best case. This ap-I"€ following tests. _ _
proximation, however, is somewhat too optimistic for the av- The number of clusters whose nearest nelghbor pointer must
erage case because the merged clusters are not chosen randgfripdatedr) may vary from 0 taV —2. We studied the number
but they tend to be located in areas of high concentration of clds&MPpirically by calculating its average and maximum values
ters. when generating codebooks from all 60 subsetsrifge. We

To sum up, the time complexity of updating the neareSPserved thatthe average value-a$ smallin all cases; it varies
neighbor table i©)(~ V), which is also the time complexity of fro_m_ 1to 4 and is practically independent from the size_ of the
the entire PNN step. In the best case, this is reduce¥(fs), training set (V). The average value af on the other hand, is an
but in the worst case it is stitD(N?). The overall time com- increasing function of but the growth is still rather slow (see
plexity of our method is therefor@(N'2) as there ar@(N) Fig. 3). The average apd maximum number dbr all training
steps of the algorithm in total (see Table I). This compar&§tS are summarized in Table Il.
favorably with the original method since it is most likely that Following the hypothesis thatis independent oV, the com-
7 < N. The time complexity of the original PNN method jgoutation time of our method should be multiplied by four when
O(N?) due to the time-consuming nearest neighbor seardRe size of training set is doubled, whereas the running time of

Kurita’s method require©(N? - log N') time originating from the original PNN should be multiplied by eight. This is verified
the update of the heap structure. by the observed running times (see also Fig. 4), which are (120,

1082, 8913, 71 324) for the original PNN, and (3, 18, 78, 328)
for our PNN whenV = (512, 1024, 2048, 4096). The corre-
sponding multiplication factors fo(2 — 1024 — 2048 —

We generated training sets from six different imadegige, 4096) are (9.02, 8.32, 8.00) for the original PNN and (6.00, 4.33,
camera, Miss America, table tennis, airplanad house(see 4.21) for our PNN.
Fig. 2). The vectors in the first two sets arex 4 pixel blocks Our method is compared with the Kurita’s method in Fig. 5
from the image. The third and fourth sets have been obtainedfby subsets obridge with various number of. The running
subtracting two subsequent image frames of the original vidémes of the two methods are rather similar. Usuallig smaller
image sequences, and then constructirng spatial pixel blocks thanlog N but the difference is compensated by the fact that the
from the residuals. Only the first two frames have been usathbdate of the heafdg ) is faster because it does not depend
The fifth and sixth data setsifplane, housgconsist of color on the dimensionk. Our method is therefore slightly slower
values of the RGB images. Applications of this kind of data set cases wherk is larger, and vice versa. Kurita’s method was
are found in image and video image coding and in color imaget applied for larger data sets because of its huge memory con-
quantization. sumption.

IV. TESTRESULTS
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amerd Miss America Table tennis Airplane ‘ House
(256x256) (256x256) (360x288) (720x486) (512x512) (256%256)
K=16, N=1096 K=16, N=4096 K=16, N=6480 K=16, N=5490" K=3,N=2317" K=3, N=1837""

Fig. 2. Sources of the training setd he training setable tennids constructed by random sampling only every fourth blg¢khe imagesirplaneandhouse
are prequantized to 5 bits per each color component.

4 100000
. 10000F - - - - SO s s s
37 § Original method
g 10004 - - - - - 0T e
o] k3 Qur method
T [ it - Y- - e T T T
E
l_
e 10F - - - - T e
1 " "
0 512 1024 2048 4096
2 3 456 7 8 9 101 1213 14 15 16 Training set size (N)
K

Fig. 4. Comparison of running times of the original and our method as a

functi fN (f idge).
Fig. 3. Average number af as a function of{. unction of " (for bridge)

TABLE I 164 < - e e OurMethod .~
OBSERVEDNUMBERS OFNECESSARYUPDATES (7)

-
— : RS I U e
Training set: Average: | Maximum: 8104 - - - - aae T
Bridge 3.76 16 2 st AT Kurita's method _
Camera 335 16 E g+ - - &7 - - - - - - oo
Miss America 2.44 8 44+
Table tennis 422 23 2% - s s

Airplane 4.61 41 0 e :
House 4.19 23 2 3 45 6 7 8 9 10 11 12 13 14 15 16

K
. . .. Fig. 5. Comparison of running times of Kurita’s method and our method as a
The observed running times for all training sets are SUMM@nction of i (for a subset obridgewhereN = 1024).
rized in Table Ill. A major speed-up is obtained in all cases
in comparison to the original algorithm. The method is about

100-350 times faster than the original method for the tested SUMMARY OF THE-II—?A:J?\III_\IIIENG”!I'IME (IN SECONDS
training sets. Since the method evidently gives asymptotic im-
provement in the average case, the speed-up is greater for lar¢ Training set Original Our PNN Speed-up
training sets. PNN factor
The exact PNN is compared in Fig. 6 with three suboptimal Bridge 73,006 331 221
variants of PNN. The GLA-PNN method by deGarridbal. Camera 73,040 300 243
[9] starts with an initial codebook of an intermediate sig Miss America 292,351 870 336
(generated by the GLA), which is then reduced to the final size Table tennis 177,019 649 273
M using the exact PNN. The method is a compromise betweer 4irplane 4,751 48 99
higher speed of the GLA and better quality of the PNN. The Zouse 2,341 27 87

method reduces back to the exact PNN whdn = N, and

to the GLA whenM, = M. It is noted, that the result of the
PNN can be improved further by the application of the GLA
This method is referred as GLA-PNN- GLA in Fig. 6. We apply A fast O(7/N?) time implementation of the exact PNN was
here the GLA implementation introduced in [15]. proposed. The main idea is to maintain a nearest neighbor table

V. CONCLUSIONS
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Fig. 6. Time-distortion performance of the suboptimal PNN variants for
bridge In the GLA-PNN method, we apply ouO(rN?) implementation

of the PNN instead of the original(N®) time algorithm. The method is
parametrized by changing the size of the initial codebook fiadm = 256
(standard GLA) toM, = 4096 (exact PNN). Thel-d tree variant is
parametrized by varying the maximum bucket size from eight to 200. In ¢
cases, the size of the final codebook is setfo= 256.

for avoiding unnecessary distance calculations. The numbet
necessary updates)(depends on the nature of the data ang
the dimension of the training vector&] but it is practically
independent from the size of the training sat)( In practice,
the numberr was observed to be significantly smaller than in
all training sets, varying from 2.4 to 4.6 for the tested training
sets. A speed-up of about 100-350 was thus obtained. To s
up, the method achieves the result of the exact PNN using ol

a fraction of time required by the original algorithm.

The proposed method is also practical and rather simple
implement. It requires no complicated data structures and
distance matrix is needed for storing the pairwise distances. 1
proposed method performs the exact PNN using @n{yv)
memory, in contrary to Kurita’s method that requir@$N?)
amount of memory. The running times of the two methods were
comparable but the proposed method is also applicable for large
training sets.
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