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Abstract. The pairwise nearest neighbor (PNN) method is a simple and
well-known method for codebook generation in vector quantization. In its
exact form, it provides a good-quality codebook but at the cost of high
run time. A fast exact algorithm was recently introduced to implement the
PNN an order of magnitude faster than the original O(N3K) time algo-
rithm. The run time, however, is still lower bounded by O(N2K), and
therefore, additional speed-ups may be required in applications where
time is an important factor. We consider two practical methods to reduce
the amount of work caused by the distance calculations. Through experi-
ments, we show that the run time can be reduced to 10 to 15% that of the
original method for data sets in color quantization and in spatial vector
quantization. © 2001 Society of Photo-Optical Instrumentation Engineers.
[DOI: 10.1117/1.1412423]
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1 Introduction

Vector quantization1 ~VQ! is a method for reducing the
amount of data. It can be applied in low-bit-rate compr
sion of image and audio data and in image analysis.
problem of generating a good codebook is one of the gr
est problems in the design of a vector quantizer. The aim
to find a set ofM code vectors~codebook! for a given set of
N training vectors~training set! by minimizing the average
pairwise distance between the training vectors and t
representative code vectors.

The most cited and widely used method for the co
book generation is the generalized Lloyd algorith2

~GLA!. It starts with an initial codebook, which is itera
tively improved until a local minimum is reached. The a
gorithm is easy to implement but it makes only loc
changes to the original codebook. The quality of the fi
codebook is therefore highly dependent on the initiali
tion.

A better result can be achieved by the pairwise nea
neighbor~PNN! method.3 This method starts by initializing
a codebook of sizeN, where each training vector is consid
ered as its own code vector. Two code vectors are me
in each step of the algorithm and the process is repe
until the codebook reduces to the desired sizeM. The PNN
method can also be combined4 with the GLA, or used as a
component in more sophisticated methods. For exam
the PNN method has been used in the merge phase in
split-and-merge algorithm,5 resulting in to a good time-
distortion performance, and as the crossover method
genetic algorithm,6 which has turned out to be the be
method among a wide variety of algorithms in terms of t
codebook quality.

The main drawback of the PNN method is its slowne
as the original implementation requiresO(N3K) time.7 An
Opt. Eng. 40(11) 2495–2504 (November 2001) 0091-3286/2001/$15.00
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order of magnitude faster algorithm was recen
introduced,8 but the method is still lower bounded b
O(N2K), which is more than theO(NMK) time required
by the GLA. Additional improvements are therefore r
quired to make the exact algorithm competitive also
speed.

Several speed-up methods have been introduced in
search of nearest code vector in Euclidean space by re
ing the computation required by the distan
calculations.9–12 In the PNN method, the distance calcul
tions are also the bottleneck of the algorithm. It is therefo
expected that the ideas proposed for the fast search o
nearest code vector could also be adapted to the P
method. The main problem is that the distance calculati
in the PNN method are not made in Euclidean space. I
therefore not self-evident whether the existing ideas can
transferred to the context of the PNN method.

In this paper, we consider two different speed-up me
ods found in the literature. The first method is the part
distortion search~PDS! proposed by Bei and Gray.10 It ter-
minates a single distance calculation immediately when
partial distance exceeds the shortest distance found so
This idea is independent of the chosen metrics and th
fore it can also be directly applied to the PNN method. T
second method is the mean-distance-ordered partial se
~MPS! technique introduced by Ra and Kim.12 This tech-
nique uses the component means of the vectors to deri
precondition for the distance calculations and, in this way
large number of the distance calculations can be omi
completely. The idea utilizes properties of Euclidean sp
but we will show that the precondition can be generaliz
for the distance calculations in the PNN method.

In general, it is not possible to transfer every speed
method from the nearest code vector search to the con
of the PNN. For example, the triangular inequality elimin
2495© 2001 Society of Photo-Optical Instrumentation Engineers
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Virmajoki, Fränti, and Kaukoranta: Practical methods . . .
tion ~TIE! technique presented by Chen and Tsieh11 main-
tains the~Euclidean! distances between all code vecto
and then reduces the number of distance calculations
condition derived from the triangle inequality. In principl
we could derive a similar precondition for the PNN co
function. In the PNN method, however, the overhead
maintaining a complete distance matrix equals to the or
nal workload of the PNN and, therefore, no speed-up
possible in this way.

The rest of the paper is organized as follows. Sectio
presents the PNN method and its fast exact implementa
We provide a detailed description of the method to ena
the reader to implement the exact PNN method accura
New speed-up methods are then introduced in Sec. 3
particular, we introduce the PDS and the MPS method
the context of the PNN method. Simulation results for va
ous training sets are shown in Sec. 4. Experiments s
that the run time can be reduced to 10 to 15% in the cas
the two favorable data sets, whereas only moderate
provement can be achieved in the case of the unfavor
data set. Conclusions are drawn in Sec. 5.

2 PNN Method

We consider a set ofN training vectors (xi) in a
K-dimensional Euclidean space. The aim is to find a co
book C of M code vectors (ci) by minimizing the average
squared Euclidean distance between the training vec
and their representative code vectors:

f ~C!5
1

N (
i 51

N

ixi2cpi
i2, ~1!

wherepi is the cluster~partition! index of the training vec-
tor xi . Cluster is defined as the set of training vectors t
belong to the same partitiona:

sa5$xi upi5a%. ~2!

The basic structure of the PNN method is shown in Fig
The method starts by initializing each training vectorxi as
its own code vectorci . In each step of the algorithm, th
size of the codebook is reduced by merging two cluste
The cost of merging two clusterssa and sb can be calcu-
lated as3

da,b5
nanb

na1nb
•ica2cbi2, ~3!

Fig. 1 Structure of the exact PNN method.
2496 Optical Engineering, Vol. 40 No. 11, November 2001
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wherena and nb denote to the sizes of the correspondi
clusters a and b. The cost function is symmetric (da,b

5db,a) and it can be calculated inO(K) time, assuming
that na , nb , ca , andcb are known.

The exact variant of the PNN method applies local o
timization strategy: all possible cluster pairs are conside
and the one~a,b! increasing the distortion least is chosen

a,b5arg min
i , j P@1,N#

iÞ j

di , j . ~4!

The clusters are then merged and the process is repe
until the codebook reaches the sizeM. Straightforward
implementation of this takesO(N3K) time because there
are O(N) steps, and in each step there areO(N2) cost
function values to be calculated.

2.1 Fast Exact PNN Method

A much faster variant of the PNN method can be imp
mented by maintaining for each cluster a pointer to its ne
est neighbor.8 The nearest neighbornna for a clustersa is
defined as the cluster minimizing the merge cost:

nna5arg min
j P@1,N#

j Þa

da, j . ~5!

In this way, only few nearest neighbor searches are nee
in each iteration. The method is denoted as fast exact P
method and its implementation details are given next.*

For each clustersj , we also maintain the cluster sizenj ,
the corresponding code vectorcj , and the pointer to its
nearest neighbornnj . The nearest neighbor pointer is a
signed with the cost valuedj indicating the amount of in-
crease in distortion if the clustersj is merged tosnnj

. For
each training vector, we maintain the index of the clus
pi , to which it belongs.

2.2 Initialization

In the initialization, each training vectorxi is assigned to its
own cluster. The corresponding cluster size is set to 1,
the code vectorci as the training vector itself:

pi← i ; ni←1; ci←xi ; i P@1,N#. ~6!

To generate the nearest neighbor table, we must find
nearest neighbornni for every cluster. This is done by con
sidering all other clusters as tentative neighbor and sel
ing the one that minimizes Eq.~3!. There areO(N2) pairs
to be considered, and thus, the initialization phase ta
O(N2K) time in total.

2.3 Merging the Clusters

The optimal cluster pair~sa and sb! to be merged is the
cluster having the minimumdj value and its nearest neigh
bor nnj :

*Pseudocode of the method is available at: http://cs.joensuu.fi/pa
franti/research/pnn.txt.
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a←arg min
j P@1,N#

dj ; b←nna . ~7!

This pair can be found inO(N) time using linear search fo
the nearest neighbor table. The merge of the clusters is
performed as follows. First, we update the partition indic
so that the combined cluster replacessa , and the clustersb
becomes obsolete:

pi←a ; i upi5b. ~8!

The size of the merged cluster is calculated as:

na←na1nb . ~9!

The code vector of the combined cluster could be cal
lated as the weighted average ofca andcb :

ca←
naca1nbcb

na1nb
. ~10!

However, as we also maintain the partition index of ea
training vectorpi , it is therefore better to calculate the ne
code vector as the centroid of the cluster to minim
rounding errors:

ca←
1

na
• (

pi5a
xi . ~11!

These steps can be performed at most inO(NK) time.

2.4 Updating the Nearest Neighbor Pointers

The nearest neighbornna for the merged cluster~now sa!
must be resolved by calculating the distance function v
ues@Eq. ~3!# between the new cluster and all other rema
ing clusters. This can be performed inO(NK) time.

The nearest neighbor function is not symmetrical, i
nna5b does not implynnb5a. Therefore, we must also
resolve the nearest pointer for all clusters whose nea
neighbor before the merge was eithera or b ~nni5a or
nni5b!. This takesO(NK) time for a single cluster and
there are approximately three to five clusters on averag
be updated in each step of the algorithm, according to R
8. The overall time complexity of the update is therefo
O(tNK), wheret denotes the number of clusters who
the nearest neighbor pointer must be resolved. To sum
rize the time complexity of the fast exact PNN method
O(tN2K).

2.5 Lazy PNN Method

The number of distance calculations can be reduced by
laying the update of the nearest neighbor pointers. This i
is based on the monotony property shown in Ref. 13, wh
says that the minimum cluster distances never decrease
to the merge of the optimal pair. For example, assume
the nearest neighbor for a clustersi was sa before the
merge, andsc after the merge. From the monotony prope
we know thatdi ,a<di ,c . We therefore do not need the e
act distance but the previous distance serves as a lo
bound. In practice, we can assume that the nearest neig
n

t

.

-

-

e
t

r
r

after the merge issa1b , and use the previous cost functio
valuedi ,a ~or di ,b!. The distance value is labeled as ‘‘ou
dated,’’ and it will be updated only if it becomes the ca
didate for being the smallest distance of all. In this way,
can reduce the computation by about 35% while preserv
the exactness of the PNN method.13

3 Speed-Up Methods for the PNN Method

There are two alternative approaches for speeding-up
PNN method. One approach is to sacrifice the exactnes
the PNN method either by using a faster but suboptim
method for selecting the clusters to be merged,3 or by gen-
erating an initial codebook of sizeN.M0.M before the
PNN method.4 However, we take another approach,
which the exactness of the PNN method is preserved in
steps of the algorithm.

The main loop of the PNN in Fig. 1 reduces the numb
of code vectors fromN to M. It seems to be impossible t
reduce the number of stages in this loop without sacrific
the optimality of the steps. We therefore aim at reducing
computation inside the loop. The loop consists of the sea
of the cluster pair, the merge, and the update of the nea
neighbor pointers. The search takesO(N), and the merge
O(NK) time. In the update phase, we must find near
neighbor fort clusters, and every search requiresO(N)
distance calculations. Thus, the update phase requ
O(tNK) in total, and it is clearly the bottleneck of th
algorithm.

We consider the following two methods:

1. the PDS technique10

2. the MPS technique12

These methods are tailored for gaining speed without s
rificing optimality. They are new in the context of the PN
method but are widely used in the encoding phase of V
and in the search for the nearest code vector in the GLA
the PNN method, they can be applied both in the initializ
tion stage and in the main loop of the PNN method. The
methods can be considered practical as they ach
speed-up without complicated data structures and with
excessive increase of the memory consumption, and t
are easy to implement.

3.1 PDS

Let sa be the cluster for which we seek the nearest nei
bor. We use full search, i.e., calculate the distance val
da, j betweensa and all other clusterssj . Let dmin be the
distance of the best candidate found so far. The distanc
calculated cumulatively by summing up the squared diff
ences in each dimension. In PDS, we utilize the fact t
the cumulative summation is nondecreasing, as the in
vidual terms are nonnegative. The calculation is theref
terminated and the candidate rejected if the partial dista
value exceeds the current minimumdmin .

The implementation of the partial distance calculation
shown in Fig. 2. The distance function of Eq.~3! can be
divided into two parts consisting of the squared Euclide
distance (ea, j ) of the cluster centroids, and a weightin
factor (wa, j ) that depends on the cluster sizes:
2497Optical Engineering, Vol. 40 No. 11, November 2001
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ea, j5 (
k51

K

~cak2cjk!2, ~12!

wa, j5
na•nj

na1nj
. ~13!

Here cak and cjk refer to thek’ th components of the cor
responding vectors, andna and nj to the sizes of the par
ticular clusters. The weighting factorwa, j is calculated first,
and the squared Euclidean distanceea, j is then cumulated
by summing up the squared differences in each dimens
After each summation, we calculate the partial distort
value (wa, jea, j ) and compare it to the distance of the be
candidate (dmin):

wa, jea, j>dmin . ~14!

The distance calculation is terminated if this condition
found to be true. The calculations of the partial distorti
require an additional multiplication operation and an ex
comparison for checking the termination condition. We
fer this as the simple variant. Speed-up can be achieve
this extra work does not exceed the time saved by the
mination. The extra multiplication can be avoided by fo
mulating the termination condition as:

ea, j>
dmin

wa, j
. ~15!

The right part of the equation can now be calculated in
beginning of the function, and only the comparison rema
inside the summation loop. We refer this as the optimiz
variant. As a drawback, there are one extra division due
Eq. ~15! and extra multiplication outside the loop.

The computational efficiency of the two variants a
compared to that of the full search in Table 1. The sim
variant is faster when the dimensions are very small an
cases where the termination happens earlier. Equation~14!
is also less vulnerable to rounding errors than Eq.~15!. The
optimized variant, on the other hand, produce signific
improvement when the dimensions are very large.

Overall, the effectiveness of the method depends on
quality of the current candidate. It is therefore important
have a good initial candidate so that thedmin would already

Fig. 2 Pseudocode for the distance calculation in the (simple) PDS
method.
2498 Optical Engineering, Vol. 40 No. 11, November 2001
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be small at the early stages of the calculations. In this w
more distance calculations can be terminated sooner. In
previous iteration, the nearest neighbor forsa was one of
the clusters that were merged. It is expected that the
tance to the merged cluster remains relatively small a
therefore, we take this as the first candidate. This mi
enhancement turns out to provide significant improvem
in the algorithm~see Sec. 4!.

3.2 Mean-Distance Ordered Partial Search

The mean-distance-ordered partial search12 applies two dif-
ferent techniques to speed-up the search of the nearest
vector. First, it uses a fast precondition for checki
whether the distance calculation to a given candidate c
ter can be omitted. Second, it sorts the codebook accor
to the component means of the code vectors and der
limits for the search.

The method stores the component sums of each c
vector. Letsa be the cluster for which we seek its neare
neighbor, and letsj be the candidate cluster to be consi
ered. The distance of their corresponding code vectorsca

andcj can be approximated by the squared distance of t
component sums:

êa, j5S (
k51

K

cak2 (
k51

K

cjkD 2

. ~16!

The component sums correspond the projections of
code vectors to the diagonal axis of the vector space
typical training sets, the code vectors are highly conc
trated along the diagonal axis, and therefore, the distanc
their component sums highly correlate to their real d
tance. The following inequality holds true:12

êa, j<K•ea, j . ~17!

This inequality was utilized in the search of nearest nei
bor in VQ by deriving the following precondition:

K•emin,êa, j . ~18!

In other words, if the squared Euclidean distance of
component sums exceeds the distance to the best cand
found so far~multiplied by K!, the real distance cannot b
smaller thanemin according to Eq.~17!. This is illustrated in
Fig. 3, where the distance fromA to B is the current mini-
mum. All potential candidates and their projections mu
therefore lie inside the circle. The precondition can be c
culated fast in anO(1) time as the component sums a

Table 1 Summary of the arithmetic operations involved in the dis-
tance calculations, where the value qP@0,1# refers to the proportion
of the processed dimensions.

Variant * / 1

Full search k12 1 2k11

Simple variant 2kq11 1 2kq11

Optimized variant kq12 2 2kq11
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already known. If the precondition@inequality~18!# is true,
the candidate code vector can be rejected without the
tance calculation.

In the PNN method, the distance function consists of
squared Euclidean distance (ea, j ) of the code vectors and
the weighting factor (wa, j ). As shown in Eqs.~12! and
~13!, these two can be calculated separately. Inequality~17!
can therefore be generalized to the cluster distances a

wa, j•êa, j<K•wa, j•ea, j . ~19!

Given the minimum distanceemin , we can then derive a
similar precondition for the PNN distance function as:

K•dmin,wa, j•êa, j . ~20!

This can be applied as follows. The clusters are proces
in any given order. The weighting factorwa, j and the dis-
tance of the component sums (êa, j ) are first calculated, and
the precondition is evaluated. If it holds true, the calcu
tion of the Euclidean distance can be omitted and the c
didate clustersj rejected.

Further speed-up can be obtained by sorting the co
book according to their component sums, and then proc
the clusters in the order given by the sorting.12 The search
starts from the clustersa and it proceeds bidirectionally
along the projection axis. When we find the first cluster
which the precondition is met, we know that all the re
code vectors in that particular direction will meet the p
condition of Eq. ~18!. In the GLA, this gives definite
boundaries for the search and the rest of the candidates
be rejected even without calculation of the precondition

In the PNN method, we cannot make solid bounds
the search because of the weighting factor@Eq. ~13!# in-
volved in the distance function. Consider the situation
Fig. 4. The clustersB andC ~with cluster sizes 2 and 3! are
the first two that meet the inequality~20!. However, they do
not necessarily bound the search as there can be sm
clusters further away, for which the distance toA is smaller.
In the example of Fig. 4, there is one such cluster: the
betweenC andE.

The precondition cannot be used as such to prov
bounds for the search, but we have found a weaker co

Fig. 3 Code vectors (black dots) and their projections (open dots)
according to the component sums.
-

d

-

-
d

n

r

-

tion to terminate the search. The precondition guarant
that there are no more potential clusters in the respec
direction, whose size is greater than or equal to the clu
that met the precondition. Specifically, if the size of t
candidate cluster equals one and inequality~20! holds, we
can terminate the search in that direction. For example
Fig. 4 the search bounds will be the clustersD and E be-
cause they are the first clusters of size 1 in the correspo
ing directions, and inequality~20! holds for them.

The pseudocode of the algorithm is given in Fig. 5. F
simplicity, we assume that the clusters have already b
sorted before the call of the routine.

3.3 Initialization with the Methods

When special speed-up techniques are not used, the in
nearest neighborsnni and the associated distancesdi can
be determined by calculating only half of the pairwise d
tancesdi , j because the merge cost function@Eq. ~3!# is
symmetrical. When we are determining the nearest ne
bor for clustersa and we have calculated its distance
cluster sb , we also check ifsa is closer tosb than sb’s
current nearest neighbornnb , i.e., da,b,db . If that is the
case, we update the nearest neighbor of clustersb also.

However, this can not be done if the PDS is utilized
the initialization. Because then the real distance betw
clusterssa and sb is not always calculated but only th
partial distance, which can be smaller than the real o
Therefore it can not be used for the update of the nea
neighbor of clustersb .

Fortunately, it is not necessary that all nearest neigh
pointers have been assigned to really nearest cluster to
serve the exactness of the PNN method. It is enough
for each clustersi , we have determined its nearest neighb
among the clusters whose indexj is greater thani. Thus, the
nearest neighbor for clustersi is

nni5arg min
i , j <N

di , j . ~21!

This guarantees that nearest neighbor pair of all clu
pairs is stored. The second nearest cluster pair is not

Fig. 4 Example of setting up the search boundaries in the MPS
technique. The projections of the clusters are drawn as circles. Clus-
ter A (with a black dot) is the one for which we search the nearest
neighbor. The numbers represent the cluster sizes, and the crossing
indicates that the precondition holds true for the cluster and its dis-
tance calculation can be omitted.
2499Optical Engineering, Vol. 40 No. 11, November 2001
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essarily stored, but it will not be needed. After the merge
the nearest cluster pair, we update the nearest neig
pointers for the appropriate clusters by considering all cl
ters. Therefore, we always have the knowledge on the n
est cluster pair.

Fig. 5 Pseudocode for the MPS technique used in the PNN
method.
2500 Optical Engineering, Vol. 40 No. 11, November 2001
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4 Test Results

We generated training sets from six images: ‘‘Bridge
‘‘Camera,’’ ‘‘Miss America,’’ ‘‘Table Tennis,’’ ‘‘House,’’
and ‘‘Airplane’’ ~see Fig. 6!. The vectors in the first two
sets~‘‘Bridge,’’ ‘‘Camera’’ ! are 434 pixel blocks from the
gray-scale images. The third and fourth sets~‘‘Miss
America,’’ ‘‘Table Tennis’’! were obtained by subtractin
two subsequent image frames of the original video ima
sequences, and then constructing 434 spatial pixel blocks
from the residuals. Only the first two frames were us
The fifth and sixth data sets~‘‘House,’’ ‘‘Airplane’’ ! consist
of color values of the RGB images. Applications of th
kind of data sets is found in image and video image cod
~‘‘Bridge,’’ ‘‘Camera,’’ ‘‘Miss America,’’ ‘‘Table Tennis’’ !,
and in color image quantization~‘‘House,’’ ‘‘Airplane’’ !.

4.1 Experiments with the PDS Variants

The effect of the initialization of the PDS is first studied
a function of the vector dimension. For this purpose, we
artificially generated training sets with the following p
rameters: The number of training vectors isN51024, the
number of clustersM5256, and the vector sizeK varies
from 16 to 1024. The results are shown in Fig. 7, and th
clearly demonstrate the importance of the initial guess
training sets with large vector dimensions. The improv
ment is less significant for training sets withK,16, but it
is still large enough to be useful. In the following, we a
sume that the initial guess is always used.

The performance of the two PDS variants~simple and
the optimized variants! are summarized in Fig. 8 for the si
training sets of Fig. 6. The results show that the sim
variant is better for the training sets~‘‘House’’ and ‘‘Air-
plane’’! with small vector dimensions (K53). This is so
because of the extra division operation in the optimiz
variant. In fact, the optimized variant is even slower th
the original PNN. For the other training sets~‘‘Bridge,’’
‘‘Camera,’’ ‘‘Miss America,’’ ‘‘Table Tennis’’!, the opti-
mized variants works much better and gives always eq
to or better result than the simple variant. The significan
of the division operation is much smaller in the case o
vector with a higher dimension.

Note also that the cost of the division operation is ha
ware dependent. The results indicate that the relative
Fig. 6 Sources of the training sets. Here N refers to the number of distinctive vectors in the training
set, and K refers to the dimensionality of the vectors; * indicates that duplicate training vectors are
combined and frequency information is stored.
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formance of the optimized variant increases as a functio
K, but one should not draw any final conclusions about
exact value ofK, after which the optimized variant outpe
forms the simple variant.

4.2 Experiments with the MPS Variants

The effectiveness of the MPS technique is shown in Tab
as the number of operations relative to the full search. T
first observation is that the use of the precondition is e
cient for ‘‘Bridge’’ and ‘‘Camera’’~run time is decreased t
about 30%! but only moderate improvement is achiev
with the other four training sets~down to about 70 to 80%!.
The second observation is that the sorting gives signific
improvement for ‘‘Bridge,’’ ‘‘Camera,’’ ‘‘Airplane,’’ and
‘‘House.’’ For the color images~‘‘Airplane’’ and ‘‘House’’ !,
the sorting is important as it eliminates most of the p
condition tests; only about 2% of the tests remains.

Fig. 7 Remaining run time relative to full search PNN method for
the optimized PDS with and without an initial guess.
f

t

Overall, the MPS works very well except for the re
sidual training sets~‘‘Miss America,’’ ‘‘Table Tennis’’!. For
these, the MPS can reduce the computation only down
about 2/3 from that of the full search. This originates fro
the nature of the training sets; the training vectors are r
tively evenly distributed in the vector space and there
no clear clusters in the training sets. The projection of
vectors onto the diagonal axis therefore is not as efficien
it would be if the vectors were clustered in the vector spa

4.3 Joint Experiments

Table 3 gives the detailed work load of the different PN
variants for three training sets, one from each category.
results show that the joint use of the PDS and MPS te
niques is successful. Only in the case of the first categ
~‘‘Bridge’’ and ‘‘Camera’’!, the use of the MPS techniqu
somewhat weakens the effect of the PDS method. Thi

Fig. 8 Remaining run time relative to the full search PNN method
for the simple and optimized variants of the PDS.
Table 2 The remaining run times for the MPS variants.

Relative

MPS without Sorting MPS with Sorting

Preconditions/Search
(%)

Distance
Calculations/Search

(%)

Remaining
Run Time

(%)
Preconditions/Search

(%)

Distance
Calculations/Search

(%)

Remaining
Run Time

(%)

‘‘Bridge’’ 100 17.5 32.9 16.6 15.3 16.5

‘‘Camera’’ 100 9.6 28.8 8.5 7.9 11.0

‘‘Miss America’’ 100 82.1 72.1 80.5 78.6 66.4

‘‘Table Tennis’’ 100 85.3 71.4 84.4 83.9 71.3

‘‘Airplane’’ 100 4.9 77.2 1.7 1.2 18.6

‘‘House’’ 100 6.9 78.3 2.4 1.8 15.2

Absolute

MPS without Sorting MPS with Sorting

Preconditions/Search Distance Calculations/Search

Remaining
Run Time

(%) Preconditions/Search
Distance

Calculations/Search

Remaining
Run Time

(%)

‘‘Bridge’’ 2599.1 455.2 32.9 432.6 397.4 16.5

‘‘Camera’’ 2575.1 247.6 28.8 218.2 202.9 11.0

‘‘Miss America’’ 3959.2 3252.1 72.1 3187.0 3112.1 66.4

‘‘Table Tennis’’ 13021.4 11103.4 71.4 10983.7 10922.2 71.3

‘‘Airplane’’ 48189.5 2373.6 77.2 805.4 560.4 18.6

‘‘House’’ 21285.1 1464.9 78.3 506.9 373.2 15.2
2501Optical Engineering, Vol. 40 No. 11, November 2001
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Table 3 The average number of distance calculations per nearest neighbor search, the average
number of processed vector dimension during the distance calculation, and the total number of pro-
cessed vector dimensions per search on average.

‘‘Bridge,’’ N54096, M5256, K516

Distance Calculations/Search Dimensions/Distance Calculation Dimensions/Search

Full 2208.6 16.0 35338.3

PDS 2208.7 3.0 6534.2

MPS1PDS 397.4 5.7 2261.0

‘‘House,’’ N534112, M5256, K53

Distance Calculations/Search Dimensions/Distance Calculation Dimensions/Search

Full 16514.8 3.0 49544.5

PDS 16533.6 1.1 17538.3

MPS1PDS 373.2 1.2 434.7

‘‘Miss America,’’ N56480, M5256, K516

Distance Calculations/Search Dimensions/Distance Calculation Dimensions/Search

Full 3404.8 16.0 54476.9

PDS 3401.5 4.8 16194.3

MPS1PDS 3112.1 4.8 14805.4
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because with the MPS, most of the distance calculations
done to nearby clusters and therefore, the PDS is less
cient. Nevertheless, the overall improvement is still ve
good for these training sets. For the other four training s
the use of the MPS do not decrease the effectiveness o
PDS.

The overall run times of the PDS and MPS are summ
rized in Table 4. The methods are also combined with
lazy PNN of Sec. 2.5. The joint use of these three meth
reduces the run time to 10 to 15% in the case of the f
favorable training sets~‘‘Bridge,’’ ‘‘Camera,’’ ‘‘House,’’
‘‘Airplane’’ !, but only to about 70% in the case of residu
vectors~‘‘Miss America,’’ ‘‘Table Tennis’’!. The use of the
lazy update~lazy PNN! gives further reduction of about 1
to 30%.

To sum up, if we combine all the idea presented in t
paper~PDS, MPS, lazy update, initialization trick of Se
3.3!, we can reduce the run time to 8 to 15% in the case
the favorable training sets~‘‘Bridge,’’ ‘‘Camera,’’ ‘‘House,’’
neering, Vol. 40 No. 11, November 2001
e
-

,
e

‘‘Airplane’’ !, and to about 50% in the case of the unfavo
able sets~‘‘Miss America,’’ ‘‘Table Tennis’’!.

From the experiments we can see that the results gre
depend on the training set. An important parameter of
training set is the size~dimension! of the vectors. The effec
of the vector size is therefore demonstrated in Fig. 9 w
the artificial training sets described earlier in this sectio
Obviously, the overall run time increases as a function
the vector size. On the other, the relative improvement
the speed-up methods also increases, which partly com
sates the increase in the vector size.

4.4 Integration with Other Algorithms

The improved PNN method benefits also other hybrid co
book generation methods. Here we have tested two
them: ~1! GLA-PNN-GLA and ~2! GA-PNN. The first
method is a hybridization of the PNN method and the G
due to Ref. 4. It starts with an initial codebook of siz
Table 4 Run times (in seconds) for the six training sets (M5256).

‘‘Bridge’’ ‘‘House’’ ‘‘Miss America’’

PNN Lazy PNN PNN Lazy PNN PNN Lazy PNN

Full 79 52 1524 1126 229 145

PDS 42 28 1826 1318 143 91

MPS1PDS 13 10 231 195 152 108

‘‘Camera’’ ‘‘Airplane’’ ‘‘Table Tennis’’

PNN Lazy PNN PNN Lazy PNN PNN Lazy PNN

Full 73 51 8812 6237 2895 1816

PDS 35 25 10460 7145 1756 1109

MPS1PDS 8 6 1636 1295 2063 1462
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Fig. 9 Run time (in seconds) as a function of the code vector dimension (left), and remaining run time
relative to the full search PNN (right).
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M0.M , which is generated by the GLA. The resultin
codebook is then reduced to the final size using the e
PNN method, and finally fine-tuned again by the GLA. T
method is parametrized by the choice ofM0 , and is de-
noted here as the GLA-PNN-GLA. The GLA is imple
mented as in Ref. 9.

The second method is the genetic algorithm~GA!, as
proposed in Ref. 6. The PNN method is used in the imp
mentation of the crossover, as described in Ref. 14.
method is based on evolutionary computing; it uses a cr
over to create new candidate solutions, and selection
direct the search toward better quality codebooks. The
of the PNN method is to provide high-quality candida
codebooks instead of using exhaustive trial-and-error
proach. We denote this method as the GA-PNN.

The performance of these two methods are compare
Fig. 10 using ‘‘Bridge.’’ The results clearly demonstra
that better quality codebooks can be obtained by the hy
methods than using the PNN method alone. The cho
between these two methods depends on whether the
prefers speed or quality. The GA-PNN is capable of p
viding the best codebooks at the cost of higher run ti
whereas the GLA-PNN-GLA is the better choice if the tim
is limited.

5 Conclusions

We have considered two different speed-up techniques
the PNN method: the PDS and the MPS. The methods

Fig. 10 Time-distortion performance of the hybrid algorithms for
‘‘Bridge.’’ The GLA-PNN-GLA is parametrized by changing the size
of the initial codebook from 256 to 4096. The results of the GA-PNN
are shown from the first 15 iterations.
t
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be considered practical as they achieve the speed-up w
out complicated data structures and without excessive
crease of memory consumption, and they are easy to im
ment.

The PDS method works well in most cases and achie
a speed-up similar to that obtained within the GL
roughly 50% with the favorable training sets. The use
the PDS technique is questionable only with vectors of v
small dimension. In this case, the improvement can
overwhelmed by the overhead caused by the additional
The use of the initial guess was also found to be importa
Overall, the PDS is very efficient with vectors of very larg
dimension. For example, less than 10% run time is requ
with vectors of size 256 or more.

The MPS technique works also very well in most cas
by reducing the run time to 10 to 20%. The exception is
set of residual vectors, for which only moderate improv
ment was obtained. The improvement is not as good
within the GLA for two reasons:~1! the calculation of the
precondition is more complicated and takes more time,
~2! the precondition cannot be used to provide absol
bounds for the search, as in the GLA. Thus, the potentia
the MPS technique can be utilized only partially in th
context of the PNN method.

To sum up, if we combine all the speed-up metho
discussed in this paper, we can reduce the run time to
15% in the case of the four favorable training sets, a
down to about 50% in the case of the unfavorable s
~residual vectors!. In the case of vectors with very larg
dimension~256 or greater! the run time of the favorable
sets can be reduced to 2%.

We also demonstrated that the improvements are ap
cable within more sophisticated hybrid methods, in whi
the PNN method is used as a component. Two such m
ods were considered: the GLA-PNN-GLA, and the G
with a PNN crossover.
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Pasi Frä nti received his MSc and PhD de-
grees in computer science in 1991 and
1994, respectively, from the University of
Turku, Finland. From 1996 to 1999 he was
a postdoctoral researcher with the Univer-
sity of Joensuu (funded by the Academy of
Finland), where he has been a professor
since 2000. His primary research interests
are in image compression, vector quantiza-
tion, and clustering algorithms.

Timo Kaukoranta received his MSc and
PhD degrees in computer science from the
University of Turku, Finland, in 1994 and
2000, respectively. Since 1997 he has
been a researcher with the University of
Turku. His primary research interests are in
vector quantization and image compres-
sion.


