
Pattern Recognition Letters 24 (2003) 2243–2254

www.elsevier.com/locate/patrec
Reduced-search dynamic programming for approximation
of polygonal curves

Alexander Kolesnikov a,b, Pasi Fr€aanti a,*

a Department of Computer Science, University of Joensuu, P.O. Box 111, FIN-80101 Joensuu, Finland
b Institute of Automation and Electrometry, Pr.Ak.Koptyug, 1, Novosibirsk-90, 630090 Russia

Received 12 March 2002; received in revised form 21 November 2002
Abstract

Approximation of polygonal curves with minimum error (min-e problem) can be solved by dynamic programming, or

by graph-theoretical approach. These methods provide optimal solution but they are slow for a large number of

vertices. Faster methods exist but they lack the optimality. We try to bridge the gap between the slow but optimal, and

the fast but sub-optimal algorithms by giving a new near-optimal approximation algorithm based on reduced-search

dynamic programming. The algorithm can be iterated as many times as further improvement is achieved in the opti-

mization. It is simple, fast, and it has a low space complexity.

� 2003 Elsevier B.V. All rights reserved.

Keywords: Polygonal approximation; Dynamic programming; Data reduction; Vectorization
1. Introduction

Approximation of polygonal curve is an impor-

tant task in computer vision, computer graphics,

digital cartography, and data compression. The

problem is defined as follows: Given an open N -

vertex polygonal curve P , approximate it by an-

other polygonal curve Q with a given number of
segments M so that the approximation error is

minimized. This problem formulation is known as

the min-e problem.
* Corresponding author. Tel.: +358-13-251-7931; fax: +358-

13-251-7955.

E-mail addresses: koles@cs.joensuu.fi (A. Kolesnikov),

franti@cs.joensuu.fi (P. Fr€aanti).

0167-8655/03/$ - see front matter � 2003 Elsevier B.V. All rights res

doi:10.1016/S0167-8655(03)00051-5
There are two well-known approaches for solv-

ing the problem: graph-theoretical and dynamic

programming. Graph-theoretical algorithms gen-

erate first a weighted directed acyclic graph (DAG)

on the vertices of P , and then find the shortest path

in the graph (Imai and Iri, 1986, 1988; Melkman

and O�Rourke, 1988; Chan and Chin, 1996; Zhu

and Seneviratne, 1997; Chen and Daescu, 1998;
Katsaggelos et al., 1998; Schuster and Katsaggelos,

1998). This can be solved in OðN 2 logNÞ time

(Chan and Chin, 1996) in OðNÞ space (Chen and

Daescu, 1998). In real-time applications, however,

the method is useful only for small values of N
because of the high time complexity.

Dynamic programming generates the solution

for the problem recursively using the results of the
smaller problem instances (Perez and Vidal, 1994).
erved.

mail to: koles@cs.joensuu.fi

2244 A. Kolesnikov, P. Fr€aanti / Pattern Recognition Letters 24 (2003) 2243–2254
Straightforward implementation of this requires

OðMN 2Þ time and OðMNÞ space. Salotti has im-

proved this approach by a method that has time

complexity close to OðN 2Þ (Salotti, 2000–2002).

These approaches, however, are useful only for a

relatively small values of N because of the time and
memory requirements.

There also exist a number of faster but sub-opti-

mal methods (Douglas and Peucker, 1973; Ray and

Ray, 1994; Pikaz and Dinstein, 1995; Rosin, 1997;

Yin, 1998; Huang and Sun, 1999; Zhang and Guo,

2001) with time complexities ranging from OðNÞ to
OðN 2Þ. The quality of the sub-optimal methods,

however, usually remains less than 80% in compar-
ison to that of the optimal solution (Rosin, 1997).

In the applications such as vector map data reduc-

tion in geographical information systems (GIS), the

number of vertices can be very high, e.g., from

N ¼ 103 to 104, and M ¼ 102 to 103, respectively.

For example, high-quality vectorization of digitized

curve requires pixel-level accuracy in the processing

(Wenyin and Dori, 1999; Fr€aanti et al., 1999). Low
time and space complexities are therefore important

in applications using large-scale data.

In this paper, we try to bridge the gap between

the slow but optimal, and the fast but sub-optimal

algorithms by proposing a new near-optimal al-

gorithm based on the dynamic programming with

iterative reduced search in the state space. At first

step, an initial solution is generated using any fast
sub-optimal algorithm. The solution defines a ref-

erence path in the state space. A bounding corridor

is then constructed along this path, and the mini-

mum cost path is searched within the corridor us-

ing dynamic programming. The method explores

only a small but relevant part of the state space.

The algorithm can be iterated using the output

solution as a new reference path in the next itera-
tion. The proposed algorithm is simple, fast, and it

can be implemented in OðNÞ space. The time and

quality trade-off can be controlled by setting up an

appropriate corridor width.
2. Optimization problem formulation

Let us define an open N-vertex polygonal curve P
in two-dimensional space as the ordered set of
vertices P ¼ fp1; p2; . . . ; pNg ¼ fðx1; y1Þ; ðx2; y2Þ; . . . ;
ðxN ; yN Þg. The problem can be stated as follows:

approximate the polygonal curve P by another

polygonal curve Q with a given number of line

segments M so that total approximation error E is

minimized for a given error measure. The output
polygonal curve Q consists of ðM þ 1Þ vertices:

Q ¼ fq1; . . . ; qMþ1g, where the set of vertices qm is a

subset of P . End points of Q are end points of

P : q1 ¼ p1, and qMþ1 ¼ pN . The approximation

line segment ðqm; qmþ1Þ for curve segment fpi; . . . ;
pjg is defined by the end points pi and pj: qm ¼ pi
and qmþ1 ¼ pj.

The error of the approximation of curve seg-
ment fpi; . . . ; pjg of P with the corresponding line

segment ðqm; qmþ1Þ of Q is defined here as the sum

of squared Euclidean distances from each vertex of

fpi; . . . ; pjg to the corresponding line segment

ðqm; qmþ1Þ:

e2ðpi; pjÞ ¼
Xj�1

k¼iþ1

ðyk � aijxk � bijÞ2=ð1þ a2ijÞ; ð1Þ

where the coefficients aij and bij are defined from

the linear equation y ¼ aijxþ bij of the line seg-

ment ðpi; pjÞ. The error e2ðpi; pjÞ of L2 metrics can

be calculated in Oð1Þ time with five arrays of the

cumulative sums for x, y, x2, y2, xy as in the in-

cremental algorithm by Perez and Vidal (1994).

The time required for the calculation of the ap-
proximation error e2ðpi; pjÞ is independent on the

number of vertices in the curve segment fpi; . . . ;
pjg.

The total approximation error of the input

polygonal curve P by the output polygonal curve

Q is the sum of the errors of approximating each

segment fpi; . . . ; pjg of P by the corresponding line

segment ðqm; qmþ1Þ of Q:

E ¼
XM
m¼1

e2ðqm; qmþ1Þ: ð2Þ

The optimal approximation of P is then the set of

vertices fq2; . . . ; qMg that minimizes the cost

function E:

E ¼ min
fqmg

XM
m¼1

e2ðqm; qmþ1Þ ð3Þ

A. Kolesnikov, P. Fr€aanti / Pattern Recognition Letters 24 (2003) 2243–2254 2245
To solve the optimization task we first recall the

optimal dynamic programming algorithm of Perez

and Vidal (1994) with minor modifications in

Section 3. We then introduce the new near-optimal

iterative reduced-search algorithm in Section 4.
3. Dynamic programming approach

Let us first define a discrete two-dimensional

state space X ¼ fðn;mÞ : n ¼ 1; . . . ;N ;m ¼ 0; . . . ;
Mg. Every point ðn;mÞ in the state space X rep-

resents the sub-problem of approximating of an
n-vertex polygonal curve fp1; p2; . . . ; png by m line

segments. The complete problem is represented by

the goal state ðN ;MÞ.
An output polygonal curve Q can be repre-

sented as a path G ¼ fgð0Þ; gð1Þ; . . . ; gðMÞg in the

state space X from the start state ð1; 0Þ to the goal

state ðN ;MÞ. In the state space, we can also define

a function Dðn;mÞ of the state ðn;mÞ as the cost
function value of the optimal approximation for

the n-vertex curve fp1; p2; . . . ; png by m line seg-

ments.
3.1. Full-search algorithm

For solving the min-e problem under question

we have to find the optimal path to the goal state
ðN ;MÞ. We can reduce the state space X by a left

bound L, and by a right bound R as follows (see

Fig. 1 left part):

LðmÞ ¼ mþ 1; m ¼ 0; 1; . . . ;M � 1;
N ; m ¼ M ;

�

Fig. 1. Left: illustration of the state space X for a sample problem siz

the gray squares. Right: illustration of the bounding corridor of width

the gray circles; the full state space X is marked by the dashed line.
RðmÞ ¼ 1; m ¼ 0;
N �M þ m; m ¼ 1; 2; . . . ;M :

�

We also introduce a bottom BðnÞ and top T ðnÞ
bounds to represent the state space X as a bounded

space:

BðnÞ ¼
0; n¼ 1;
1; n¼ 2; . . . ;N �M
n� ðN �MÞ þ 1; n¼ N �M þ 1; . . . ;N ;

8<
:

T ðnÞ ¼
n� 1; n ¼ 1; . . . ;M � 1;
M � 1; n ¼ M ; . . . ;N � 1;
M ; n ¼ N :

8<
:

The optimization problem can be solved by the

dynamic programming algorithm as proposed by

Perez and Vidal (1994) with the following recursive

expressions:

Dðn;mÞ ¼ min
Lðm�1Þ6 j<n

fDðj;m� 1Þ þ e2ðpj; pnÞg;

Aðn;mÞ ¼ argmin
Lðm�1Þ6 j<n

fDðj;m� 1Þ þ e2ðpj; pnÞg:

ð4Þ
Here Aðn;mÞ is the parent state that provides the

minimum value for the cost function Dðn;mÞ at the
state ðn;mÞ.

It was mentioned by Perez and Vidal (1994)
that the calculation of these formulas in the state

space X can be performed in two alternative ways:

column-by-column, or row-by-row. In their algo-

rithm, Perez and Vidal used latter one: row-by-row

order. In this case, the approximation errors must

be calculated ‘‘on-fly’’, because otherwise we had

to use a two-dimensional array of size N � N to

store the calculated values for further use.
e of N ¼ 35, M ¼ 13. The start and goal states are marked with

W ¼ 3 in the state space X. The reference path G is marked by

Fig. 2. General scheme of the minimum search in the bounded state space.

2246 A. Kolesnikov, P. Fr€aanti / Pattern Recognition Letters 24 (2003) 2243–2254
We take the other column-by-column order. In
this scheme, the outmost loop is performed on the

vertex number n instead of the segment number m
(see Fig. 2). We can see that the approximation

error e2ðpj; pnÞ does not depend on the number of

segments m. The errors can therefore be calculated

before the m loop and then stored in a one-

dimensional array vðnÞ of size N . We can calculate

every value of e2ðpj; pnÞ only once and avoid fur-
ther recalculations of the same values. We consider

next how this pre-calculation scheme affects the

processing time and the complexity of the algo-

rithm.

3.2. Time and space complexity

Let us consider the time complexity of the
modified full search dynamic programming algo-

rithm as represented in Fig. 2. The computation

time of the algorithm consists of two parts: cal-

culation of the errors, and the search of the mini-

mum.
The time complexity of the error calculation is
OðN 2Þ: for every vertex pnðn ¼ 1; . . . ;NÞ we have

to calculate n values of the approximation errors.

The time complexity of the minimum search pro-

cedure is OðMðN �MÞ2Þ: we have to calculate the

cost function value for MðN �MÞ locations, and

each of them requires at most ðN �MÞ operations.
The total time complexity of the algorithm for

error metrics L2 is dominated by the second step,
and it is therefore OðMðN �MÞ2Þ. In the special

case, when the number of line segments is close

to the number of the input vertices ðM ¼ N � Dn;
Dn ¼ 1; 2; . . .Þ, the time complexity of the algo-

rithm is OðNÞ. In practical situations, however,

when the number of segment is proportional to the

number of vertices ðM 	 N=cÞ, the time complex-

ity of the algorithm is OðN 3Þ. For small values of
MðM
 NÞ the processing time is proportional to

MN 2. Thus, the proposed scheme (see Fig. 2) does

not reduce the time complexity in comparison to

that of the algorithm by Perez and Vidal, but it can

reduce the processing time in practice.

A. Kolesnikov, P. Fr€aanti / Pattern Recognition Letters 24 (2003) 2243–2254 2247
The space complexity of the represented algo-

rithm is defined mostly by the memory require-

ments for storing the cost function values Dðn;mÞ,
and the parent function Aðn;mÞ. These equals to

OðMNÞ.
3.3. Bounding the search

The main reason of the high time complexity is

the search redundancy of the dynamic program-

ming approach. The key issue is that with dy-

namic programming method the global minimum

of the cost function is searched in a sequential

manner from the starting state to the goal state.

This is because we do not know in advance which

sub-problem solutions exactly will be used to

construct the final optimal solution, so we have to

find all of them in the state space to get the final

solution.

Salotti (2000) has proposed a rough sub-opti-

mal approximation to partially solve this problem
by obtaining an upper limit for the total error of

approximation. In his algorithm, the state space is

processed at each stage only until the total error

exceeds the given upper limit. In this way, part of

the state space can be excluded without any com-

putation. Salotti proposed two methods to esti-

mate the lower limits for the error. These ideas

allow to reduce the time complexity to OðN 2Þ ac-
cording to Salotti (2000, 2001, 2002).

Even though the optimal algorithm by Salotti is

faster than the original one by Vidal and Perez the,

time complexity can still be too high for large

values of N and M to be used if the time is limited.
4. Iterative reduced-search dynamic programming

Based on the dynamic programming, we next

introduce a new iterative search method that ex-

plores only a small but relevant part of the state

space. The key idea of the method is to have a

rough estimation for the path of the optimal so-

lution in the state space. We can then reduce the

search to a limited state space along the reference

path. The search can be iterated starting from the
new reference solutions as many times as desired

to achieve further improvement of the solution.
4.1. Reduced-search algorithm

The proposed algorithm consists of the follow-

ing three steps:

Step 1: Find a reference solution by any fast heu-

ristic algorithm.

Step 2: Construct a bounding corridor in the state

space.

Step 3: Apply dynamic programming within the
bounding corridor.

Let us next consider the steps in detail.

Step 1: Any fast sub-optimal algorithm can

be used for finding the reference solution. We use

the Douglas–Peucker algorithm (Douglas and

Peucker, 1973) of time complexity OðMNÞ. The

obtained solution defines a reference path G ¼
fgð0Þ; . . . ; gðMÞg in the state space X.

Step 2: A bounding corridor of width W is

constructed along the reference path G in the space

X (see Fig. 1). The left LðmÞ, right RðmÞ, bottom
BðnÞ, and top T ðnÞ bounds of the corridor are

defined as follows:
LðmÞ ¼ mþ 1; m¼ 0; . . . ;c1;
maxfmþ 1; gðm� c1Þg; m¼ c1 þ 1; . . . ;M ;

�

RðmÞ ¼ minfN ; gðmþ c2Þ � 1g; m ¼ 0; . . . ;M � c2;
N ; m ¼ M � c2 þ 1; . . . ;M ;

�

BðnÞ ¼ 0; n ¼ 0;
m; n ¼ Rðm� 1Þ þ 1; . . . ;RðmÞ;

�

T ðnÞ ¼ minfM ;mþ W � 1g; n ¼ LðmÞ; . . . ; Lðmþ 1Þ � 1;
M ; n ¼ N :

�

Here c1 ¼ bW =2c, c2 ¼ W � c1.
Step 3: Dynamic programming is performed

inside the bounding corridor for solving the min-
imum cost function Dðn;mÞ using the recursive

expression of Eq. (4). This part of the algorithm

2248 A. Kolesnikov, P. Fr€aanti / Pattern Recognition Letters 24 (2003) 2243–2254
(referred here as the optimization step) is outlined

in Fig. 2.

4.2. Iterations

The algorithm can be iterated using the output
solution as a new reference path in the next iter-

ation. The number of iterations can be given in

advance, or adaptively varied depending on the

development of the approximation error.

4.3. Complexity of the algorithm

We next estimate the time complexity of the
algorithm under the following assumptions: N
 1

and W 6M . As in the case of the full search al-

gorithm, the processing time of the search in the

corridor consists of two parts: the calculation of

the approximation errors, and the calculation of

the cost function Dðn;mÞ.
Overall, we have to calculate no more than

WN 2=M values of the approximation error (WN=M
values for N vertices). Then for WM states in the

bounding corridor we must perform WN=M oper-

ations (on average) to find the minimum value of

the cost function. In total, we have W 2N 2=M op-

erations of the complexity of Oð1Þ each. Thus, as
in the case of the full search, the time complexity

of the proposed algorithm is defined by the com-

plexity of the minimum search procedure, and
the total number of operations is proportional to

N 2W 2=M per iteration. The expected speed-up of

the reduced-search approach is proportional to

ðW =MÞ2 in comparison to the time complexity of

the full search.

The time complexity of the proposed algorithm

is summarized in Table 1 and compared with that

of the full search. The time complexity has an in-
verse linear dependency to the number of segments

(M), and therefore, the optimization algorithm is
Table 1

Time complexities of the full search and reduced search dynamic pro

Time complexity L

Full search OðN 2MÞ X
Reduced search OðN 2W 2=MÞ X

Here c is defined as a small constant.
faster for larger values of M . The lowest value is

OðNÞ in the case when M is proportional to N , and

the highest value is OðN 2Þ in the case when M is a

small constant. In both cases, the proposed algo-

rithm is an order of magnitude faster than the full

search dynamic programming. For example, when
W ¼ 10 and M ¼ 100, the speed-up of the reduced

search algorithm for a polygon of N ¼ 5000 ver-

tices is about 100. To get overall processing time of

the proposed algorithm, we have to add the time

required for obtaining the initial (reference) solu-

tion.

In the implementation, we use two arrays of size

W � N : one array for storing the values of the
costs values Dðn;mÞ, and another array for storing

the parent states Aðn;mÞ. Thus, the total memory

requirement of the algorithm is proportional to

2WN , which is OðWNÞ. Thus, the reduction of the

space complexity is about W =M in comparison to

that of the full search.
5. Experimental results and discussion

In order to evaluate the quality of the sub-

optimal algorithms, Rosin (1997) introduced a

measure known as fidelity (F). It measures how

good a given sub-optimal approximation is in re-

spect to the optimal approximation in terms of the

approximation error:

F ¼ Emin

E
� 100

Here Emin is the approximation error of the opti-
mal solution, and E is the approximation error of

the given sub-optimal solution.

We next study the performance of the algorithm

by measuring the fidelity and run time. The mini-

mum approximation error Emin is obtained by

using the algorithm of Perez and Vidal. We use the
gramming

ower limit ðM 6N=cÞ Upper limit ðM P cÞ
ðN 3Þ OðN 2Þ
ðNÞ OðN 2Þ

Fig. 3. The set of test shapes: #1: digitized curve from (Salotti, 2001), N ¼ 3222. #2: digitized curve from (Salotti, 2001), N ¼ 5004. #3:

vector contour of Greece, N ¼ 5542. #4: vector contour of the Great Britain, N ¼ 10; 910.

Fig. 4. Illustration of the bounding corridor (W ¼ 10) in the

state space for approximation of the test shape #2 with 100

segments (M ¼ 100). The reference path is obtained by the

Douglas–Peucker algorithm.

A. Kolesnikov, P. Fr€aanti / Pattern Recognition Letters 24 (2003) 2243–2254 2249
test shapes shown in Fig. 3. The test shapes #1 and

#2 are digitized curves from (Salotti, 2001), the

other two shapes are vector contours from the

ESRI Map Set.
The processing time and fidelity of the solution

depend on the following parameters: the corridor

width (W), the number of iterations (k), and the

fidelity of the reference solution (F0). We can reg-

ulate the trade-off between the quality and run

time by changing the values of these parameters.

By using a narrow corridor (small value of W) the

algorithm is fast. On the other hand, more accu-
rate approximation is expected when using a wider

corridor but at the cost of a slower algorithm. The

quality can also be improved by using several

iterations but at the cost of a higher run time. It is

also expected that better results can be obtained
faster when using a high quality reference solution

as input.

5.1. The corridor width and the number of iterations

We first measure the fidelity and run time of the

proposed algorithm for the shape #2 (see Fig. 3)

using the corridor widths from W ¼ 2 to 12. The

results are shown in Tables 2 and 3, and illustrated

in Figs. 4 and 5. The Douglas–Peucker algorithm

is used to generate the reference solution. The run
times have been obtained using Pentium II, 266

MHz processor.

The fidelity of the reference solution (Douglas–

Peucker) is about F0 ¼ 50–60%. The fidelity of the

proposed method is about F1 ¼ 95–100% after the

1st iteration (Table 2), except the narrowest cor-

ridor width W ¼ 2. After the 2nd iteration (Table

3), the fidelity reaches values of about F2 ¼ 95–
100% for W P 4, and the algorithm usually con-

verges after 3–6 iterations. The only exception is

the narrowest corridor (W ¼ 2), for which the cost

function converges to a local minimum and reaches

fidelity of about 90–99%. It is also noted that the

measured run times correlates very well to the time

complexity function T ¼ N 2W 2=M .

5.2. Quality of the reference approximation

In order to study the sensitivity of the algorithm

to the quality of the reference solution, we gener-

ated also a random solution by selecting (M � 1)

random points from the test shape #2. The most

relevant results are summarized in Fig. 6 using

both the Douglas–Peucker and the random solu-
tion as the reference solution. The fidelity of the

Table 2

Computation time (T1) in seconds and fidelity values (F1) after the 1st iteration of the proposed algorithm for the test shape #2

Shape #2 M ¼ 50 M ¼ 100 M ¼ 300 M ¼ 500 M ¼ 700

T F T F T F T F T F

W ¼ 2 0.6 97.0 0.4 83.3 0.1 89.8 0.1 90.5 0.1 88.3

W ¼ 4 1.8 99.3 1.2 95.2 0.4 97.7 0.2 97.9 0.2 96.8

W ¼ 6 3.7 100 2.4 97.6 0.8 98.9 0.5 99.7 0.3 98.9

W ¼ 8 6.4 100 3.8 98.8 1.2 99.7 0.8 99.9 0.6 99.6

W ¼ 10 8.9 100 5.7 99.3 1.9 99.9 1.2 99.9 0.8 99.7

W ¼ 12 13.4 100 7.9 99.8 2.6 100 1.6 100 1.2 99.9

The computation time T1 does not include the time cost of the preliminary approximation.

Table 3

Computation time (T2) in seconds and fidelity values (F2) after the 2nd iteration of the proposed algorithm for the test shape #2

Shape #2 M ¼ 50 M ¼ 100 M ¼ 300 M ¼ 500 M ¼ 700

T F T F T F T F T F

W ¼ 2 1.2 99.3 0.7 91.1 0.2 94.8 0.2 93.9 0.1 93.1

W ¼ 4 3.8 100 2.3 98.5 0.7 99.2 0.5 99.6 0.3 99.0

W ¼ 6 7.5 100 4.7 98.8 1.5 100 0.9 99.9 0.7 99.8

W ¼ 8 12.7 100 7.9 99.8 2.5 100 1.6 100 1.1 100

W ¼ 10 18.1 100 11.6 100 3.8 100 2.3 100 1.6 100

W ¼ 12 25.8 100 15.7 100 5.3 100 3.3 100 2.3 100

The computation time T2 does not include the time cost of the preliminary approximation.

Fig. 5. Left: result of the approximation for test shape #2 with M ¼ 100 segments by the Douglas–Peucker algorithm. The fidelity of

the reference solution F0 ¼ 41:7%, processing time T0 ¼ 0:5 s. Right: result of the approximation after the 1st iteration using corridor

width of W ¼ 10. The fidelity is F1 ¼ 99:3%, and the processing time T1 ¼ 6:2 s (including the time spent for the initial approximation).

2250 A. Kolesnikov, P. Fr€aanti / Pattern Recognition Letters 24 (2003) 2243–2254
random approximation is very low for obvious
reasons (F0 ¼ 1–5%), but the proposed algorithm

achieves high fidelity values after a few iterations

of optimization. Thus, the proposed algorithm

reaches near-optimal (or optimal) result even if
the quality of the reference solution is poor. The
algorithm just needs few more iterations when

starting from a random solution.

The complexity of the Douglas–Peucker algo-

rithm is OðMNÞ, and the complexity of the pro-

2

4
6

8

90

92

94

96

98

100

0 1 10 100
time (seconds)

fid
el

ity
 (%

)

10

8

64

Fig. 6. Time–fidelity comparison of the proposed algorithm

using the test shape #2 with M ¼ 200 segments. The reference

solution is generated by the Douglas–Peucker algorithm

(F0 ¼ 50:6%) (), and by random choice (F0 ¼ 1:8%) (). The

results in each line are after the 1st, 2nd, 3rd, 4th and 5th iter-

ations, and the lines are for corridor widths from W ¼ 2 to 10.

A. Kolesnikov, P. Fr€aanti / Pattern Recognition Letters 24 (2003) 2243–2254 2251
posed algorithm is OðN 2W 2=MÞ. The total pro-

cessing time is the sum of the processing times

of generating the reference approximation and of

the optimization. In the case of a relatively large

number of segments, the processing time of the
Douglas–Peucker approximation is greater than

that of a single iteration of the proposed optimi-

zation algorithm (see Table 4). In this case, a

rough approximation by vertices decimation from

N to (M þ 1) could be used to obtain a reference

solution instead of the Douglas–Peucker algo-

rithm; or another heuristic algorithm of the same

complexity could be used. For the sake of sim-
plicity, we restrict our studies here with the

Douglas–Peucker algorithm for all values of M .
Table 4

Comparison of the processing time (T) in seconds and fidelity (F) of th
three existing methods (D–P, Salotti, full search) for the test shape #

Shape #1 M ¼ 40 M ¼ 60 M ¼
T F T F T

D–P 0.1 43.3 0.1 31.9 0.2

New: SA 0.7 81.2 0.5 74.4 0.5

New: NA 3.6 100 2.3 98.5 1.8

New: POA 6.0 100 6.1 100 3.8

Salotti 60 100 59 100 58

Full search 60 100 94 100 310

The processing times of the SA, NA and POA include the time requi
5.3. The choice of the parameters

On the basis of the previous experiments, we

can see that the outcome of the algorithm depends

on the choice of the parameters. The corridor
width can be set to anything from 0 and M (rea-

sonable values being from W ¼ 2 to 10), and the

algorithm usually iterates 3 to 6 iterations before

converging. The corresponding fidelity values of

the solutions vary from F ¼ F0 (no optimization)

to Fk ¼ 100% (W ¼ M). We next recommend three

feasible parameter set-ups for achieving the fol-

lowing goals:

• Sub-optimal algorithm (SA): minimize the time;

fidelity is less important.

• Near-optimal algorithm (NA): maximize fidel-

ity in a reasonable time.

• Practically optimal algorithm (POA): aim at op-

timal result (F ¼ 100%) with high confidence.

5.3.1. Sub-optimal algorithm

The algorithm performs only one step of the

optimization using a narrow corridor. The recom-

mended parameters for SA are: k ¼ 1 and W1 ¼ 2.

5.3.2. Near-optimal algorithm

The algorithm performs a fixed number of iter-

ations (2–3) using a wider corridor (W ¼ 6–8)
aiming at a high fidelity (of about F ¼ 99–100%)

in a reasonable time. The corridor must be wide

enough in order to avoid local minimum but not

too wide because the processing time is a quadratic

function (W 2) of the corridor width (W). To regu-

late the processing time, the first iteration is
e three variants of the proposed algorithm (SA, NA, POA), and

1 (N ¼ 3222)

80 M ¼ 100 M ¼ 150

F T F T F

49.0 0.2 48.4 0.4 56.2

94.0 0.5 84.7 0.5 89.6

100 1.4 99.6 0.9 100

100 3.1 100 2.3 100

100 58 100 76 100

100 470 100 535 100

red for generating the reference approximation by D–P.

2252 A. Kolesnikov, P. Fr€aanti / Pattern Recognition Letters 24 (2003) 2243–2254
performed with a narrower corridor than the sec-

ond one. The recommended parameters for the NA

are: k ¼ 2, for the test shape #1 we have W1 ¼ 4 in

the 1st iteration and W2 ¼ 6 in the 2nd iter-

ation; W1 ¼ 6 and W2 ¼ 8 for the shapes #2, #3,

and #4.

5.3.3. Practically optimal algorithm

In principle, the proposed algorithm achieves

optimal result when the corridor width is set to

W ¼ M , as it then performs full search in the entire

state space X. In practice, the optimal result can be

reached by using a much smaller corridor. A better

strategy is therefore to change the parameters
during the iterations as follows.

The algorithm first performs iterations using

an initial corridor width W1 until no change is

achieved in the approximation error E1. The al-

gorithm is then iterated using a wider corridor

W2 ¼ W1 þ 2 to get a new result with error E2. If

the approximation error keeps reducing (E2 < E1),

the procedure is then repeated for wider corridor
widths Wtþ1 ¼ Wtþ2 as long as further improvement

is obtained. In other words, we continue to enlarge

the corridor width and repeat the iterations un-

til the optimized solution does ‘‘feel’’ the borders

of the bounding corridor.

It is expected that the POA achieves the optimal

result in almost all cases. In fact, we have not

found any examples yet in which the algorithm
does not converge to the optimal result. Never-

theless, the open question remains: ‘‘Does the

strategy guarantee to find the global minimum of

approximation error for any polygonal curve?’’.
Table 5

Comparison of the processing time (T) in seconds and fidelity (F) of th
three existing methods (D–P, Salotti, full search) for the test shape #

Shape #2 M ¼ 50 M ¼ 100 M

T F T F T

D–P 0.3 45.5 0.5 41.7

New: SA 0.9 97.0 0.9 83.3

New: NA 12.3 100 7.0 99.8

New: POA 11.3 100 13.5 100

Salotti 150 100 190 100 2

Full search 216 100 506 100 10

The processing times of the SA, NA and POA include the time requi
This is interesting question from the theoretical

point of view. On the other hand, the suggested

fast near-optimal algorithm using iterative re-

duced-search is able to satisfy the time demands in

real-time systems in GIS, vectorization task, and

pattern recognition applications.
On the basis of the previous experiments, we

recommend the following parameters: W1 ¼ 4 for

the curve #1, W1 ¼ 6 for shapes #2, #3, and #4;

the number of iterations depends on characteristics

of the curve.
5.4. Comparison to other algorithms

The results of the three variants (SA, NA, POA)

for the test shapes #1 to #4 are summarized in

Tables 4–7, and compared with the sub-optimal

algorithm by Douglas–Peucker (D–P), the optimal

algorithm by Salotti (2001), and the full search

dynamic programming approach (Perez and Vidal,

1994). The optimal algorithm was implemented
with the computational scheme of re-using the pre-

calculated errors as explained in Section 3 (see Fig.

2). It allows us to reduce the processing time for

the original full search dynamic programming in

comparison to the straightforward implementa-

tion. Note that the results of the Salotti�s method

are given only for the shapes #1 and #2 because

the software (given by the author) does not sup-
port shape files with float point representation as

is the case with shapes #3 and #4. In most cases,

the proposed algorithm achieves optimal or near-

optimal results quite fast.
e three variants of the proposed algorithm (SA, NA, POA), and

2 (N ¼ 5004)

¼ 300 M ¼ 500 M ¼ 700

F T F T F

1.0 50.2 2.4 58.0 3.4 62.0

1.1 89.8 2.5 90.5 3.5 88.3

3.0 100 3.6 100 4.3 100

4.4 100 5.1 100 5.4 100

50 100 390 100 700 100

90 100 1720 100 2200 100

red for generating the reference approximation by D–P.

Table 7

Comparison of the processing time (T) in seconds and fidelity (F) of the three variants of the proposed algorithm (SA, NA, POA), and

two existing methods (D–P, full search) for the test shape #4 (N ¼ 10; 910)

Shape #4 M ¼ 50 M ¼ 100 M ¼ 300 M ¼ 500 M ¼ 700

T F T F T F T F T F

D–P 0.4 46.3 0.87 36.9 2.5 38.5 4.2 40.9 5.9 46.7

New: SA 6.5 99.1 3.8 91.4 3.4 90.3 4.8 90.8 6.4 91.6

New: NA 58.6 100 28.1 100 11.4 99.8 11.4 100 9.5 100

New: POA 74.0 100 32.4 100 31.3 100 13.6 100 12.5 100

Full search 1300 100 2450 100 7300 100 11,700 100 19,400 100

The processing times of the SA, NA and POA include the time required for generating the reference approximation by D–P.

Table 6

Comparison of the processing time (T) in seconds and fidelity (F) of the three variants of the proposed algorithm (SA, NA, POA), and

two existing methods (D–P, full search) for the test shape #3 (N ¼ 5541)

Shape #3 M ¼ 50 M ¼ 100 M ¼ 300 M ¼ 500 M ¼ 700

T F T F T F T F T F

D–P 0.2 52.4 0.4 51.7 1.2 52.3 2.1 54.3 3.0 62.4

New: SA 1.8 96.1 1.2 89.5 1.4 89.5 2.3 89.7 3.1 92.0

New: NA 14.9 100 8.5 100 3.3 99.7 3.5 99.0 3.9 99.1

New: POA 13.0 100 7.9 100 4.9 100 5.5 100 7.6 100

Full search 278 100 670 100 1830 100 3590 100 5425 100

The processing times of the SA, NA and POA include the time required for generating the reference approximation by D–P.

A. Kolesnikov, P. Fr€aanti / Pattern Recognition Letters 24 (2003) 2243–2254 2253
6. Conclusions

The proposed iterative reduced-search algo-

rithm consists of the following three steps: (1)
generating a rough approximation by any fast

heuristic algorithm, (2) constructing a bounding

corridor in the state space along the reference so-

lution, and (3) searching the minimum cost path in

the corridor using dynamic programming. The

algorithm can be iterated using the output solution

as a new reference path in the next iteration.

The time complexity of the algorithm is pro-
portional to W 2N 2=M , which varies from OðNÞ to
OðN 2Þ depending on the number of output seg-

ments M . The trade-off between the run time and

fidelity can be regulated in a wide range by the

selection of the corridor width W , and the number

of iterations. The space complexity of the algo-

rithm is proportional to NW .

To sum up, the algorithm is not sensitive to the
choice of the initial approximation, and it can be

used as an additional optimization step to improve

the result of any other sub-optimal approximation
method.We can conclude that the algorithmbridges

the gap between the optimal but slow algorithms,

and the fast sub-optimal heuristic algorithms. The

algorithm can be used for obtaining optimal results

by setting-up the corridor width large enough.With
a narrow corridor, on the other hand, the algorithm

serves as a fast near-optimal heuristic.
References

Chan, W.S., Chin, F., 1996. On approximation of polygonal

curves with minimum number of line segments or minimum

error. Int. J. Comput. Geometry Appl. 6, 59–77.

Chen, D.Z., Daescu, O., 1998. Space-efficient algorithms for

approximating polygonal curves in two-dimensional space,

in: Proc. of the 4th Ann. Int. Conf. on Computing and

Combinatorics, Taipei, Lecture Notes in Computer Science,

1449, 45–54, Springer, Berlin.

Douglas, D.H., Peucker, T.K., 1973. Algorithm for the

reduction of the number of points required to represent a

line or its caricature. The Canadian Cartographer 10 (2),

112–122.

Fr€aanti, P., Ageenko, E., Kolesnikov, A., 1999. Vectorizing and

feature-based filtering for line-drawing image compression.

Pattern Anal. Appl. 2, 285–291.

2254 A. Kolesnikov, P. Fr€aanti / Pattern Recognition Letters 24 (2003) 2243–2254
Huang, S.-C., Sun, Y.-N., 1999. Polygonal approximation

using genetic algorithms. Pattern Recognit. 32, 1017–1026.

Imai, H., Iri, M., 1986. Computational-geometric methods for

polygonal approximations of a curve. Comput. Vision

Image Process. 36, 31–41.

Imai, H., Iri, M., 1988. Polygonal approximations of a curve

(formulations and algorithms). In: Toussaint, G.T. (Ed.),

Computational Morphology. North-Holland, Amsterdam,

pp. 71–86.

Katsaggelos, A.K., Kondi, L.P., Meier, F.W., Osterman, J.,

Schuster, G.M., 1998. MPEG-4 and rate-distortion-based

shape-coding techniques. Proc. IEEE 86 (6), 1126–1154.

Melkman, A., O�Rourke, J., 1988. On polygonal chain approx-

imation. In: Toussaint, G.T. (Ed.), Computational Mor-

phology. North-Holland, Amsterdam, pp. 87–95.

Perez, J.C., Vidal, E., 1994. Optimum polygonal approxima-

tion of digitized curves. Pattern Recognit. Lett. 15, 743–750.

Pikaz, A., Dinstein, I., 1995. An algorithm for polygonal

approximation based on iterative point elimination. Pattern

Recognit. Lett. 16, 557–563.

Ray, B.K., Ray, K.S., 1994. A non-parametric sequential

method for polygonal approximation of digital curves.

Pattern Recognit. Lett. 15, 161–167.

Rosin, R.L., 1997. Techniques for assessing polygonal approx-

imations of curves. IEEE Trans. Pattern Anal. Machine

Intell. 14, 659–666.
Salotti, M., 2000. Improvement of Perez and Vidal algorithm

for the decomposition of digitized curves into line segments,

in: Proc. of the 15th Int. Conference on Pattern Recognition

2, 882–886.

Salotti, M., 2001. An efficient algorithm for the optimal

polygonal approximation of digitized curves. Pattern Rec-

ognit. Lett. 22, 215–221.

Salotti, M., 2002. Un algorithme efficiace pour l�approximation

polygonale optimale. 13�eeme Congr�ees Francophone AFRIF-

AFIA de Reconnaissance des Formes et Intelligence Arti-

ficielle, 8–10 Janvier.

Schuster, G.M., Katsaggelos, A.K., 1998. An optimal

polygonal boundary encoding scheme in the rate

distortion sense. IEEE Trans. Image Process. 7 (1),

13–26.

Wenyin, L., Dori, D., 1999. From raster to vectors: extracting

visual information from line drawings. Pattern Anal. Appl.

2, 10–21.

Yin, P.-Y., 1998. Algorithms for straight line fitting using k-
means. Pattern Recognit. Lett. 19, 31–41.

Zhang, H., Guo, J., 2001. Optimal polygonal approximation of

digital planar curves using meta-heuristics. Pattern Recog-

nit. 34, 1429–1436.

Zhu, Y., Seneviratne, L.D., 1997. Optimal polygonal approx-

imation of digitized curves. IEEE Proc.-Vis. Image Signal

Process. 144 (1), 8–14.

	Reduced-search dynamic programming for approximation of polygonal curves
	Introduction
	Optimization problem formulation
	Dynamic programming approach
	Full-search algorithm
	Time and space complexity
	Bounding the search

	Iterative reduced-search dynamic programming
	Reduced-search algorithm
	Iterations
	Complexity of the algorithm

	Experimental results and discussion
	The corridor width and the number of iterations
	Quality of the reference approximation
	The choice of the parameters
	Sub-optimal algorithm
	Near-optimal algorithm
	Practically optimal algorithm

	Comparison to other algorithms

	Conclusions
	References

