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Abstract. The pairwise nearest neighbor (PNN) method is a simple and
well-known method for codebook generation in vector quantization. In its
exact form, it provides a good-quality codebook but at the cost of high
run time. A fast exact algorithm was recently introduced to implement the
PNN an order of magnitude faster than the original O(N3K) time algo-
rithm. The run time, however, is still lower bounded by O(NZK), and
therefore, additional speed-ups may be required in applications where
time is an important factor. We consider two practical methods to reduce
the amount of work caused by the distance calculations. Through experi-
ments, we show that the run time can be reduced to 10 to 15% that of the
original method for data sets in color quantization and in spatial vector
quantization. © 2001 Society of Photo-Optical Instrumentation Engineers.
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1 Introduction

Vector quantizatioh (VQ) is a method for reducing the
amount of data. It can be applied in low-bit-rate compres-
sion of image and audio data and in image analysis. The
problem of generating a good codebook is one of the great-
est problems in the design of a vector quantizer. The aim is
to find a set oM code vectorgcodebook for a given set of

N training vectorgtraining set by minimizing the average
pairwise distance between the training vectors and their
representative code vectors.

The most cited and widely used method for the code-
book generation is the generalized Lloyd algorithm
(GLA). It starts with an initial codebook, which is itera-
tively improved until a local minimum is reached. The al-
gorithm is easy to implement but it makes only local
changes to the original codebook. The quality of the final
codebook is therefore highly dependent on the initializa-
tion.

A better result can be achieved by the pairwise nearest
neighbor(PNN) method® This method starts by initializing
a codebook of siz&l, where each training vector is consid-

order of magnitude faster algorithm was recently
introduced® but the method is still lower bounded by
O(N2K), which is more than th©(NMK) time required
by the GLA. Additional improvements are therefore re-
quired to make the exact algorithm competitive also in
speed.

Several speed-up methods have been introduced in the
search of nearest code vector in Euclidean space by reduc-
ing the computation required by the distance
calculations™*? In the PNN method, the distance calcula-
tions are also the bottleneck of the algorithm. It is therefore
expected that the ideas proposed for the fast search of the
nearest code vector could also be adapted to the PNN
method. The main problem is that the distance calculations
in the PNN method are not made in Euclidean space. It is
therefore not self-evident whether the existing ideas can be
transferred to the context of the PNN method.

In this paper, we consider two different speed-up meth-
ods found in the literature. The first method is the partial
distortion searctiPDS proposed by Bei and Graf.It ter-
minates a single distance calculation immediately when the
partial distance exceeds the shortest distance found so far.

ered as its own code vector. Two code vectors are mergedrhjs jdea is independent of the chosen metrics and there-
in each step of the algorithm and the process is repeatedgre it can also be directly applied to the PNN method. The

until the codebook reduces to the desired $izeThe PNN
method can also be combirfedith the GLA, or used as a

second method is the mean-distance-ordered partial search
(MPS) technique introduced by Ra and KithThis tech-

component in more sophisticated methods. For example,nique uses the component means of the vectors to derive a
the PNN method has been used in the merge phase in thgyrecondition for the distance calculations and, in this way, a
split-and-merge algorithi,resulting in to a good time-  |arge number of the distance calculations can be omitted
distortion performance, and as the crossover method in acompletely. The idea utilizes properties of Euclidean space
genetic algorithn?, which has turned out to be the best but we will show that the precondition can be generalized
method among a wide variety of algorithms in terms of the for the distance calculations in the PNN method.
codebook quality. In general, it is not possible to transfer every speed-up
The main drawback of the PNN method is its slowness, method from the nearest code vector search to the context
as the original implementation requir€{N3K) time.” An of the PNN. For example, the triangular inequality elimina-
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wheren, and ny, denote to the sizes of the corresponding

clustersa and b. The cost function is symmetricdg

=dp o) and it can be calculated i@(K) time, assuming

m < N; thatn,, ny, c,, andc, are known.

REPEAT The exact variant of the PNN method applies local op-
(8a, 8b) <— NearestClusters(); timization strategy: all possible cluster pairs are considered
MergeClusters(ss, so); and the onda,b) increasing the distortion least is chosen:

PNN(X, M) = C, P
5 ¢ {x} Vie[LN];

m— m-1;
UpdateDataStructures(); _ B
a,b=arg min d,;. (4
—A- ' )]
UNTIL m=M; i e[1N]
i#]

Fig. 1 Structure of the exact PNN method. .
g The clusters are then merged and the process is repeated

until the codebook reaches the siké Straightforward

tion (T|E) technique presented by Chen and Tgrghain_ implementation of this take@(NgK) time because there
tains the(Euclidean distances between all code vectors, are O(N) steps, and in each step there @¢N?) cost
and then reduces the number of distance calculations by afunction values to be calculated.

condition derived from the triangle inequality. In principle,

we could derive a similar precondition for the PNN cost 2.1 Fast Exact PNN Method

function. In the PNN method, however, the overhead of A much faster variant of the PNN method can be imple-
maintaining a complete distance matrix equals to the origi- mented by maintaining for each cluster a pointer to its near-
nal workload of the PNN and, therefore, no speed-up is gg; neighhof. The nearest neighbar, for a clusters, is

possible in this way. : A .
The rest of the paper is organized as follows. Section 2 defined as the cluster minimizing the merge cost:

presents the PNN method and its fast exact implementation., | —arg min d, (5)
We provide a detailed description of the method to enable 2 i e[1N] &l
the reader to implement the exact PNN method accurately. j#a
New speed-up methods are then introduced in Sec. 3. In i _
particular, we introduce the PDS and the MPS methods in N this way, only few nearest neighbor searches are needed
the context of the PNN method. Simulation results for vari- N €ach iteration. The method is denoted as fast exact PNN
ous training sets are shown in Sec. 4. Experiments showMethod and its implementation details are given rext.
that the run time can be reduced to 10 to 15% in the case of ~For each clustes;, we also maintain the cluster sing,
the two favorable data sets, whereas only moderate im-the corresponding code vectoy, and the pointer to its
provement can be achieved in the case of the unfavorablenearest neighbonn;. The nearest neighbor pointer is as-
data set. Conclusions are drawn in Sec. 5. signed with the cost valud; indicating the amount of in-
crease in distortion if the clustet is merged tas,, . For
2 PNN Method - S . ]

) o ) each training vector, we maintain the index of the cluster
We cons_lder a set ofN training vectors )@i)_ in a p;, to which it belongs.
K-dimensional Euclidean space. The aim is to find a code-
book C of M code vectors¢) by minimizing the average 2.2 nitialization
squared Euclidean distance between the training vectors

and their representative code vectors: In the initialization, each training vectar is assigned to its

own cluster. The corresponding cluster size is set to 1, and
the code vector; as the training vector itself:

N
f(C)=5 2 Ix—cpl” (1)

Z| -

pi—i; ni«—1; ¢+x Vie[1N]. (6)

wherep; is the cluster(partitior) index of the training vec-  To generate the nearest neighbor table, we must find the
tor x; . Cluster is defined as the set of training vectors that nearest neighbarn; for every cluster. This is done by con-

belong to the same partitica sidering all other clusters as tentative neighbor and select-
ing the one that minimizes E@3). There areD(N?) pairs
Sa=1{Xi|pi=a}. 2 to be considered, and thus, the initialization phase takes

_ _ o O(N2K) time in total.
The basic structure of the PNN method is shown in Fig. 1.
The method starts by initializing each training vgctptas 2.3 Merging the Clusters
its own code vector; . In each step of the algorithm, the . . .
size of the codebook is reduced by merging two clusters. The optlme}l cluster .pz.';u(sa ands;) to b? merged is t.he
The cost of merging two clustess, and's, can be calcu- cluster having the minimurd; value and its nearest neigh-

lated as bor nn;:
NaNp
dap= Jlea—cull?, 3 *Pseudocode of the method is available at: http://cs.joensuu.fi/pages/
NatNp franti/research/pnn.txt.
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a«arg min dj; b«nn,. ) after the merge is,.,, and use the previous cost function
jel1N] valued; , (or d; ). The distance value is labeled as “out-

. . . . _ dated,” and it will be updated only if it becomes the can-
This pair can be found i@(N) time using linear search for — gigate for being the smallest distance of all. In this way, we

the nearest neighbor table. The merge of the clusters is thercap reduce the computation by about 35% while preserving
performed as follows. First, we update the partition indices the exactness of the PNN methbd.

so that the combined cluster replasgs and the clustes,

becomes obsolete:
3 Speed-Up Methods for the PNN Method

pi—a Vi|pi=b. 8 There are two alternative approaches for speeding-up the
PNN method. One approach is to sacrifice the exactness of

The size of the merged cluster is calculated as: the PNN method either by using a faster but suboptimal
method for selecting the clusters to be merged,by gen-

Nas—Ng+Np. 9 erating an initial codebook of sizé>M,>M before the

. PNN method" However, we take another approach, in
The code vector of the combined cluster could be calcu- yhich the exactness of the PNN method is preserved in all

lated as the weighted averageaqfandc,: steps of the algorithm.
The main loop of the PNN in Fig. 1 reduces the number
o NaCat NpCy (10) of code vectors fronN to M. It seems to be impossible to
a ng+n, ° reduce the number of stages in this loop without sacrificing

the optimality of the steps. We therefore aim at reducing the
However, as we also maintain the partition index of each computation inside the loop. The loop consists of the search
training vectorp; , it is therefore better to calculate the new of the cluster pair, the merge, and the update of the nearest
code vector as the centroid of the cluster to minimize neighbor pointers. The search take¢N), and the merge

rounding errors: O(NK) time. In the update phase, we must find nearest
neighbor for = clusters, and every search requit@$N)

c (_i' S x (11) distance calculations. Thus, the update phase requires

& ng pZa O(7NK) in total, and it is clearly the bottleneck of the
algorithm.

These steps can be performed at mosD{iNK) time. We consider the following two methods:

1. the PDS techniqd@

2.4 Updating the Nearest Neighbor Pointers )
2. the MPS techniqu?@

The nearest neighbarn, for the merged clusteinow s,)
must be resolved by calculating the distance function val- These methods are tailored for gaining speed without sac-
ues[Eq. (3)] between the new cluster and all other remain- rificing optimality. They are new in the context of the PNN
ing clusters. This can be performed@{NK) time. method but are widely used in the encoding phase of VQ,
The nearest neighbor function is not symmetrical, i.e., and in the search for the nearest code vector in the GLA. In
nn,=b does not implynn,=a. Therefore, we must also the PNN method, they can be applied both in the initializa-
resolve the nearest pointer for all clusters whose nearesttion stage and in the main loop of the PNN method. These
neighbor before the merge was eitreor b (nn,=a or methods can be considered practical as they achieve
nn;=b). This takesO(NK) time for a single cluster and  SPeed-up without complicated data structures and without
there are approximately three to five clusters on average to€xCessive increase of the memory consumption, and they
be updated in each step of the algorithm, according to Ref. &€ €asy to implement.
8. The overall time complexity of the update is therefore
O(7NK), where 7 denotes the number of clusters whose 3.1 PpDS
the nearest neighbor pointer must be resolved. To summa-
rize the time complexity of the fast exact PNN method is
O(7N?K).

Let s, be the cluster for which we seek the nearest neigh-
bor. We use full search, i.e., calculate the distance values
d,j betweens, and all other clusters;. Let dy,, be the
distance of the best candidate found so far. The distance is
2.5 Lazy PNN Method calculated cumulatively by summing up the squared differ-
The number of distance calculations can be reduced by de-ences in each dimension. In PDS, we utilize the fact that
laying the update of the nearest neighbor pointers. This ideathe cumulative summation is nondecreasing, as the indi-
is based on the monotony property shown in Ref. 13, which vidual terms are nonnegative. The calculation is therefore
says that the minimum cluster distances never decrease duéerminated and the candidate rejected if the partial distance
to the merge of the optimal pair. For example, assume thatvalue exceeds the current minimuay,, .

the nearest neighbor for a cluster was s, before the The implementation of the partial distance calculation is
merge, and, after the merge. From the monotony property shown in Fig. 2. The distance function of E@) can be

we know thatd; ,<d; .. We therefore do not need the ex- divided into two parts consisting of the squared Euclidean
act distance but the previous distance serves as a lowedistance €,;) of the cluster centroids, and a weighting
bound. In practice, we can assume that the nearest neighbofactor (w, ;) that depends on the cluster sizes:
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MergeCost(s,, $i, duin) —> d;
e 0;
k<0
weé—n, -ni/ (n, +n);
REPEAT
ké—k+1;
e e+ (Cu- )
dé—w-e;
UNTIL (d > dmin) OR (k= K);
RETURN d;

Fig. 2 Pseudocode for the distance calculation in the (simple) PDS
method.

(12
k=1
N, N;
& natn; (13

Here c,, andcj, refer to thek’th components of the cor-
responding vectors, am, andn; to the sizes of the par-
ticular clusters. The weighting facter, ; is calculated first,
and the squared Euclidean distarggg is then cumulated

by summing up the squared differences in each dimension.
After each summation, we calculate the partial distortion
value W, ;e, ;) and compare it to the distance of the best
candidate @,;):
Wa,j ea,j = dmin . (14)

The distance calculation is terminated if this condition is
found to be true. The calculations of the partial distortion
require an additional multiplication operation and an extra
comparison for checking the termination condition. We re-

ta: Practical methods . . .

Table 1 Summary of the arithmetic operations involved in the dis-
tance calculations, where the value ge[0,1] refers to the proportion
of the processed dimensions.

Variant * / +

Full search k+2 1 2k+1
Simple variant 2kg+1 1 2kg+1
Optimized variant kg+2 2 2kg+1

be small at the early stages of the calculations. In this way,
more distance calculations can be terminated sooner. In the
previous iteration, the nearest neighbor ggrwas one of

the clusters that were merged. It is expected that the dis-
tance to the merged cluster remains relatively small and,
therefore, we take this as the first candidate. This minor
enhancement turns out to provide significant improvement
in the algorithm(see Sec. %

3.2 Mean-Distance Ordered Partial Search

The mean-distance-ordered partial se&relpplies two dif-
ferent techniques to speed-up the search of the nearest code
vector. First, it uses a fast precondition for checking
whether the distance calculation to a given candidate clus-
ter can be omitted. Second, it sorts the codebook according
to the component means of the code vectors and derives
limits for the search.

The method stores the component sums of each code
vector. Lets, be the cluster for which we seek its nearest
neighbor, and les; be the candidate cluster to be consid-
ered. The distance of their corresponding code veatgrs
andc; can be approximated by the squared distance of their
component sums:

(16)

K K 2
éa,F(E Cak— 2, Cjk) :
=] =

fer this as the simple variant. Speed-up can be achieved if
this extra work does not exceed the time saved by the ter-tpq component sums correspond the projections of the
mination. The extra multiplication can be avoided by for- ¢ode vectors to the diagonal axis of the vector space. In
mulating the termination condition as: typical training sets, the code vectors are highly concen-
trated along the diagonal axis, and therefore, the distance of
their component sums highly correlate to their real dis-
tance. The following inequality holds trdé:

€= (15)

Wa,j

The right part of the equation can now be calculated in the &, ;<K-e, ;. a7
beginning of the function, and only the comparison remains
inside the summation loop. We refer this as the optimized This inequality was utilized in the search of nearest neigh-
variant. As a drawback, there are one extra division due to bor in VQ by deriving the following precondition:
Eq. (15) and extra multiplication outside the loop.

The computational efficiency of the two variants are K-emn<€,;.
compared to that of the full search in Table 1. The simple
variant is faster when the dimensions are very small and in In other words, if the squared Euclidean distance of the

(18)

cases where the termination happens earlier. Equéti&n
is also less vulnerable to rounding errors than @§). The
optimized variant, on the other hand, produce significant
improvement when the dimensions are very large.

Overall, the effectiveness of the method depends on the
quality of the current candidate. It is therefore important to
have a good initial candidate so that thg,, would already

2498 Optical Engineering, Vol. 40 No. 11, November 2001

component sums exceeds the distance to the best candidate
found so far(multiplied by K), the real distance cannot be
smaller thare,,;, according to Eq(17). This is illustrated in

Fig. 3, where the distance frokto B is the current mini-
mum. All potential candidates and their projections must
therefore lie inside the circle. The precondition can be cal-
culated fast in arD(1) time as the component sums are
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N
®C
Fig. 4 Example of setting up the search boundaries in the MPS
Fig. 3 Code vectors (black dots) and their projections (open dots) technique. The projections of the clusters are drawn as circles. Clus-
according to the component sums. ter A (with a black dot) is the one for which we search the nearest

neighbor. The numbers represent the cluster sizes, and the crossing
indicates that the precondition holds true for the cluster and its dis-
tance calculation can be omitted.

already known. If the preconditidmnequality (18)] is true,
the candidate code vector can be rejected without the dis-
tance calculation.

In the PNN method, the distance function consists of the

tion to terminate the search. The precondition guarantees
that there are no more potential clusters in the respective
squared Euclidean distance,() of the code vectors and direction, whose size |s greater thgn or Qqual to the cluster

N a) . that met the precondition. Specifically, if the size of the
the weighting factor W, ;). As shown in Egs(12) and  capqgidate cluster equals one and inequal§) holds, we
(13), these two can be calculated separately. Inequeility can terminate the search in that direction. For example, in
can therefore be generalized to the cluster distances as Fig. 4 the search bounds will be the clust&rand E be-

cause they are the first clusters of size 1 in the correspond-
ing directions, and inequalit§20) holds for them.
The pseudocode of the algorithm is given in Fig. 5. For

Given the minimum distancen,, we can then derive a  gimpjicity, we assume that the clusters have already been
similar precondition for the PNN distance function as: sorted before the call of the routine.

Waj €5 SK-Wyi-€4j. (19

K-dmin<Wg j- €4 - (20) 3.3 Initialization with the Methods

dhen special speed-up techniques are not used, the initial
nearest neighborsn; and the associated distanagscan

be determined by calculating only half of the pairwise dis-
tancesd; ; because the merge cost functipiq. (3)] is

This can be applied as follows. The clusters are processe
in any given order. The weighting facter, ; and the dis-
tance of the component sum&,(;) are first calculated, and

the precondition is evaluated. If it holds true, the calcula- ol Wh d - h iah
tion of the Euclidean distance can be omitted and the can-SYmmetrical. When we are determining the nearest neigh-
didate clustes; rejected. bor for clusters, and we have calculated its distance to

Further speed-up can be obtained by sorting the code-clusters,, we also check ifs, is closer tos, thans,'s
book according to their component sums, and then proceedcurrent nearest neighbamy, i.e., d, ,<dp . If that is the
the clusters in the order given by the sortidgihe search ~ case, we update the nearest neighbor of clugfeso.
starts from the clustes, and it proceeds bidirectionally However, this can not be done if the PDS is utilized in
along the projection axis. When we find the first cluster for the initialization. Because then the real distance between
which the precondition is met, we know that all the rest clusterss, and s, is not always calculated but only the
code vectors in that particular direction will meet the pre- partial distance, which can be smaller than the real one.
condition of Eq.(18). In the GLA, this gives definite  Therefore it can not be used for the update of the nearest
boundaries for the search and the rest of the candidates cameighbor of clustes,, .

be rejected even without calculation of the precondition. Fortunately, it is not necessary that all nearest neighbor
In the PNN method, we cannot make solid bounds for pointers have been assigned to really nearest cluster to pre-
the search because of the weighting fadtgg. (13)] in- serve the exactness of the PNN method. It is enough that

volved in the distance function. Consider the situation in for each clustes; , we have determined its nearest neighbor
Fig. 4. The cluster8 andC (with cluster sizes 2 and)are among the clusters whose indigis greater tham. Thus, the
the first two that meet the inequalit20). However, they do nearest neighbor for cluster is
not necessarily bound the search as there can be smaller
clusters further away, for which the distanceXt@s smaller. nn=arg min d; ;. (21
In the example of Fig. 4, there is one such cluster: the one i<jsN
betweenC andE.
The precondition cannot be used as such to provide This guarantees that nearest neighbor pair of all cluster
bounds for the search, but we have found a weaker condi-pairs is stored. The second nearest cluster pair is not nec-
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4 Test Results

SearchNearestNeighborUsingMPS(c;, ¢;, dug) — 11, d; We generated training sets from six images: “Bridge,”
i €= ©; “Camera,” “Miss America,” “Table Tennis,” “House,”
up < TRUE; and “Airplane” (see Fig. . The vectors in the first two
down < TRUE;

; ) sets(“Bridge,” “Camera” ) are 4x 4 pixel blocks from the
2:2 gray-scale images. The third and fourth sdtMiss

’ America,” “Table Tennis”) were obtained by subtracting
WHILE (up OR down) DO two subsequent image frames of the original video image
sequences, and then constructing 4} spatial pixel blocks

IFU}: (T_Hfﬁ 1 from _the resid.uals. Only the first two frames were _used.
IF j, >N THEN up « FALSE The fifth and sixth data se{SHouse,” “Airplane” ) consist
ELSE CheckCandidate(s,, Sit. fay diny 7, UP); of color values of the RGB images. Applications of this

IF down THEN kmdl of data sets is founq in image and video image coding
gL (“Bridge,” “Camera,” “Miss America,” “Table Tennis”),

IF j, < 1 THEN down < FALSE and in color image quantizatiofiHouse,” “Airplane” ).

ELSE CheckCandidate(s,, sp, 75, dyin, 171, down);

END-WHILE; 4.1 Experiments with the PDS Variants
RETURN n7, doy; The effect of the initialization of the PDS is first studied as
a function of the vector dimension. For this purpose, we use
CheckCandidate(s,, s;, 71,, i, 11, direction); artificially generated training sets with the following pa-
IF PreCondition(s,, si, dmin) THEN rameters: The number of training vectorsNs= 1024, the
ELSEIF #, = 1 THEN direction < FALSE number of clusterdV =256, and the vector sizi varies

from 16 to 1024. The results are shown in Fig. 7, and they

;:f;rseggggw Si i) clearly demonstrate the importance of the initial guess for
P i training sets with large vector dimensions. The improve-
n’;’”<_j; ment is less significant for training sets wikh<16, but it
RETURN; is still large enough to be useful. In the following, we as-
sume that the initial guess is always used.
PreCondition(s,, s;, dyy,) — BOOLEAN; The performance of the two PDS variarimple and
Wy i/ (1, + ny); the optimized varianjsare summarized in Fig. 8 for the six
& < (sum,- sum;)’; training sets of Fig. 6. The results show that the simple
RETURN( K don <w - €); variant is better for the training setéHouse” and “Air-

plane”) with small vector dimensionsk(=3). This is so

Fig. 5 Pseudocode for the MPS technique used in the PNN beqause of the extra QIV!Slon opgratlpn in the optimized

method. variant. In fact, the optimized variant is even slower than
the original PNN. For the other training set®ridge,”
“Camera,” “Miss America,” “Table Tennis”), the opti-
mized variants works much better and gives always equal

essarily stored, but it will not be needed. After the merge of to or better result than the simple variant. The significance

the nearest cluster pair, we update the nearest neighboiof the division operation is much smaller in the case of a

pointers for the appropriate clusters by considering all clus- vector with a higher dimension.

ters. Therefore, we always have the knowledge on the near- Note also that the cost of the division operation is hard-

est cluster pair. ware dependent. The results indicate that the relative per-

Spatial residual vectors: Color vectors:

Bridge Camera Miss America Table tennis Airplane House
(256%256) (256x256) (360%288) (720%x486) (512x512) (256x256)
K=16, N=4096 K=16, N=4096 K=16,N=6480  K=16,N=21771" | K=3,N=77274"  K=3,N=34112"

Fig. 6 Sources of the training sets. Here N refers to the number of distinctive vectors in the training
set, and K refers to the dimensionality of the vectors; * indicates that duplicate training vectors are
combined and frequency information is stored.
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70 %

oo 120% 1- [T Simple
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16 32 64 128 256 512 1024 Bridge ~ Camera  Mss Table House  Airplane
Vector dimension America  tennis

Fig. 8 Remaining run time relative to the full search PNN method

Fig. 7 Remaining run time relative to full search PNN method for ' o .
for the simple and optimized variants of the PDS.

the optimized PDS with and without an initial guess.

formance of the optimized variant increases as a function of ~ Overall, the MPS works very well except for the re-
K, but one should not draw any final conclusions about the sidual training set¢‘Miss America,” “Table Tennis”). For
exact value oK, after which the optimized variant outper- these, the MPS can reduce the computation only down to

forms the simple variant. about 2/3 from that of the full search. This originates from
the nature of the training sets; the training vectors are rela-
4.2 Experiments with the MPS Variants tively evenly distributed in the vector space and there are

no clear clusters in the training sets. The projection of the
vectors onto the diagonal axis therefore is not as efficient as
it would be if the vectors were clustered in the vector space.

The effectiveness of the MPS technique is shown in Table 2
as the number of operations relative to the full search. The
first observation is that the use of the precondition is effi-
cient for “Bridge” and “Camera” (run time is decreased to . .
about 30% but only moderate improvement is achieved 43 Joint Experiments

with the other four training sefglown to about 70 to 80% Table 3 gives the detailed work load of the different PNN
The second observation is that the sorting gives significant variants for three training sets, one from each category. The

improvement for “Bridge,” “Camera,” “Airplane,” and results show that the joint use of the PDS and MPS tech-
“House.” For the color images$*Airplane” and “House”), nigues is successful. Only in the case of the first category
the sorting is important as it eliminates most of the pre- (“Bridge” and “Camera”), the use of the MPS technique

condition tests; only about 2% of the tests remains. somewhat weakens the effect of the PDS method. This is

Table 2 The remaining run times for the MPS variants.

Relative
MPS without Sorting MPS with Sorting

Distance Remaining Distance Remaining

Preconditions/Search Calculations/Search Run Time Preconditions/Search Calculations/Search Run Time
(%) (%) (%) (%) (%) (%)
“Bridge” 100 175 32.9 16.6 15.3 16.5
“Camera” 100 9.6 28.8 8.5 7.9 11.0
“Miss America” 100 82.1 72.1 80.5 78.6 66.4
“Table Tennis” 100 85.3 71.4 84.4 83.9 71.3
“Airplane” 100 4.9 77.2 1.7 1.2 18.6
“House” 100 6.9 78.3 2.4 1.8 15.2

Absolute
MPS without Sorting MPS with Sorting

Remaining Remaining

Run Time Distance Run Time
Preconditions/Search Distance Calculations/Search (%) Preconditions/Search Calculations/Search (%)
“Bridge” 2599.1 455.2 32.9 432.6 397.4 16.5
“Camera” 2575.1 247.6 28.8 218.2 202.9 11.0
“Miss America” 3959.2 3252.1 72.1 3187.0 3112.1 66.4
“Table Tennis” 13021.4 11103.4 71.4 10983.7 10922.2 71.3
“Airplane” 48189.5 2373.6 77.2 805.4 560.4 18.6
“House” 21285.1 1464.9 78.3 506.9 373.2 15.2
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Table 3 The average number of distance calculations per nearest neighbor search, the average
number of processed vector dimension during the distance calculation, and the total number of pro-

cessed vector dimensions per search on average.

“Bridge,” N=4096, M=256, K=16

Distance Calculations/Search Dimensions/Distance Calculation

Dimensions/Search

Full 2208.6 16.0 35338.3
PDS 2208.7 3.0 6534.2
MPS+PDS 3974 5.7 2261.0
“House,” N=34112, M=256, K=3

Distance Calculations/Search Dimensions/Distance Calculation Dimensions/Search
Full 16514.8 3.0 49544.5
PDS 16533.6 1.1 17538.3
MPS+PDS 373.2 1.2 434.7

“Miss America,” N=6480, M=256, K=16

Distance Calculations/Search Dimensions/Distance Calculation Dimensions/Search
Full 3404.8 16.0 54476.9
PDS 3401.5 4.8 16194.3
MPS+PDS 3112.1 4.8 14805.4

because with the MPS, most of the distance calculations are“Airplane” ), and to about 50% in the case of the unfavor-
done to nearby clusters and therefore, the PDS is less effi-able set4“Miss America,” “Table Tennis”).

cient. Nevertheless, the overall improvement is still very

From the experiments we can see that the results greatly

good for these training sets. For the other four training sets, depend on the training set. An important parameter of the
the use of the MPS do not decrease the effectiveness of thdraining set is the siz&limension of the vectors. The effect

PDS.

of the vector size is therefore demonstrated in Fig. 9 with

The overall run times of the PDS and MPS are summa- the artificial training sets described earlier in this section.
rized in Table 4. The methods are also combined with the Obviously, the overall run time increases as a function of
lazy PNN of Sec. 2.5. The joint use of these three methodsthe vector size. On the other, the relative improvement of
reduces the run time to 10 to 15% in the case of the four the speed-up methods also increases, which partly compen-

favorable training setg“Bridge,” “Camera,” “House,”
“Airplane” ), but only to about 70% in the case of residual
vectors(“Miss America,” “Table Tennis”). The use of the
lazy updatglazy PNN gives further reduction of about 15
to 30%.

To sum up, if we combine all the idea presented in this
paper(PDS, MPS, lazy update, initialization trick of Sec.

sates the increase in the vector size.

4.4 Integration with Other Algorithms

The improved PNN method benefits also other hybrid code-
book generation methods. Here we have tested two of
them: (1) GLA-PNN-GLA and (2) GA-PNN. The first

3.3), we can reduce the run time to 8 to 15% in the case of method is a hybridization of the PNN method and the GLA

the favorable training setéBridge,” “Camera,” “House,”

due to Ref. 4. It starts with an initial codebook of size

Table 4 Run times (in seconds) for the six training sets (M=256).

“Bridge” “House” “Miss America”

PNN Lazy PNN PNN Lazy PNN PNN Lazy PNN
Full 79 52 1524 1126 229 145
PDS 42 28 1826 1318 143 91
MPS+PDS 13 10 231 195 152 108
“Camera” “Airplane” “Table Tennis”

PNN Lazy PNN PNN Lazy PNN PNN Lazy PNN
Full 73 51 8812 6237 2895 1816
PDS 35 25 10460 7145 1756 1109
MPS+PDS 8 6 1636 1295 2063 1462
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Fig. 9 Run time (in seconds) as a function of the code vector dimension (left), and remaining run time
relative to the full search PNN (right).

Mo>M, which is generated by the GLA. The resulting be considered practical as they achieve the speed-up with-
codebook is then reduced to the final size using the exactout complicated data structures and without excessive in-
PNN method, and finally fine-tuned again by the GLA. The crease of memory consumption, and they are easy to imple-

method is parametrized by the choice Mf,, and is de- ment. ) )
noted here as the GLA-PNN-GLA. The GLA is imple- The PDS method works well in most cases and achieves
mented as in Ref. 9. a speed-up similar to that obtained within the GLA;

The second method is the genetic algorith®A), as roughly 50% vyith t_he favo_rable training sets. The use of
proposed in Ref. 6. The PNN method is used in the imple- the PDS technique is questionable only with vectors of very
mentation of the crossover, as described in Ref. 14. Thesmall dimension. In this case, the improvement can be
method is based on evolutionary computing; it uses a cross-overwhelmed by the overhead caused by the additional test.
over to create new candidate solutions, and selection toThe use of the initial guess was also found to be important.
direct the search toward better quality codebooks. The role Overall, the PDS is very efficient with vectors of very large
of the PNN method is to provide high-quality candidate dlmenS|on. For example, less than 10% run time is required
codebooks instead of using exhaustive trial-and-error ap-With vectors of size 256 or more.
proach. We denote this method as the GA-PNN. The MPS technique works also very well in most cases

The performance of these two methods are compared inPy reducing the run time to 10 to 20%. The exception is the
Fig. 10 using “Bridge.” The results clearly demonstrate set of residual vectors, for which only moderate improve-
that better quality codebooks can be obtained by the hybrid ment was obtained. The improvement is not as good as
methods than using the PNN method alone. The choiceWithin the GLA for two reasons{l) the calculation of the
between these two methods depends on whether the usePrecondition is more complicated and takes more time, and
prefers speed or quality. The GA-PNN is capable of pro- (2) the precondition cannot be used to provide absolute
viding the best codebooks at the cost of higher run time bounds for the search, as in the GLA. Thus, the potential of
whereas the GLA-PNN-GLA is the better choice if the time the MPS technique can be utilized only partially in the

is limited. context of the PNN method.
To sum up, if we combine all the speed-up methods
5 Conclusions discussed in this paper, we can reduce the run time to 8 to

15% in the case of the four favorable training sets, and
down to about 50% in the case of the unfavorable sets
(residual vectors In the case of vectors with very large
dimension(256 or greaterthe run time of the favorable
sets can be reduced to 2%.

We also demonstrated that the improvements are appli-
cable within more sophisticated hybrid methods, in which
the PNN method is used as a component. Two such meth-
ods were considered: the GLA-PNN-GLA, and the GA

We have considered two different speed-up techniques for
the PNN method: the PDS and the MPS. The methods can
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