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Abstract

This paper gives an overview of automatic speaker recognition technology, with an emphasis on text-independent recognition. Speaker
recognition has been studied actively for several decades. We give an overview of both the classical and the state-of-the-art methods. We
start with the fundamentals of automatic speaker recognition, concerning feature extraction and speaker modeling. We elaborate
advanced computational techniques to address robustness and session variability. The recent progress from vectors towards supervectors
opens up a new area of exploration and represents a technology trend. We also provide an overview of this recent development and discuss

the evaluation methodology of speaker recognition systems. We conclude the paper with discussion on future directions.
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1. Introduction

Speaker recognition refers to recognizing persons from
their voice. No two individuals sound identical because
their vocal tract shapes, larynx sizes, and other parts
of their voice production organs are different. In addition
to these physical differences, each speaker has his or her
characteristic manner of speaking, including the use of a
particular accent, rhythm, intonation style, pronunciation
pattern, choice of vocabulary and so on. State-of-the-art
speaker recognition systems use a number of these features
in parallel, attempting to cover these different aspects and
employing them in a complementary way to achieve more
accurate recognition.
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An important application of speaker recognition tech-
nology is forensics. Much of information is exchanged
between two parties in telephone conversations, including
between criminals, and in recent years there has been
increasing interest to integrate automatic speaker recogni-
tion to supplement auditory and semi-automatic analysis
methods (Alexander et al., 2004; Gonzalez-Rodriguez
et al., 2003; Niemi-Laitinen et al., 2005; Pfister and Beutler,
2003; Thiruvaran et al., 2008b).

Not only forensic analysts but also ordinary persons will
benefit from speaker recognition technology. It has been pre-
dicted that telephone-based services with integrated speech
recognition, speaker recognition, and language recognition
will supplement or even replace human-operated telephone
services in the future. An example is automatic password
reset over the telephone.' The advantages of such automatic
services are clear — much higher capacity compared to

! See e.g. http://www.pcworld.com/article/106142/visa_gets_behind_
voice_recognition.html.
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human-operated services with hundreds or thousands of
phone calls being processed simultaneously. In fact, the
focus of speaker recognition research over the years has been
tending towards such telephony-based applications.

In addition to telephony speech data, there is a continu-
ally increasing supply of other spoken documents such as
TV broadcasts, teleconference meetings, and video clips
from vacations. Extracting metadata like topic of discus-
sion or participant names and genders from these docu-
ments would enable automated information searching
and indexing. Speaker diarization (Tranter and Reynolds,
2006), also known as ‘“who spoke when”, attempts to
extract speaking turns of the different participants from a
spoken document, and is an extension of the ‘“classical”
speaker recognition techniques applied to recordings with
multiple speakers.

In forensics and speaker diarization, the speakers can be
considered non-cooperative as they do not specifically wish
to be recognized. On the other hand, in telephone-based
services and access control, the users are considered coop-
erative. Speaker recognition systems, on the other hand,
can be divided into fext-dependent and text-independent
ones. In text-dependent systems (Hébert, 2008), suited for
cooperative users, the recognition phrases are fixed, or
known beforehand. For instance, the user can be prompted
to read a randomly selected sequence of numbers as
described in (Higgins et al., 1991). In text-independent sys-
tems, there are no constraints on the words which the
speakers are allowed to use. Thus, the reference (what are
spoken in training) and the test (what are uttered in actual
use) utterances may have completely different content, and
the recognition system must take this phonetic mismatch
into account. Text-independent recognition is the much
more challenging of the two tasks.

In general, phonetic variability represents one adverse
factor to accuracy in text-independent speaker recognition.
Changes in the acoustic environment and technical factors
(transducer, channel), as well as “within-speaker” variation
of the speaker him/herself (state of health, mood, aging)
represent other undesirable factors. In general, any varia-
tion between two recordings of the same speaker is known
as session variability (Kenny et al., 2007; Vogt and Sridha-
ran, 2008). Session variability is often described as mis-
matched training and test conditions, and it remains to
be the most challenging problem in speaker recognition.

This paper represents an overview of speaker recogni-
tion technologies, including a few representative techniques
from 1980s until today. In addition, we give emphasis to
the recent techniques that have presented a paradigm shift
from the traditional vector-based speaker models to so-
called supervector models. This paper serves as a quick
overview of the research questions and their solutions for
someone who would like to start research in speaker recog-
nition. The paper may also be useful for speech scientists to
have a glance at the current trends in the field. We assume
familiarity with basics of digital signal processing and pat-
tern recognition.

We recognize that a thorough review of the field with
more than 40 years of active research is challenging. For
the interested reader we therefore point to other useful sur-
veys. Campbell’s tutorial (Campbell, 1997) includes in-
depth discussions of feature selection and stochastic model-
ing. A more recent overview, with useful discussions of
normalization methods and speaker recognition applica-
tions, can be found in (Bimbot et al., 2004). Recent collec-
tion of book chapters on various aspects of speaker
classification can also be found in (Miiller, 2007a; Miiller,
2007b). For an overview of text-dependent recognition,
refer to (Hébert, 2008).

Section 2 provides fundamentals of speaker recognition.
Sections 3 and 4 then elaborate feature extraction and
speaker modeling principles. Section 5 describes robust
methods to cope with real-life noisy and session mis-
matched conditions, with the focus on feature and score
normalization. Section 6 is then devoted to the current
supervector classifiers and their session compensation. In
Section 7, we discuss the evaluation of speaker recognition
performance and give pointers to software packages as
well. Finally, possible future horizons of the field are out-
lined in Section 8, followed by conclusions in Section 9.

2. Fundamentals

Fig. 1 shows the components of an automatic speaker
recognition system. The upper is the enrollment process,
while the lower panel illustrates the recognition process.
The feature extraction module first transforms the raw sig-
nal into feature vectors in which speaker-specific properties
are emphasized and statistical redundancies suppressed. In
the enrollment mode, a speaker model is trained using the
feature vectors of the target speaker. In the recognition
mode, the feature vectors extracted from the unknown per-
son’s utterance are compared against the model(s) in the
system database to give a similarity score. The decision
module uses this similarity score to make the final decision.

Virtually all state-of-the-art speaker recognition systems
use a set of background speakers or cohort speakers in one
form or another to enhance the robustness and computa-
tional efficiency of the recognizer. In the enrollment phase,
background speakers are used as the negative examples in
the training of a discriminative model (Campbell et al.,
2006a), or in training a universal background model from
which the target speaker models are adapted (Reynolds
et al., 2000). In the recognition phase, background speakers
are used in the normalization of the speaker match score
(Furui, 1997; Higgins et al., 1991; Li and Porter, 1988;
Reynolds, 1995; Reynolds et al., 2000; Sivakumaran
et al., 2003b).

2.1. Selection of features
Speech signal includes many features of which not all

are important for speaker discrimination. An ideal feature
would (Rose, 2002; Wolf, 1972)
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Fig. 1. Components of a typical automatic speaker recognition system. In
the enrollment mode, a speaker model is created with the aid of previously
created background model; in recognition mode, both the hypothesized
model and the background model are matched and background score is
used in normalizing the raw score.

e have large between-speaker variability and small within-
speaker variability

e be robust against noise and distortion

e occur frequently and naturally in speech

e be easy to measure from speech signal

e be difficult to impersonate/mimic

e not be affected by the speaker’s health or long-term vari-
ations in voice.

The number of features should be also relatively low.
Traditional statistical models such as the Gaussian mixture
model (Reynolds et al., 2000; Reynolds and Rose, 1995)
cannot handle high-dimensional data. The number of
required training samples for reliable density estimation
grows exponentially with the number of features. This
problem is known as the curse of dimensionality (Jain
et al., 2000). The computational savings are also obvious
with low-dimensional features.

There are different ways to categorize the features
(Fig. 2). From the viewpoint of their physical interpreta-
tion, we can divide them into (1) short-term spectral fea-
tures, (2) wvoice source features, (3) spectro-temporal
features, (4) prosodic features and (5) high-level features.
Short-term spectral features, as the name suggests, are
computed from short frames of about 20-30 ms in dura-
tion. They are usually descriptors of the short-term spectral
envelope which is an acoustic correlate of timbre, i.e. the
“color” of sound, as well as the resonance properties of
the supralaryngeal vocal tract. The voice source features,
in turn, characterize the voice source (glottal flow). Pro-
sodic and spectro-temporal features span over tens or hun-
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noise Phones, :dI'OISBCt language background,
- Difficult to (person_a exicon), personality type, parental
extract semantics, accent, influence
_Alot of pronunciation
trainin% data
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mismatch the vocal tract

\4

Fig. 2. A summary of features from viewpoint of their physical interpre-
tation. The choice of features has to be based on their discrimination,
robustness, and practicality. Short-term spectral features are the simplest,
yet most discriminative; prosodics and high-level features have received
much attention at high computational cost.

dreds of milliseconds, including intonation and rhythm, for
instance. Finally, high-level features attempt to capture
conversation-level characteristics of speakers, such as char-
acteristic use of words (““‘uh-huh”, “you know”, “oh yeah”,
etc.) (Doddington, 2001).

Which features one should use? It depends on the
intended application, computing resources, amount of
speech data available (for both development purposes
and in run-time) and whether the speakers are cooperative
or not. For someone who would like to start research in
speaker recognition, we recommend to begin with the
short-term spectral features since they are easy to compute
and yield good performance (Reynolds et al., 2003). Pro-
sodic and high-level features are believed to be more
robust, but less discriminative and easier to impersonate;
for instance, it is relatively well known that professional
impersonators tend to modify the overall pitch contour
towards the imitated speaker (Ashour and Gath, 1999;
Kitamura, 2008). High-level features also require consider-
ably more complex front-end, such as automatic speech
recognizer. To conclude, there does not yet exist globally
“best” feature but the choice is a trade-off between speaker
discrimination, robustness, and practicality.

2.2. Speaker modeling

By using feature vectors extracted from a given speak-
er’s training utterance(s), a speaker model is trained and
stored into the system database. In text-dependent mode,
the model is utterance-specific and it includes the temporal
dependencies between the feature vectors. Text-dependent
speaker verification and speech recognition do share
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similarities in their pattern matching processes, and these
can also be combined (BenZeghiba and Bourland, 2003;
Heck and Genoud, 2002).

In text-independent mode we often model the feature
distribution, i.e. the shape of the ‘““feature cloud” rather
than the temporal dependencies. Note that, in text-depen-
dent recognition, we can temporally align the test and
training utterances because they contain (are assumed to
contain) the same phoneme sequences. However, in text-
independent recognition, since there are little or absolutely
no correspondence between the frames in the test and ref-
erence utterances, alignment at the frame level is not possi-
ble. Therefore, segmentation of the signal into phones or
broad phonetic classes can be used as a pre-processing step,
or alternatively, the speaker models can be structured pho-
netically. Such approaches have been proposed in (Faltlha-
user and Ruske, 2001; Hansen et al., 2004; Gupta and
Savic, 1992; Hébert and Heck, 2003; Park and Hazen,
2002; Kajarekar and Hermansky, 2001). It is also possible
to use data-driven units instead of the strictly linguistic
phonemes as segmentation units (Hannani et al., 2004).

Classical speaker models can be divided into template
models and stochastic models (Campbell, 1997), also known
as nonparametric and parametric models, respectively. In
template models, training and test feature vectors are
directly compared with each other with the assumption
that either one is an imperfect replica of the other. The
amount of distortion between them represents their degree
of similarity. Vector quantization (VQ) (Soong et al., 1987)
and dynamic time warping (DTW) (Furui, 1981) are repre-
sentative examples of template models for text-independent
and text-dependent recognition, respectively.

In stochastic models, each speaker is modeled as a prob-
abilistic source with an unknown but fixed probability den-
sity function. The training phase is to estimate the
parameters of the probability density function from a train-
ing sample. Matching is usually done by evaluating the
likelihood of the test utterance with respect to the model.
The Gaussian mixture model (GMM) (Reynolds and Rose,
1995; Reynolds et al., 2000) and the hidden Markov model
(HMM) (BenZeghiba and Bourland, 2006; Naik et al.,
1989) are the most popular models for text-independent
and text-dependent recognition, respectively.

According to the training paradigm, models can also be
classified into generative and discriminative models. The gen-
erative models such as GMM and VQ estimate the feature
distribution within each speaker. The discriminative models
such as artificial neural networks (ANNs) (Farrell et al., 1994;
Heck et al., 2000; Yegnanarayana and Kishore, 2002) and
support vector machines (SVMs) (Campbell et al., 2006a),
in contrast, model the boundary between speakers. For more
discussions, refer to (Ramachandran et al., 2002).

In summary, a speaker is characterized by a speaker
model such as VQ, GMM or SVM. At run-time, a
unknown voice is first represented by a collection of feature
vectors or a supervector — a concatenation of multiple vec-
tors, then evaluated against the target speaker models.

3. Feature extraction
3.1. Short-term spectral features

The speech signal continuously changes due to articula-
tory movements, and therefore, the signal must be broken
down in short frames of about 20-30 ms in duration.
Within this interval, the signal is assumed to remain sta-
tionary and a spectral feature vector is extracted from each
frame.

Usually the frame is pre-emphasized and multiplied by a
smooth window function prior to further steps. Pre-empha-
sis boosts the higher frequencies whose intensity would be
otherwise very low due to downward sloping spectrum
caused by glottal voice source (Harrington and Cassidy,
1999, p. 168). The window function (usually Hamming),
on the other hand, is needed because of the finite-length
effects of the discrete Fourier transform (DFT); for details,
refer to (Harris, 1978; Deller et al., 2000; Oppenheim et al.,
1999). in practice, choice of the window function is not crit-
ical. Although the frame length is usually fixed, pitch-syn-
chronous analysis has also been studied (Nakasone et al.,
2004; Zilca et al., 2006; Gong et al., 2008). The experiments
in (Nakasone et al., 2004; Zilca et al., 2006) indicate that
recognition accuracy reduces with this technique, whereas
(Gong et al., 2008) obtained some improvement in noisy
conditions. Pitch-dependent speaker models have also been
studied (Arcienega et al., 2001; Ezzaidi et al., 2001).

The well-known fast Fourier transform (FFT), a fast
implementation of DFT, decomposes a signal into its fre-
quency components (Oppenheim et al., 1999). Alternatives
to FFT-based signal decomposition such as non-harmonic
bases, aperiodic functions and data-driven bases derived
from independent component analysis (ICA) have been
studied in literature (Gopalan et al., 1999; Imperl et al.,
1997; Jang et al., 2002). The DFT, however, remains to
be used in practice due to its simplicity and efficiency. Usu-
ally only the magnitude spectrum is retained, based on the
belief that phase has little perceptual importance. However,
Paliwal and Alsteris (2003) provides opposing evidence
while (Hedge et al., 2004) described a technique which uti-
lizes phase information.

The global shape of the DFT magnitude spectrum
(Fig. 3), known as spectral envelope, contains information
about the resonance properties of the vocal tract and has
been found out to be the most informative part of the spec-
trum in speaker recognition. A simple model of spectral
envelope uses a set of bandpass filters to do energy integra-
tion over neighboring frequency bands. Motivated by psy-
cho-acoustic studies, the lower frequency range is usually
represented with higher resolution by allocating more fil-
ters with narrow bandwidths (Harrington and Cassidy,
1999).

Although the subband energy values have been used
directly as features (Besacier et al., 2000; Besacier and Bon-
astre, 2000; Damper and Higgins, 2003; Sivakumaran
et al., 2003a), usually the dimensionality is further reduced
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Fig. 3. Extraction of spectral envelope using cepstral analysis and linear
prediction (LP). Spectrum of NFFT = 512 points can be effectively
reduced to only N, = 12 cepstral coefficients or p = 12 LP coefficients.
Both the cepstral and LP features are useful and complementary to each
other when used in speaker recognition.

using other transformations. The so-called mel-frequency
cepstral coefficients (MFCCs) (Davis and Mermelstein,
1980) are popular features in speech and audio processing.
MFCCs were introduced in early 1980s for speech recogni-
tion and then adopted in speaker recognition. Even though
various alternative features, such as spectral subband cen-
troids (SSCs) (Kinnunen et al., 2007; Thian et al., 2004)
have been studied, the MFCCs seem to be difficult to beat
in practice.

MFCCs are computed with the aid of a psychoacoustic-
ally motivated filterbank, followed by logarithmic com-
pression and discrete cosine transform (DCT). Denoting
the outputs of an M-channel filterbank as Y(m),m =
1,...,M, the MFCCs are obtained as follows:

cn:zM:[logY(m)]cos {% (m—%)] (1)

m=1

Here n is the index of the cepstral coefficient. The final
MFCC vector is obtained by retaining about 12-15 lowest
DCT coefficients. More details of MFCCs can be found in
(Deller et al., 2000; Huang et al., 2001). Alternative fea-
tures that emphasize speaker-specific information have
been studied in (Charbuillet et al., 2006; Miyajima et al.,
2001; Kinnunen, 2002; Orman and Arslan, 2001). For
study of speaker-discriminative information in spectrum,
refer to (Lu and Dang, 2007). Finally, some new trends
in feature extraction can be found in (Ambikairajah, 2007).

Linear prediction (LP) (Makhoul, 1975; Mammone
et al., 1996) is an alternative spectrum estimation method
to DFT that has good intuitive interpretation both in time
domain (adjacent samples are correlated) and frequency
domain (all-pole spectrum corresponding to the resonance
structure). In time domain, LP predictor equation is
defined as,

5[] = i ags[n — k. (2)

Speech signal

50 100 150 200 250 300 350 400
LP residual

_0'50 50 100 150 200 250 300 350 400

Glottal flow estimated with IAIF

Amplitude (arbitrary units)

-1

0 50 100 150 200 250 300 350 400
Time (samples)

Fig. 4. Glottal feature extraction (Kinnunen and Alku, 2009). Speech
frame (top), linear prediction (LP) residual (middle), and glottal flow
estimated via inverse filtering (bottom). © 2009 IEEE.

Here s[n| is the observed signal, a; are the predictor coeffi-
cients and 3[n] is the predicted signal. The prediction error
signal, or residual, is defined as e[n] = s[n] — §[n], and illus-
trated in the middle panel of Fig. 4. The coefficients g, are
usually determined by minimizing the residual energy using
the so-called Levinson—Durbin algorithm (Harrington and
Cassidy, 1999; Huang et al., 2001; Rabiner and Juang,
1993). The spectral model is defined as,

1

:7!7 —,
1 =30 jaz ™

and it consists of spectral peaks or poles only (dash-dotted
line in Fig. 3).

The predictor coefficients {a;} themselves are rarely
used as features but they are transformed into robust and
less correlated features such as linear predictive cepstral
coefficients (LPCCs) (Huang et al., 2001), /ine spectral fre-
quencies (LSFs) (Huang et al., 2001), and perceptual linear
prediction (PLP) coefficients (Hermansky, 1990). Other,
somewhat less successful features, include partial correla-
tion coefficients (PARCORS), log area ratios (LARs) and
formant frequencies and bandwidths (Rabiner and Juang,
1993).

Given all the alternative spectral features, which one
should be used for speaker recognition and how should
the parameters (e.g. the number of coefficients) be selected?
Some comparisons can be found in (Atal, 1974; Kinnunen,
2004; Kinnunen et al., 2004; Reynolds and Rose, 1995),
and it has been observed that in general channel compensa-
tion methods are much more important than the choice of
the base feature set (Reynolds and Rose, 1995). Different
spectral features, however, are complementary and can be
combined to enhance accuracy (Briimmer et al., 2007;
Campbell et al., 2006a; Kinnunen et al., 2004). In sum-
mary, for practical use we recommend any of the following
features: MFCC, LPCC, LSF, PLP.

H(z) 3)
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3.2. Voice source features

Voice source features characterize the glottal excitation
signal of voiced sounds such as glottal pulse shape and fun-
damental frequency, and it is reasonable to assume that
they carry speaker-specific information. Fundamental fre-
quency, the rate of vocal fold vibration, is popular and will
be discussed in Section 3.4. Other parameters are related to
the shape of the glottal pulse, such as the degree of vocal
fold opening and the duration of the closing phase. These
contribute to voice quality which can be described for
example, as modal, breathy, creaky or pressed (Espy-Wil-
son et al., 2006).

The glottal features are not directly measurable due to the
vocal tract filtering effect. By assuming that the glottal source
and the vocal tract are independent of each other, vocal tract
parameters can be first estimated using, for instance, the lin-
ear prediction model, followed by inverse filtering of the ori-
ginal waveform to obtain an estimate of the source signal
(Kinnunen and Alku, 2009; Murty and Yegnanarayana,
2006; Plumpe et al., 1999; Prasanna et al., 2006; Thévenaz
and Hiigli, 1995; Zheng et al., 2007). An alternative method
uses closed-phase covariance analysis during the portions
when the vocal folds are closed (Gudnason and Brookes,
2008; Plumpe et al., 1999; Slyh et al., 2004). This leads to
improved estimate of the vocal tract but accurate detection
of closed phase is required which is difficult in noisy condi-
tions. As an example, Fig. 4 shows a speech signal together
with its LP residual and glottal flow estimated with a simple
inverse filtering method (Alku et al., 1999).

Features of the inverse filtered signal can be extracted,
for instance, by using an auto-associative neural network
(Prasanna et al., 2006). Other approaches have used para-
metric glottal flow model parameters (Plumpe et al., 1999),
wavelet analysis (Zheng et al., 2007), residual phase (Murty
and Yegnanarayana, 2006), cepstral coefficients (Gudna-
son and Brookes, 2008; Chetouani et al., 2009; Kinnunen
and Alku, 2009) and higher-order statistics (Chetouani
et al., 2009) to mention a few.

Based on the literature, voice source features are not as
discriminative as vocal tract features but fusing these two
complementary features can improve accuracy (Murty
and Yegnanarayana, 2006; Zheng et al., 2007). Experi-
ments of (Chan et al., 2007; Prasanna et al., 2006) also sug-
gest that the amount of training and testing data for the
voice source features can be significantly less compared
to the amount of data needed for the vocal tract features
(10 s vs 40 s in (Prasanna et al., 2006)). A possible explana-
tion for this is that vocal tract features depend on the pho-
netic content and thus require sufficient phonetic coverage
for both the training and test utterances. Voice source fea-
tures, in turn, depend much less on phonetic factors.

3.3. Spectro-temporal features

It is reasonable to assume that the spectro-temporal
signal details such as formant transitions and energy

modulations contain useful speaker-specific information.
A common way to incorporate some temporal informa-
tion to features is through first- and second-order time
derivative estimates, known as delta (A) and double-delta
(Az) coefficients, respectively (Furui, 1981; Huang et al.,
2001; Soong and Rosenberg, 1988). They are computed
as the time differences between the adjacent vectors fea-
ture coefficients and usually appended with the base coef-
ficients on the frame level (e.g. 13 MFCCs with A and A?
coefficients, implying 39 features per frame). An alterna-
tive, potentially more robust, method fits a regression
line (Rabiner and Juang, 1993) or an orthogonal polyno-
mial (Furui, 1981) to the temporal trajectories, although
in practice simple differentiation seems to yield equal or
better performance (Kinnunen, 2004). Time—frequency
principal components (Magrin-Chagnolleau et al., 2002)
and data-driven temporal filters (Malayath et al., 2000)
have also been studied.

In (Kinnunen, 2006; Kinnunen et al., 2008), we pro-
posed to use modulation frequency (Atlas and Shamma,
2003; Hermansky, 1998) as a feature for speaker recog-
nition as illustrated in Fig. 5. Modulation frequency
represents the frequency content of the subband ampli-
tude envelopes and it potentially contains information
about speaking rate and other stylistic attributes. Mod-
ulation frequencies relevant for speech intelligibility are
approximately in the range 1-20 Hz (Atlas and Sham-
ma, 2003; Hermansky, 1998). In (Kinnunen, 2006), the
best recognition result was obtained by using a tempo-
ral window of 300 ms and by including modulation fre-
quencies in the range 0-20 Hz. The dimensionality of
the modulation frequency vector depends on the num-
ber of FFT points of the spectrogram and the number
of frames spanning the FFT computation in the tempo-
ral direction. For the best parameter combination, the
dimension of the feature vector was 3200 (Kinnunen,
2006).

In (Kinnunen et al., 2006c; Kinnunen et al., 2008) we
studied reduced-dimensional spectro-temporal features.
The temporal discrete cosine transform (TDCT) method,
proposed in (Kinnunen et al., 2006¢) and illustrated in
Fig. 6, applies DCT on the temporal trajectories of the
cepstral vectors rather than on the spectrogram magni-
tudes. Using DCT rather than DFT magnitude here has
an advantage that it retains the relative phases of the fea-
ture coefficient trajectories, and hence, it can preserve both
phonetic and speaker-specific information. This, however,
requires more research. In (Kinnunen et al., 2008), DCT
was used in a different role: reducing the dimensionality
of the modulation magnitude spectra. The best results in
(Kinnunen, 2006; Kinnunen et al., 2008) were obtained
by using a time context of 300-330 ms, which is signifi-
cantly longer compared with the typical time contexts of
the delta features.

Even though we obtained some improvement over the
cepstral systems by fusing the match scores of the ceps-
tral and temporal features (Kinnunen, 2006; Kinnunen
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et al., 2006c), the gain was rather modest and more
research is required before these features can be recom-
mended for practical applications. One problem could
be that we have applied speaker modeling techniques
that are designed for short-term features. Due to larger
temporal context, the number of training vectors is usu-
ally less compared with short-term features. Further-
more, as the short-term and longer-term features have
different frame rates, they cannot be easily combined at
the frame level. Perhaps a completely different modeling
and fusion technique is required for these features.

An alternative to amplitude-based methods considers
frequency modulations (FM) instead (Thiruvaran et al.,
2008a). In FM-based methods, the input signal is first
divided into subband signals using a bank of bandpass
filters. The dominant frequency components (such as the
frequency centroids) in the subbands then capture
formant-like features. As an example, the procedure
described in (Thiruvaran et al., 2008a) uses second-order
all-pole analysis to detect the dominant frequency. The
FM features are then obtained by subtracting the center
frequency of the subband from the pole frequency, yielding
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a measure of deviation from the “default” frequency of the
bandpass signal. This feature was applied to speaker recog-
nition in (Thiruvaran et al., 2008b), showing promise when
fused with conventional MFCCs.

3.4. Prosodic features

Prosody refers to non-segmental aspects of speech,
including for instance syllable stress, intonation patterns,
speaking rate and rhythm. One important aspect of pros-
ody is that, unlike the traditional short-term spectral fea-
tures, it spans over long segments like syllables, words,
and utterances and reflects differences in speaking style,
language background, sentence type, and emotions to men-
tion a few. A challenge in text-independent speaker recog-
nition is modeling the different levels of prosodic
information (instantaneous, long-term) to capture speaker
differences; at the same time, the features should be free of
effects that the speaker can voluntarily control.

The most important prosodic parameter is the funda-
mental frequency (or F0). Combining FO-related features
with spectral features has been shown to be effective, espe-
cially in noisy conditions. Other prosodic features for
speaker recognition have included duration (e.g. pause sta-
tistics, phone duration), speaking rate, and energy distribu-
tion/modulations among others (Adami et al., 2003;
Bartkova et al., 2002; Reynolds et al., 2003; Shriberg
et al., 2005). Interested reader may refer to (Shriberg
et al., 2005) for further details. In that study, it was found
out, among a number of other observations, that FO-
related features yielded the best accuracy, followed by
energy and duration features in this order. Since FO is the
predominant prosodic feature, we will now discuss it in
more detail.

Reliable FO determination itself is a challenging task.
For instance, in telephone quality speech, FO is often out-
side of the narrowband telephone network passband
(0.3-3.4kHz) and the algorithms can only rely on the
information in the upper harmonics for FO detection. For
a detailed discussion of classical FO estimation approaches,
refer to (Hess, 1983). More recent comparison of FO track-
ers can be found in (Cheveigné and Kawahara, 2001). For
practical use, we recommend the YIN method (DeCheveig-
ne and Kawahara, 2002) and the auto-correlation method
as implemented in Praat software (Boersma and Weenink,
2009).

For speaker recognition, FO conveys both physiological
and learned characteristics. For instance, the mean value of
FO can be considered as an acoustic correlate of the larynx
size (Rose, 2002), whereas the temporal variations of pitch
are related to the manner of speaking. In text-dependent
recognition, temporal alignment of pitch contours have
been used (Atal, 1972). In text-independent studies, long-
term FO statistics — especially the mean value — have been
extensively studied (Carey et al., 1996; Kinnunen and Gon-
zalez-Hautaméki, 2005; Markel et al., 1977; Nolan, 1983;
Sonmez et al., 1998; Sénmez et al., 1997). The mean value

combined with other statistics such as variance and kurto-
sis can be used as speaker model (Bartkova et al., 2002;
Carey et al., 1996; Kinnunen and Gonzdlez-Hautamiki,
2005), even though histograms (Kinnunen and Gonzalez-
Hautaméki, 2005), latent semantic analysis (Chen et al.,
2004) and support vector machines (Shriberg et al., 2005)
perform better. It has also been found through a number
of experiments that log(F0) is a better feature than FO itself
(Kinnunen and Gonzdlez-Hautaméki, 2005; S6nmez et al.,
1997).

FO is a one-dimensional feature, therefore mathemati-
cally, not expected to be very discriminative. Multidimen-
sional pitch- and voicing-related features can be extracted
from the auto-correlation function without actual FO
extraction as done in (Laskowski and Jin, 2009; Ma
et al., 2006a; Wildermoth and Paliwal, 2000) for example.
Another way to improve accuracy is modeling both the
local and long-term temporal variations of FO.

Capturing local FO dynamics can be achieved by
appending the delta features with the instantaneous FO
value. For longer-term modeling, FO contour can be seg-
mented and presented by a set of parameters associated
with each segment (Adami, 2007; Adami et al., 2003; Mary
and Yegnanarayana, 2006; Shriberg et al., 2005; S6nmez
et al., 1998). The segments may be syllables obtained using
automatic speech recognition (ASR) system (Shriberg
et al., 2005). An alternative, ASR-free approach, is to
divide the utterance into syllable-like units using, for
instance, vowel onsets (Mary and Yegnanarayana, 2008)
or FO/energy inflection points (Adami, 2007; Dehak
et al., 2007) as the segment boundaries.

For parameterization of the segments, prosodic feature
statistics and their local temporal slopes (tilt) within each
segment are often used. In (Adami et al., 2003; Sénmez
et al., 1998), each voiced segment was parameterized by a
piece-wise linear model whose parameters formed the fea-
tures. In (Shriberg et al., 2005), the authors used N-gram
counts of discretized feature values as features to an
SVM classifier with promising results. In (Dehak et al.,
2007), prosodic features were extracted using polynomial
basis functions.

3.5. High-level features

Speakers differ not only in their voice timbre and accent/
pronunciation, but also in their lexicon — the kind of words
the speakers tend to use in their conversations. The work
on such ‘“high-level” conversational features was initiated
in (Doddington, 2001) where a speaker’s characteristic
vocabulary, the so-called idiolect, was used to characterize
speakers. The idea in “high-level” modeling is to convert
each utterance into a sequence of rokens where the
co-occurrence patterns of tokens characterize speaker
differences. The information being modeled is hence in cat-
egorical (discrete) rather than in numeric (continuous) form.

The tokens considered have included words (Dodding-
ton, 2001), phones (Andrews et al., 2002; Campbell et al.,
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2004), prosodic gestures (rising/falling pitch/energy)
(Adami et al., 2003; Chen et al., 2004; Shriberg et al.,
2005), and even articulatory tokens (manner and place of
articulation) (Leung et al., 2006). The top-1 scoring Gauss-
ian mixture component indices have also been used as
tokens (Ma et al., 2006b; Torres-Carrasquillo et al., 2002;
Xiang, 2003).

Sometimes several parallel tokenizers are utilized
(Campbell et al., 2004; Jin et al., 2002; Ma et al., 2006b).
This is partly motivated by the success of parallel phone
recognizers in state-of-the-art spoken language recognition
(Zissman, 1996; Ma et al., 2007). This direction is driven by
the hope that different tokenizers (e.g. phone recognizers
trained on different languages or with different phone mod-
els) would capture complementary aspects of the utterance.
As an example, in (Ma et al., 2006b) a set of parallel GMM
tokenizers (Torres-Carrasquillo et al., 2002; Xiang, 2003)
were used. Each tokenizer was trained from a different
group of speakers obtained by clustering.

The baseline classifier for token features is based on
N-gram modeling. Let us denote the token sequence of
the utterance by {ay,0,,...,0r}, where o, € V and Vis a
finite vocabulary. An N-gram model is constructed by esti-
mating the joint probability of N consecutive tokens. For
instance, N = 2 gives the bigram model where the probabil-
ities of token pairs (o, 0,11 ) are estimated. A trigram model
consists of triplets (o, %1, %.2), and so forth. As an exam-
ple, the bigrams of the token sequence hello_world are
(h,e): (e’l)’ (1al)a (1,0)3 (On—)a (_,W), (VV,O), (O,I‘), (I‘,l)
and (1,4).

The probability of each N-gram is estimated in the same
way as N-gram in statistical language models in automatic
speech recognition (Ney et al., 1997). It is the maximum
likelihood (ML) or maximum a posteriori (MAP) estimate
of the N-gram in the training corpus (Leung et al., 2006).
The N-gram statistics have been used in vector space
(Campbell et al., 2004; Ma et al., 2006b) and with entropy
measures (Andrews et al., 2001; Leung et al., 2006) to
assess similarity between speakers.

4. Speaker modeling: classical approaches

This section describes some of the popular models in
text-independent speaker recognition. The models pre-
sented here have co-evolved with the short-term spectral
features such as MFCCs in the literature.

4.1. Vector quantization

Vector quantization (VQ) model (Burton, 1987; Hau-
tamiki et al., 2008b; He et al., 1999; Karpov et al., 2004;
Kinnunen et al., 2006b; Soong et al., 1987; Soong and
Rosenberg, 1988), also known as centroid model, is one
of the simplest text-independent speaker models. It was
introduced to speaker recognition in the 1980s (Burton,
1987; Soong et al., 1987) and its roots are originally in data
compression (Gersho and Gray, 1991). Even though VQ is

often used for computational speed-up techniques (Loura-
dour and Daoudi, 2005; Kinnunen et al., 2006b; Roch,
2006) and lightweight practical implementations (Saasta-
moinen et al., 2005), it also provides competitive accuracy
when combined with background model adaptation
(Hautamaéki et al., 2008b; Kinnunen et al., 2009). We will
return to adaptation methods in Section 4.2.

In the following, we denote the test utterance feature
vectors by 2 = {xy,...,xr} and the reference vectors by

R ={r1,...,rxc}. The average quantization distortion is
defined as,
1 T
aq R\ — _ 1
DQ(‘Q/‘a ]) T ; 12}211(01(36””)’ (4)

where d(-,-) is a distance measure such as the Euclidean
distance ||x, — r¢||. A smaller value of (4) indicates higher
likelihood for 2 and £ originating from the same speaker.
Note that (4) is not symmetric (Karpov et al., 2004):
Do(¥,R)#Do(R,%).

In theory, it is possible to use all the training vectors
directly as the reference template . For computational rea-
sons, however, the number of vectors is usually reduced by a
clustering method such as K-means (Linde et al., 1980). This
gives a reduced set of vectors known as codebook (Fig. 7).
The choice of the clustering method is not as important as
optimizing the codebook size (Kinnunen et al., 2000).

4.2. Gaussian mixture model

Gaussian mixture model (GMM) (Reynolds and Rose,
1995; Reynolds et al., 2000) is a stochastic model which
has become the de facto reference method in speaker recog-
nition. The GMM can be considered as an extension of the
VQ model, in which the clusters are overlapping. That is, a
feature vector is not assigned to the nearest cluster as in (4),
but it has a nonzero probability of originating from each
cluster.

A GMM is composed of a finite mixture of multivariate
Gaussian components. A GMM, denoted by 4, is charac-
terized by its probability density function:

Training set Codebook

5000 data vectors 64 code vectors

Code vector
(centroid)

Feature 2
Feature 2

Clustering
Quantization cell
(code cell)

Feature 1 Feature 1

Fig. 7. Codebook construction for vector quantization using the K-means
algorithm. The original training set consisting of 5000 vectors is reduced to
a set of K = 64 code vectors (centroids).
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K

p(x|2) =D P N (x|m, Zi). (5)

k=1

In (5), K is the number of Gaussian components, P; is the
prior probability (mixing weight) of the kth Gaussian com-
ponent, and

4 L 1 _
ol B0) = (2 I Hexp {5 )5 (5 )|

(6)

is the d-variate Gaussian density function with mean vector
u, and covariance matrix X,. The prior probabilities
P; = 0 are constrained as Zf:IPk =1.

For numerical and computational reasons, the covari-
ance matrices of the GMM are usually diagonal (i.e. vari-
ance vectors), which restricts the principal axes of the
Gaussian ellipses in the direction of the coordinate axes.
Estimating the parameters of a full-covariance GMM
requires, in general, much more training data and is com-
putationally expensive. As an example for estimating the
parameters of a full-covariance GMM, refer to (Yuo and
Wang, 1999).

Monogaussian model uses a single Gaussian component
with a full covariance matrix as the speaker model (Besa-
cier and Bonastre, 2000; Besacier et al., 2000; Bimbot
et al., 1995; Campbell, 1997; Zilca, 2002). Sometimes only
the covariance matrix is used because the cepstral mean
vector is affected by convolutive noise (e.g. due to the
microphone/handset). The monogaussian and covariance-
only models have a small number of parameters and are
therefore computationally efficient, although their accuracy
is clearly behind GMM.

Training a GMM consists of estimating the parameters
A= {P,(,yk,Zk}kK:] from a training sample 2 = {x,
...,xr}. The basic approach is maximum likelihood (ML)
estimation. The average log-likelihood of % with respect
to model A is defined as,

1 T K
Ll (4, 7) = = ; log ;P,(,/V'(x[mk, ). (7)
The higher the value, the higher the indication that the un-
known vectors originate from the model 4. The popular
expectation—maximization (EM) algorithm (Bishop, 2006)
can be used for maximizing the likelihood with respect to
a given data. Note that K-means (Linde et al., 1980) can
be used as an initialization method for EM algorithm; a
small number or even no EM iterations are needed accord-
ing to (Kinnunen et al., 2009; Kolano and Regel-Brietz-
mann, 1999; Pelecanos et al., 2000). This is by no means
a general rule, but the iteration count should be optimized
for a given task.

In speech applications, adaptation of the acoustic models
to new operating conditions is important because of data
variability due to different speakers, environments, speak-
ing styles and so on. In GMM-based speaker recognition,
a speaker-independent world model or universal background

model (UBM) is first trained with the EM algorithm from
tens or hundreds of hours of speech data gathered from a
large number of speakers (Reynolds et al., 2000). The back-
ground model represents speaker-independent distribution
of the feature vectors. When enrolling a new speaker to the
system, the parameters of the background model are
adapted to the feature distribution of the new speaker.
The adapted model is then used as the model of that
speaker. In this way, the model parameters are not esti-
mated from scratch, with prior knowledge (“speech data
in general”) being utilized instead. Practice has shown that
it is advantageous to train two separate background mod-
els, one for female and the other one for male speakers. The
new speaker model is then adapted from the background
model of the same gender as the new speaker. Let us now
look how the adaptation is carried out.

As indicated in Fig. 8, it is possible to adapt all the
parameters, or only some of them from the background
model. Adapting the means only has been found to work
well in practice (Reynolds et al., 2000) - this also motivates
for a simplified adapted VQ model (Hautamiki et al.,
2008b; Kinnunen et al., 2009). Given the enrollment sam-
ple, Z={x,...,xr}, and the UBM, Aygu=
{Pi,m,Ei},, the adapted mean vectors (u,) in the max-
imum a posteriori (MAP) method (Reynolds et al., 2000)
are obtained as weighted sums of the speaker’s training
data and the UBM mean:

He = X + (1 — o)y, (8)
where
O = e ¥ 7”7 (9)
. 1 &
Xp = Z:P(k|x,)xt7 (10)
k=1
T
me=»_ P(k|x,), (11)
=1
PN b))
P(k|x,) — k (xt|”ka k) (12)

St P (61l 1, )

Only means adapted All parameters adapted

UBM component UBM component

Adapted

-2 | Adapted
component

component
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Fig. 8. Examples of GMM adaptation using maximum a posteriori (MAP)
principle. The Gaussian components of a universal background model
(solid ellipses) are adapted to the target speaker’s training data (dots) to
create speaker model (dashed ellipses).
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The MAP adaptation is to derive a speaker-specific GMM
from the UBM. The relevance parameter r, and thus oy,
controls the effect of the training samples on the resulting
model with respect to the UBM.

In the recognition mode, the MAP-adapted model and
the UBM are coupled, and the recognizer is commonly
referred to as Gaussian mixture model — universal back-
ground model, or simply “GMM-UBM?”. The match score
depends on both the target model (Auree) and the back-
ground model (Aypm) via the average log likelihood ratio:

, 1 <
LLRavg(%y j-larget; /LUBM) = ? Z {logp(xru-target)
t=1

—log p(x:|Ausm)}, (13)

which essentially measures the difference of the target and
background models in generating the observations
Z = {x1,...,xr}. The use of a common background model
for all speakers makes the match score ranges of different
speakers comparable. It is common to apply test segment
dependent normalization (Auckenthaler et al., 2000) on
top of UBM normalization to account for test-dependent
score offsets.

There are alternative adaptation methods to MAP, and
selection of the method depends on the amount of available
training data (Mak et al., 2006; Marié¢thoz and Bengio,
2002). For very short enrollment utterances (a few seconds),
some other methods have shown to be more effective. Max-
imum likelihood linear regression (MLLR) (Leggetter and
Woodland, 1995), originally developed for speech recogni-
tion, has been successfully applied to speaker recognition
(Karam and Campbell, 2007; Mak et al., 2006; Mariéthoz
and Bengio, 2002; Stolcke et al., 2007). Both the MAP and
MLLR adaptations form a basis for the recent supervector
classifiers that we will cover in Section 6.

Gaussian mixture model is computationally intensive
due the frame-by-frame matching. In the GMM-UBM
framework (Reynolds et al., 2000), the score (13) can be
evaluated fast by finding for each test utterance vector the
top-C (where usually C = 5) scoring Gaussians from the
UBM (Reynolds et al., 2000; Saeidi et al., 2009; Tydlitat
et al., 2007). Other speed-up techniques include reducing
the numbers of vectors, Gaussian component evaluations,
or speaker models (Auckenthaler and Mason, 2001;
Kinnunen et al., 2006b; Louradour et al., 2005; McLaughlin
et al., 1999; Pellom and Hansen, 1998; Roch, 2006; Saeidi
et al., 2009; Xiang and Berger, 2003; Xiong et al., 2006).

Unlike the hidden Markov models (HMM) in speech
recognition, GMM does not explicitly utilize any phonetic
information — the training set for GMM simply contains all
the spectral features of different phonetic classes pooled
together. Because the features of the test utterance and
the Gaussian components are not phonetically aligned,
the match score may be biased due to different phonemes
in training and test utterances.

This phonetic mismatch problem has been attacked with
phonetically-motivated tree structures (Chaudhari et al.,

2003; Hébert and Heck, 2003) and by using a separate
GMM for each phonetic class (Castaldo et al., 2007a;
Faltlhauser and Ruske, 2001; Hansen et al., 2004; Park
and Hazen, 2002) or for parts of syllables (Bocklet and
Shriberg, 2009). As an example, phonetic GMM (PGMM)
described in (Castaldo et al., 2007a) used neural network
classifier for 11 language independent broad phone classes.
In the training phase, a separate GMM was trained for
each phonetic class and in run-time the GMM correspond-
ing to the frame label was used in scoring. Promising
results were obtained when combining PGMM with fea-
ture-level intersession combination and with conventional
(non-phonetic)y GMM. Phonetic modeling in GMMs is
clearly worth further studying.

4.3. Support vector machine

Support vector machine (SVM) is a powerful discrimina-
tive classifier that has been recently adopted in speaker rec-
ognition. It has been applied both with spectral (Campbell
et al., 2006a; Campbell et al., 2006b), prosodic (Shriberg
et al., 2005; Ferrer et al., 2007), and high-level features
(Campbell et al., 2004). Currently SVM is one of the most
robust classifiers in speaker verification, and it has also
been successfully combined with GMM to increase accu-
racy (Campbell et al., 2006a; Campbell et al., 2006b).
One reason for the popularity of SVM is its good general-
ization performance to classify unseen data.

The SVM, as illustrated in Fig. 9, is a binary classifier
which models the decision boundary between two classes
as a separating hyperplane. In speaker verification, one class
consists of the target speaker training vectors (labeled as
+1), and the other class consists of the training vectors
from an “impostor” (background) population (labeled as
—1). Using the labeled training vectors, SVM optimizer
finds a separating hyperplane that maximizes the margin
of separation between these two classes.

Maximum - margin

O Class +1 seTparating hyperplane
; Wx+b=0
O class -1 ' .
Support
vectors
>
/ T Another separating X,
",/ = hyperplane with smaller
. ) margin

Fig. 9. Principle of support vector machine (SVM). A maximum-margin
hyperplane that separates the positive (+1) and negative (—1) training
examples is found by an optimization process. SVMs have excellent
generalization performance.
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Formally, the discriminant function of SVM is given by
(Campbell et al., 2006a),

f(x) = zjv:oz,-tiK(x,x,«) +d. (14)

Here #; € {+1, —1} are the ideal output values, Zf’zlal—ti =0
and o; > 0. The support vectors x;, their corresponding
weights o; and the bias term d, are determined from a train-
ing set using an optimization process. The kernel function
K(-,-) is designed so that it can be expressed as
K(x,y) = ¢>(x)TqS(y), where ¢(x) is a mapping from the in-
put space to kernel feature space of high dimensionality.
The kernel function allows computing inner products of
two vectors in the kernel feature space. In a high-dimen-
sional space, the two classes are easier to separate with a
hyperplane. Intuitively, linear hyperplane in the high-
dimensional kernel feature space corresponds to a nonlin-
ear decision boundary in the original input space (e.g. the
MFCC space). For more information about SVM and
kernels, refer to (Bishop, 2006; Miiller et al., 2001).

4.4. Other models

Artificial neural networks (ANNs) have been used in var-
ious pattern classification problems, including speaker rec-
ognition (Farrell et al., 1994; Heck et al., 2000; Lapidot
et al., 2002; Yegnanarayana and Kishore, 2002). A poten-
tial advantage of ANNs is that feature extraction and
speaker modeling can be combined into a single network,
enabling joint optimization of the (speaker-dependent) fea-
ture extractor and the speaker model (Heck et al., 2000).
They are also handy in fusing different subsystems (Rey-
nolds et al., 2003; Tong et al., 2006).

Speaker-specific mapping has been proposed in (Malay-
ath et al., 2000; Misra et al., 2003). The idea is to extract
two parallel feature streams with the same frame rate: a
feature set representing purely phonetic information
(speech content), and a feature set representing a mixture
of phonetic and speaker-specific information. The speaker
modeling is thus essentially to find a mapping from the
“phonetic” spectrum to the ‘“‘speaker-specific” spectrum
by using subspace method (Malayath et al., 2000) or neural
network (Misra et al., 2003).

Representing a speaker relative to other speakers is pro-
posed in (Mami and Charlet, 2006; Sturim et al., 2001).
Each speaker model is presented as a combination of some
reference models known as the anchor models. The combi-
nation weights — coordinates in the anchor model space —
compose the speaker model. The similarity score between
the unknown speech sample and a target model is deter-
mined as the distance between their coordinate vectors.

4.5. Fusion

Like in other pattern classification tasks, combining
information from multiple sources of evidence — a tech-

nique called fusion — has been widely applied in speaker rec-
ognition (Altincay and Demirekler, 2003; Hannani et al.,
2004; Chen et al., 1997; Damper and Higgins, 2003; Farrell
et al., 1998; Fredouille et al., 2000; Kinnunen et al., 2004;
Mak et al., 2003; Moonasar and Venayagamoorthy,
2001; Ramachandran et al., 2002; Rodriguez-Linares
et al., 2003; Slomka et al., 1998). Typically, a number of
different feature sets are first extracted from the speech sig-
nal; then an individual classifier is used for each feature set;
following that the sub-scores or decisions are combined.
This implies that each speaker has multiple speaker models
stored in the database.

It is also possible to obtain fusion through modeling the
same features using different classifier architectures, feature
normalizations, or training sets (Briimmer et al., 2007;
Farrell et al., 1998; Kinnunen et al., 2009; Moonasar and
Venayagamoorthy, 2001). A general belief is that successful
fusion system should combine as independent features as
possible — low-level spectral features, prosodic features
and high-level features. But improvement can also be
obtained by fusion of different low-level spectral features
(e.g. MFCCs and LPCCs) and different classifiers for them
(Briimmer et al., 2007; Campbell et al., 2006a; Kinnunen
et al., 2004). Fusing dependent (correlated) classifiers can
enhance the robustness of the score due to variance reduc-
tion (Poh and Bengio, 2004).

Simplest form of fusion is combining the classifier out-
put scores by weighted sum. That is, given the sub-scores
sy, where k indices the classifier, the fused match score is
s = fo;lwnsn. Here N, is the number of classifiers and w,
is the relative contribution of the nth classifier. The fusion
weights w, can be optimized using a development set, or
they can be set as equal (w, = 1/N,.) which does not require
weight optimization — but is likely to fail if the accuracies of
the individual classifiers are diverse. In cases where the clas-
sifier outputs can be interpreted as posterior probability
estimates, product can be used instead of sum. However,
the sum rule is the preferred option since the product rule
amplifies estimation errors (Kittler et al., 1998). A theoret-
ically elegant technique for optimizing the fusion weights
based on logistic regression has been proposed in (Briim-
mer et al., 2007; Brimmer and Preez, 2006). An implemen-
tation of the method is available in the Fusion and
Calibration (FoCal) toolkit.> This method, being simple
and robust at the same time, is usually the first choice in
our own research.

By considering outputs from the different classifiers as
another random variable, score vector, a backend classifier
can be built on top of the individual classifiers. For
instance, a support vector machine or a neural network
can be trained to separate the genuine and impostor score
vectors (e.g. Hatch et al., 2005; Reynolds et al., 2003; Tong
et al., 2006; Ferrer et al., 2008b). Upon verifying a person,
each of the individual classifiers gives an output score and

2 http://www.dsp.sun.ac.za/~nbrummer/focal/.
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these scores are in turn arranged into a vector. The vector
is then presented to the SVM and the SVM output score is
compared against the verification threshold.

Majority of fusion approaches in speaker recognition
are based on trial-and-error and optimization on given
datasets. The success of a particular combination depends
on the performance of the individual systems, as well as
their complementariness. Whether the combiner yields
improvement on an unseen dataset depends on how the
optimization set matches the new dataset (in terms of signal
quality, gender distribution, lengths of the training and test
material, etc.).

Recently, some improvements to fusion methodology
have been achieved by integrating auxiliary side informa-
tion, also known as quality measures, into the fusion pro-
cess (Ferrer et al., 2008a; Garcia-Romero et al., 2004;
Kryszczuk et al., 2007; Solewicz and Koppel, 2007). Unlike
the traditional methods where the fusion system is trained
on development data and kept fixed during run-time, the
idea in side-information fusion is to adapt the fusion on
each test case. Signal-to-noise ratio (SNR) (Kryszczuk
et al., 2007) and nonnativeness score of the test segment
(Ferrer et al., 2008a) have been used as the auxiliary side
information, for instance. Another recent enhancement is
to model the correlations between the scores of individual
subsystems, since intuitively uncorrelated systems fuse bet-
ter than correlated ones (Ferrer et al., 2008b). Both the
auxiliary information and correlation modeling were dem-
onstrated to improve accuracy and are certainly worth fur-
ther studying.

5. Robust speaker recognition

As a carrier wave of phonetic information, affective
attributes, speaker characteristics and transmission path
information, the acoustic speech signal is subject to much
variations, most of which are undesirable. It is well known
that any mismatch between the training and testing condi-
tions dramatically decreases the accuracy of speaker recog-
nition. The main focus of speaker recognition research has
been in tackling this mismatch. Normalization and adapta-
tion methods have been applied to all the parts of speaker
recognition systems.

5.1. Voice activity detection

Voice activity detector (VAD), as illustrated in Fig. 10,
aims at locating the speech segments from a given audio
signal (Benyassine et al., 1997). The problem is analogous
to face detection from images: we wish to locate the objects
of interest before any further processing. VAD is an impor-
tant sub-component for any real-world recognition system.
Even though a seemingly simple binary classification task,
it is, in fact, rather challenging to implement a VAD that
works consistently across different environments. More-
over, short-duration utterances (few seconds) require spe-
cial care (Fauve et al., 2008).

Speech waveform
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Fig. 10. Voice activity detector (VAD) based on periodicity (Hautaméki
et al., 2007). It is known that voiced speech sounds (vowels, nasals) are
more discriminative than fricative and stop sounds. By using periodicity
rather than energy may lead to better performance in noisy environments.

A simple solution that works satisfactorily on typical
telephone-quality speech data, uses signal energy to detect
speech. As an example, we provide a Matlab code fragment
in the following:

E=20*10oglO(std(Frames’ )+eps);%
maxl=max (E) ;%Maximum
I=(E>maxl1-30) & (E>-55);%Indicator

Energies

Here Frames is a matrix that contains the short-term
frames of the whole utterance as its row vectors (it is also
assumed that the signal values are normalized to the range
[-1,1]). This VAD first computes the energies of all
frames, selects the maximum, and then sets the detection
threshold as 30 dB below the maximum. Another threshold
(=55 dB) is needed for canceling frames with too low an
absolute energy. The entire utterance (file) is required
before the VAD detection is carried out. A real-time
VAD, such as the long-term spectral divergence (LTSD)
method Ramirez et al. (2004) is required in most real-world
systems. Periodicity-based VAD (Fig. 10), an alternative to
energy-based methods, was studied in (Hautamiki et al.,
2007).

5.2. Feature normalization

In principle, it is possible to use generic noise suppres-
sion techniques to enhance the quality of the original
time-domain signal prior to feature extraction. However,
signal enhancement as an additional step in the entire rec-
ognition process will increase the computational load. It is
more desirable to design a feature extractor which is itself
robust (Mammone et al., 1996), or to normalize the fea-
tures before feeding them onto the modeling or matching
algorithms.

The simplest method of feature normalization is to
subtract the mean value of each feature over the entire
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utterance. With the MFCC and LPCC features, this is
known as cepstral mean subtraction (CMS) or cepstral mean
normalization (CMN) (Atal, 1974; Furui, 1981). In the log-
spectral and cepstral domains, convolutive channel noise
becomes additive. By subtracting the mean vector, the
two feature sets obtained from different channels both
become zero-mean and the effect of the channel is corre-
spondingly reduced. Similarly, the variances of the features
can be equalized by dividing each feature by its standard
deviation. When VAD is used, the normalization statistics
are usually computed from the detected speech frames only.

The utterance-level mean and variance normalization
assume that channel effect is constant over the entire utter-
ance. To relax this assumption, mean and variance esti-
mates can be updated over a sliding window (Viikki and
Laurila, 1998). The window should be long enough to
allow good estimates for the mean and variance, yet short
enough to capture time-varying properties of the channel.
A typical window size is 3-5 s (Pelecanos and Sridharan,
2001; Xiang et al., 2002).

Feature warping (Pelecanos and Sridharan, 2001) and
short-term Gaussianization (Xiang et al., 2002) aim at mod-
ifying the short-term feature distribution to follow a refer-
ence distribution. This is achieved by “warping” the
cumulative distribution function of the features so that it
matches the reference distribution function, for example a
Gaussian. In (Pelecanos and Sridharan, 2001), each feature
stream was warped independently. In (Xiang et al., 2002)
the independence assumption was relaxed by applying a
global linear transformation prior to warping, whose pur-
pose was to achieve short-term decorrelation or indepen-
dence of the features. Although Gaussianization was
observed to improve accuracy over feature warping (Xiang
et al., 2002), it is considerably more complex to implement.

RelAtive SpecTrAl (RASTA) filtering (Hermansky and
Morgan, 1994; Malayath et al., 2000) applies a bandpass
filter in the log-spectral or cepstral domain. The filter is
applied along the temporal trajectory of each feature, and
it suppresses modulation frequencies which are outside of
typical speech signals. For instance, a slowly varying con-
volutive channel noise can be seen as a low-frequency part
of the modulation spectrum. Note that the RASTA filter is
signal-independent, whereas CMS and variance normaliza-
tion are adaptive in the sense that they use statistics of the
given signal. For useful discussions on data-driven tempo-
ral filters versus RASTA, refer to (Malayath et al., 2000).

Mean and variance normalization, Gaussianization, fea-
ture warping and RASTA filtering are unsupervised meth-
ods which do not explicitly use any channel information.
Feature mapping (FM) (Reynolds, 2003) is a supervised
normalization method which transforms the features
obtained from different channel conditions into a chan-
nel-independent feature space so that channel variability
is reduced. This is achieved with a set of channel-dependent
GMMs adapted from a channel-independent root model.
In the training or operational phase, the most likely chan-
nel (highest GMM likelihood) is detected, and the relation-

ship between the root model and the channel-dependent
model is used for mapping the vectors into channel-inde-
pendent space. A generalization of the method which does
not require detection of the top-1 Gaussian component was
proposed in (Zhu et al., 2007).

Often different feature normalizations are used in com-
bination. A typical robust front-end (Reynolds et al.,
2005) consists of extracting MFCCs, followed by RASTA
filtering, delta feature computation, voice activity detec-
tion, feature mapping and global mean/variance normali-
zation in that order. Different orders of the normalization
steps are possible; in (Burget et al., 2007) cepstral vectors
were first processed through global mean removal, feature
warping, and RASTA filtering, followed by adding first-,
second-, and third-order delta features. Finally, voice activ-
ity detector and dimensionality reduction using heterosced-
astic linear discriminant analysis (HLDA) were applied.

Graph-theoretic compensation method was proposed in
(Hautamdki et al., 2008a). This method considered the
training and test utterances as graphs where the graph
nodes correspond to “feature points” in the feature space.
The matching was then carried out by finding the corre-
sponding feature point pairs from the two graphs based
on graph isomorphism, and used for global transformation
of the feature space, followed by conventional matching.
The graph structure was motivated by invariance against
the affine feature distortion model for cepstral features
(e.g. Mak and Tsang, 2004; Mammone et al., 1996). The
method requires further development to validate the
assumptions of the feature distortion model and to
improve computational efficiency.

5.3. Speaker model compensation

Model-domain compensation involves modifying the
speaker model parameters instead of the feature vectors.
One example is speaker model synthesis (SMS) (Teunen
et al., 2000), which adapts the target GMM parameters
into a new channel condition, if this condition has not been
present in the enrollment phase. This is achieved with the
help of transformations between a channel-independent
background model and channel-dependent adapted mod-
els. Roughly, speaker model synthesis is a model-domain
equivalent of feature mapping (FM) (Reynolds, 2003). Fea-
ture mapping can be considered more flexible since the
mapped features can be used with any classifier and not
only with the GMM.

Both SMS and FM require a labeled training set with
training examples from a variety of different channel condi-
tions. In (Mason et al., 2005), an unsupervised clustering of
the channel types was proposed so that labeling would not be
needed. The results indicate that feature mapping based on
unsupervised channel labels achieves equal or better accu-
racy compared with supervised labeling. It should be noted,
however, that state-of-the-art speaker modeling with super-
vectors use continuous intersession variability models and
therefore extend the SMS and FM methods to handle with
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unknown conditions. The continuous model compensation
methods have almost completely surpassed the SMS and
FM methods, and will be the focus of Section 6.

5.4. Score normalization

In score normalization, the “raw” match score is normal-
ized relative to a set of other speaker models known as
cohort. The main purpose of score normalization is to
transform scores from different speakers into a similar
range so that a common (speaker-independent) verification
threshold can be used. Score normalization can correct
some speaker-dependent score offsets not compensated by
the feature and model domain methods.

A score normalization of the form

/ S — Hy

s = - (15)
is commonly used. In (15), 5" is the normalized score, s is
the original score, and p, and o; are the estimated mean
and standard deviation of the impostor score distribution,
respectively. In zero normalization (“Z-norm”), the impos-
tor statistics u; and o; are target speaker dependent and
they are computed off-line in the speaker enrollment phase.
This is done by matching a batch of non-target utterances
against the target model, and obtaining the mean and stan-
dard deviation of those scores. In test normalization (“T-
norm”) (Auckenthaler et al., 2000), the parameters are test
utterance dependent and they are computed “on the fly” in
the verification phase. This is done by matching the un-
known speaker’s feature vectors against a set of impostor
models and obtaining the statistics.

Usually the cohort models are common for all speakers,
however, speaker-dependent cohort selection for T-norm
has been studied in (Ramos-Castro et al., 2007; Sturim
and Reynolds, 2005). Z-norm and T-norm can also be
combined. According to (Vogt et al., 2005), Z-norm fol-
lowed by T-norm does produce good results.

Score normalization can be improved by using side infor-
mation such as channel type. Handset-dependent back-
ground models were used in (Heck and Weintraub, 1997).
The handset type (carbon button or electret) through which
the training utterance is channeled was automatically
detected, and the corresponding background model was
used for score normalization in the verification phase. In
(Reynolds et al., 2000), handset-dependent mean and vari-
ance of the likelihood ratio were obtained for each target
speaker. In the matching phase, the most likely handset
was detected and the corresponding statistics were used to
normalize the likelihood ratio. In essence, this approach is
a handset-dependent version of Z-norm, which the authors
call “H-norm”. In a similar way, handset-dependent T-norm
(“HT-norm”) has been proposed (Dunn et al., 2001). Note
that the handset-dependent normalization approaches
(Dunn et al., 2001; Heck and Weintraub, 1997; Reynolds
etal., 2000) require an automatic handset labeler which inev-
itable makes classification errors.

Although Z-norm and T-norm can be effective in reduc-
ing speaker verification error rates, they may seriously fail
if the cohort utterances are badly selected, that is, if their
acoustic and channel conditions differ too much from the
typical enrollment and test utterances of the system.
According to (Burget et al., 2007), score normalization
may not be needed at all if the other components, most
notable eigenchannel compensation of speaker models,
are well-optimized. However, Z- and T-norms and their
combinations seem to be an essential necessity for the more
complete joint factor analysis model (Kenny et al., 2008).
In summary, it remains partly a mystery when score nor-
malization is useful, and would deserve more research.

6. Supervector methods: a recent research trend
6.1. What is a supervector?

One of the issues in speaker recognition is how to repre-
sent utterances that, in general, have a varying number of
feature vectors. In early studies (Markel et al., 1977) speaker
models were generated by time-averaging features so that
each utterance could be represented as a single vector. The
average vectors would then be compared using a distance
measure (Kinnunen et al., 2006a), which is computationally
very efficient but gives poor recognition accuracy. Since the
1980s, the predominant trend has been creating a model of
the training utterance followed by “data-to-model” type of
matching at run-time (e.g. likelihood of an utterance with
respect to a GMM). This is computationally more demand-
ing but gives good recognition accuracy.

Interestingly, the speaker recognition community has
recently re-discovered a robust way to present utterances
using a single vector, a so-called supervector. On one hand,
these supervectors can be used as inputs to support vector
machine (SVM) as illustrated in Fig. 11. This leads to
sequence kernel SVMs, where the utterances with variable
number of feature vectors are mapped to a fixed-length vec-
tor using the sequence kernel; for review and useful
insights, refer to (Longworth and Gales, 2007; Wan and
Renals, 2005). On the other hand, conventional adapted
Gaussian mixture speaker model (Reynolds et al., 2000)
can also be seen as a supervector. Combinations of gener-
ative models and SVM have also lead to good results
(Campbell et al., 2006b).

Often ““supervector” refers to combining many smaller-
dimensional vectors into a higher-dimensional vector; for
instance, by stacking the d-dimensional mean vectors of a
K-component adapted GMM into a Kd-dimensional
Gaussian supervector (Campbell et al., 2006b). In this
paper, we understand supervector in a broader sense as
any high- and fixed-dimensional representation of an utter-
ance. It is important that the supervectors of different utter-
ances arise from a “common coordinate system” such as
being adapted from a universal background model, or
being generated using a fixed polynomial basis (Campbell
et al., 2006a). In this way the supervector elements are
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Fig. 11. The concept of modern sequence kernel SVM. Variable-length
utterances are mapped into fixed-dimensional supervectors, followed by
intersession variability compensation and SVM training.

meaningfully aligned and comparable when doing similar-
ity computations in the supervector space. With SVMs,
normalizing the dynamic ranges of the supervector ele-
ments is also crucial since SVMs are not scale invariant
(Wan and Renals, 2005).

An important recent advance in speaker recognition has
been the development of explicit inter-session variability
compensation techniques (Burget et al., 2007; Kenny
et al., 2008; Vogt and Sridharan, 2008). Since each utter-
ance is now presented as a single point in the supervector
space, it becomes possible to directly quantify and remove
the unwanted variability from the supervectors. Any varia-
tion in different utterances of the same speaker, as charac-
terized by their supervectors — be it due to different
handsets, environments, or phonetic content — is harmful.

Does this mean that we will need several training utter-
ances recorded through different microphones or environ-
ments when enrolling a speaker? Not necessarily. Rather,
the intersession variability model is trained on an indepen-
dent development data and then removed from the super-
vectors of a new speaker. The intersession variability
model itself is continuous, which is in contrast with speaker
model synthesis (SMS) (Teunen et al., 2000) and feature
mapping (FM) (Reynolds, 2003) discussed in Section 5.
Both SMS and FM assume a discrete collection of record-
ing conditions (such as mobile/landline channels or carbon

button/electric handsets). However, the explicit inter-ses-
sion variability normalization techniques enable modeling
channel conditions that “fall in between” some conditions
that are not seen in training data.

Various authors have independently developed different
session compensation methods for both GMM- and SVM-
based speaker models. Factor analysis (FA) techniques
Kenny (2006) are designed for the GMM-based recognizer
and take explicit use of stochastic properties of the GMM,
whereas the methods developed for SVM supervectors are
often based on numerical linear algebra (Solomonoff et al.,
2005). To sum up, two core design issues with the modern
supervector based recognizers are (1) how to create the
supervector of an utterance, (2) how to estimate and apply
the session variability compensation in the supervector
space. In addition, the question of how to compute the
match score with the session-compensated models needs
to be solved (Glembek et al., 2009).

6.2. GLDS kernel SVM

One of the simplest SVM supervectors is generalized lin-
ear discriminant sequence (GLDS) kernel (Campbell et al.,
2006a). The GLDS method creates the supervector by
explicit mapping into kernel feature space using a polyno-
mial expansion (Campbell et al., 2002), denoted here as
b(x). As an example, second-order polynomial expansion
for a 2-dimensional vector x = (xl,xz)T is given by
b(x) = (1,x;,%5,x3,x1x5,x3)". During enrollment, all the
background speaker and target speaker utterances
X ={x1,x,,...,xr} are represented as average expanded
feature vectors:

Buve = % Z::b(xt). (16)

The averaged vectors are further variance-normalized
using the background utterances, and assigned with the
appropriate label for SVM training (+1 = target speaker
vectors; —1 = background speaker vectors). The SVM
optimization (using standard linear kernel) yields a set of
support vectors b;, their corresponding weights «; and a
bias d. These are collapsed into a single model vector as,

L
W:Zoc,-tib;—kd, (17)
i—1

where d = (d,0,0,...,0)" and 1, € {+1,—1} are the ideal
outputs (class labels of the support vectors), and L is the
number of support vectors. In this way, the speaker
model can be presented as a single supervector. The col-
lapsed model vector w is also normalized using back-
ground utterances, and it serves as the model of the
target speaker.

The match score in the GLDS method is computed as
an inner product s = wgrgetbtest, where Wiee: denotes the
normalized model vector of the target speaker and by
denotes the normalized average expanded feature vector
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of the test utterance. Since all the speaker models and
the test utterance are represented as single vectors, the
verification phase is computationally efficient. The main
drawback of the GLDS method is that it is difficult to
control the dimensionality of the supervectors; in prac-
tice, the polynomial expansion includes either second-
or third-order monomials before the dimensionality gets
infeasible.

6.3. Gaussian supervector SVM

Since the universal background model (UBM) is
included as a part in most speaker recognition systems, it
provides a natural way to create supervectors (Campbell
et al., 2006b; Dehak and Chollet, 2006; Lee et al., 2008).
This leads to hybrid classifier where the generative
GMM-UBM model is used for creating “feature vectors”
for the discriminative SVM.

In (Campbell et al., 2006b) the authors derive the Gauss-
ian supervector (GSV) kernel by bounding the Kullback-Lei-
bler (KL) divergence measure between GMMs. Suppose that
we have the UBM, lypm = {Ps, yk,Zk}kK:I, and two utter-
ances a and b which are described by their MAP-adapted
GMMs (Section 4.2). That is, 1, = {Pi,u% Zi}r, and
Jy = {Pe, b, 2, Y, (note that the models differ only in their
means). The KL divergence kernel is then defined as,

K (s J) = ZK: (VEE;“/”;:;)T(\/EZ;“/”ﬂ‘zi)- (18)
k

=1

From the implementation point of view, this just means
that all the Gaussian means g, need to be normalized with
\/FTkE,:(l/ 2 before feeding them into SVM training. Again,
this is a form of variance normalization. Hence, even
though only the mean vectors of the GMM are included
in the supervector, the variance and weight information
of the GMM is implicitly present in the role of normalizing
the Gaussian supervector. It is also possible to normalize
all the adapted GMM supervectors to have a constant dis-
tance from the UBM (Dehak et al., 2008). As in the GLDS
kernel, the speaker model obtained via SVM optimization
can be compacted as a single model supervector.

A recent extension to Gaussian supervectors is based
on bounding the Bhattacharyya distance (You et al,
2009). This leads to a GMM—-UBM mean interval (GUMI)
kernel to be used in conjunction with SVM. The GUMI
kernel exploits the speaker’s information conveyed by
the mean of GMM as well as those by the covariance
matrices in an effective manner. Another alternative ker-
nel known as probabilistic sequence kernel (PSK) (Lee
et al., 2008; Lee et al., 2007) uses output values of the
Gaussian functions rather than the Gaussian means to
create a supervector. Since the individual Gaussians can
be assumed to present phonetic classes (Reynolds and
Rose, 1995), the PSK kernel can be interpreted as present-
ing high-level information related to phone occurrence
probabilities.

6.4. MLLR supervector SVM

In (Karam and Campbell, 2007; Stolcke et al., 2007), the
authors use Maximum likelihood linear regression (MLLR)
transformation parameters as inputs to SVM. MLLR
transforms the mean vectors of a speaker-independent
model as u, = Ap, + b, where g is the adapted mean vec-
tor, u, is the world model mean vector and the parameters
A and b define the linear transform. The parameters 4 and
b are estimated by maximizing the likelihood of the train-
ing data with a modified EM algorithm (Leggetter and
Woodland, 1995). Originally MLLR was developed for
speaker adaptation in speech recognition (Leggetter and
Woodland, 1995) and it has also been used in speaker rec-
ognition as an alternative to maximum a posterior (MAP)
adaptation of the universal background model (UBM)
(Mak et al., 2006).

The key differences between MLLR and Gaussian
supervectors are in the underlying speech model — phonetic
hidden Markov models versus GMMs, and the adaptation
method employed — MLLR versus maximum a posteriori
(MAP) adaptation. MLLR is motivated to benefit from
more detailed speech model and the efficient use of data
through transforms that are shared across Gaussians (Stol-
cke et al.,, 2007). Independent studies (Castaldo et al.,
2007b; Lei and Mirghafori, 2007) have shown that detailed
speech model improve the speaker characterization ability
of supervectors.

A similar work to MLLR supervectors is to use feature
transformation (FT) parameters as inputs to SVM (Zhu
et al., 2008), where a flexible FT function clusters trans-
formation matrices and bias vectors with different regres-
sion classes. The FT framework is based on GMM-UBM
rather than hidden Markov model, therefore, does not
require a phonetic acoustic system. The FT parameters
are estimated with the MAP criteria that overcome possi-
ble numerical problems with insufficient training. A
recent extension of this framework (Zhu et al., 2009)
includes the joint MAP adaptation of FT and GMM
parameters.

6.5. High-level supervector SVM

The GLDS-, GMM- and MLLR-supervectors are suit-
able for modeling short-term spectral features. For the pro-
sodic and high-level features (Subsections 3.4 and 3.5),
namely, features created using a tokenizer front-end, it is
customary to create a supervector by concatenating the
uni-, bi- and tri-gram (N = 1, 2, 3) frequencies into a vector
or bag-of-N-grams (Campbell et al., 2004; Shriberg et al.,
2005). The authors of Campbell et al. (2004) developed
term frequency log likelihood ratio (TFLLR) kernel that
normalizes the original N-gram frequency by 1/+/f;, where

1 1s the overall frequency of that N-gram. Thus the value of

rare N-grams is increased and the value of frequent
N-grams is decreased, thereby equalizing their contribution
in kernel computations.
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The high-level features created by a phone tokenizer, or
by quantization of prosodic feature values by binning
(Shriberg et al., 2005), are inherently noisy: tokenizer error
(e.g. phone recognizer error) or small variation in the origi-
nal feature value may cause the feature to fall into a wrong
category (bin). To tackle this problem, the authors of Fer-
rer et al. (2007) proposed to use soft binning with the aid of
Gaussian mixture model and use the weights of the Gaus-
sians as the features for SVM supervector.

6.6. Normalizing SVM supervectors

Two forms of SVM supervector normalizations are nec-
essary: normalizing the dynamic range of features and
intersession variability compensation. The first one, nor-
malizing the dynamic range, is related to the inherent prop-
erty of the SVM model. SVM is not invariant to linear
transformations in feature space and some form of vari-
ance normalization is required so that certain supervector
dimensions do not dominate the inner product computa-
tions. Often variance normalization is included in the defi-
nition of the kernel function and specific to a given kernel
as seen in the previous subsections. Kernel-independent
rank normalization has also been successfully applied (Stol-
cke et al., 2008). Rank normalization replaces each feature
by its relative position (rank) in the background data. For
useful insights on normalization, refer to (Stolcke et al.,
2008; Wan and Renals, 2005). Let us now turn our focus
to the other necessary normalization, the intersession vari-
ability compensation.

Nuisance attribute projection (NAP) is a successful
method for compensating SVM supervectors (Campbell
et al., 2005; Solomonoff et al., 2005). It is not specific to
some kernel, but can be applied to any kind of SVM super-
vectors. The NAP transformation removes the directions of
undesired sessions variability from the supervectors before
SVM training. The NAP transformation of a given super-
vector s is (Brimmer et al., 2007),

s =s—UU"s), (19)

where U is the eigenchannel matrix. The eigenchannel ma-
trix is trained using a development dataset with a large
number of speakers, each having several training utter-
ances (sessions). The training set is prepared by subtracting
the mean of the supervectors within each speaker and pool-
ing all the supervectors from different speakers together;
this removes most of the speaker variability but leaves ses-
sion variability. By performing eigen-analysis on this train-
ing set, one captures the principal directions of channel
variability. The underlying assumption is that the session
variability lies in a speaker-independent low-dimensional
subspace; after training the projection matrix, the method
can be applied for unseen data with different speakers.
The Eq. (19) then just means subtracting the supervector
that has been projected on the channel space. For practical
details of NAP, refer to (Briimmer et al., 2007; Fauve et al.,
2007).

Some of the dimensions removed by NAP may contain
speaker-specific information (Vogt et al., 2008). Moreover,
session compensation and SVM optimization processes are
treated independently from each other. Motivated with
these facts, discriminative variant of NAP has been studied
in (Burget et al., 2009; Vogt et al., 2008). In (Vogt et al.,
2008), scatter difference analysis (SDA), a similar method
to linear discriminant analysis (LDA), was used for opti-
mizing the NAP projection matrix, and in (Burget et al.,
2009), the session variability model was directly integrated
within the optimization criterion of the SVM; this leaves
the decision about usefulness of the supervector dimensions
for the SVM optimizer. This approach improved recogni-
tion accuracy over the NAP baseline in Burget et al.
(2009), albeit introducing a new control parameter that
controls the contribution of the nuisance subspace con-
straint. Nevertheless, discriminative session compensation
is certainly an interesting new direction for future studies.

Within-class covariance normalization (WCCN), another
SVM supervector compensation method similar to NAP,
was proposed in (Hatch and Stolcke, 2006). The authors
considered generalized linear kernels of the form
K(s1,82) = s1Rs,, where s; and s, are supervectors and R
is a positive semidefinite matrix. With certain assumptions,
a bound of a binary classification error metric can be min-
imized by choosing R = W', where W is the expected
within-class (within-speaker) covariance matrix. The
WCCN was then combined with principal component
analysis (PCA) in (Hatch et al., 2006) to attack the problem
of estimating and inverting W to large data sets. The key
difference between NAP and WCCN is the way how they
weight the dimensions in the supervector space (Stolcke
et al., 2007). The NAP method completely removes some
of the dimensions by projecting the supervectors to a
lower-dimensional space, whereas WCCN weights rather
than completely removes the dimensions.

6.7. Factor analysis techniques

In the previous subsection we focused on compensating
SVM supervectors. We will now discuss a different tech-
nique based on generative modeling, that is, Gaussian mix-
ture model (GMM) with factor analysis (FA) technique.
Recall that the MAP adaptation technique for GMMs
(Reynolds et al., 2000), as described in Section 4.2, adapts
the mean vectors of the universal background model
(UBM) while the weights and covariances are shared
between all speakers. Thus a speaker model is uniquely rep-
resented as the concatenation of the mean vectors, which
can be interpreted as a supervector.

For a given speaker, the supervectors estimated from
different training utterances may not be the same especially
when these training samples come from different handsets.
Channel compensation is therefore necessary to make sure
that test data obtained from different channel (than that of
the training data) can be properly scored against the
speaker models. For channel compensation to be possible,
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the channel variability has to be modeled explicitly. The
technique of joint factor analysis (JFA) (Kenny, 2006)
was proposed for this purpose.

The JFA model considers the variability of a Gaussian
supervector as a linear combination of the speaker and
channel components. Given a training sample, the
speaker-dependent and channel-dependent supervector M
is decomposed into two statistically independent compo-
nents, as follows

M =s+c, (20)

where s and ¢ are referred to as the speaker and channel
supervectors, respectively. Let d be the dimension of the
acoustic feature vectors and K be the number of mixtures
in the UBM. The supervectors M, s and ¢ live in a Kd-
dimensional parameter space. The channel variability is
explicitly modeled by the channel model of the form,

¢ = Ux, (21)

where U is a rectangular matrix and x are the channel fac-
tors estimated from a given speech sample. The columns of
the matrix U are the eigenchannels estimated for a given
dataset. During enrollment, the channel factors x are to
be estimated jointly with the speaker factors y of the speak-
er model of the following form:

s=m+ Vy+ Dz. (22)

In the above equation, m is the UBM supervector, V is a
rectangular matrix with each of its columns referred to as
the eigenvoices, D is Kd x Kd diagonal matrix and z is a
Kd x 1 column vector. In the special case y =10, s=
m + Dz describes exactly the same adaptation process as
the MAP adaptation technique (Section 4.2). Therefore,
the speaker model in the JFA technique can be seen as
an extension to the MAP technique with the eigenvoice
model Vy included, which has been shown to be useful
for short training samples.

The matrices U, ¥V and D are called the hyperparameters
of the JFA model. These matrices are estimated before-
hand on large datasets. One possible way is to first estimate
V followed by U and D (Kenny, 2006; Kenny et al., 2008).
For a given training sample, the latent factors x and y are
jointly estimated and followed by estimation of z. Finally,
the channel supervector ¢ is discarded and the speaker
supervector s is used as the speaker model. By doing so,
channel compensation is accomplished via the explicit
modeling of the channel component during training. For
detailed account of estimation procedure the reader should
refer to (Kenny, 2006; Kenny et al., 2008). For comparing
various scoring methods, refer to (Glembek et al., 2009).

The JFA model dominated the latest NIST 2008 speaker
recognition evaluation (SRE) (NIST, 2008) and it was pur-
sued further in the Johns Hopkins University (JHU) sum-
mer 2008 workshop (Burget et al., 2009). Independent
evaluations by different research groups have clearly indi-
cated the potential of JFA. The method has a few practical
deficiencies, however. One is sensitivity to training and test

lengths (and their mismatch), especially for short utter-
ances (10-20 s). The authors of Burget et al. (2009) hypoth-
esized that this was caused by within-session variability
(due to phonemic variability) rather than inter-session var-
iability captured by the baseline JFA. The authors then
extended the JFA model by explicitly adding a model of
the within-session variability. Other choices to tackle the
JFA dependency on utterance length were studied as
well — namely, utilizing variable length development utter-
ances to create stacked channel matrix. The extended JFA
and the stacking approach both showed improvement over
the baseline JFA when the training and test utterance
lengths were not matched, hence improving the generaliza-
tion of JFA for unknown utterance lengths. The within-ses-
sion variability modeling, however, has a price: a phone
recognizer was used for generating data for within-session
modeling. It may be worthwhile to study simplified
approach — segmenting the data into fixed-length chunks —
as proposed in (Burget et al., 2009).

Given the demonstrated excellent performance of the
JFA compensation and Gaussian supervector SVMs
(Campbell et al., 2006b), it seems appropriate to ask
how they compare with each other, and whether they
could be combined? These questions were recently
addressed in (Dehak et al., 2008; Dehak et al., 2009). In
(Dehak et al., 2008) the authors compared JFA and
SVM both with linear and nonlinear kernels, compensated
with nuisance attribute projection (NAP). They concluded
that JFA without speaker factors gives similar accuracy to
SVM with Gaussian supervectors; however, JFA outper-
formed SVM when speaker factors were added. In (Dehak
et al., 2009) the same authors used the speaker factors of
the JFA model as inputs to SVM. Within-class covariance
normalization (WCCN) (Stolcke et al., 2007) was used
instead of NAP. The results indicated that using the
speaker factors in SVM is effective but the accuracy was
not improved over the JFA-compensated GMM. The
combined JFA-SVM method, however, results in faster
scoring.

6.8. Summary: which supervector method to use?

Given the multiple choices to create a supervector and to
model intersession variability, which one to choose for
practical use? It is somewhat difficult to compare the meth-
ods in literature due to differences in data set selections,
parameter settings and other implementation details. How-
ever, there are some common practice that we can follow.
To facilitate discussion, we present here the results of the
latest NIST 2008 speaker recognition evaluation submis-
sion by the 14U consortium (Li et al., 2009). All the classi-
fiers of 14U used short-term spectral features and the focus
was in the supervectors classifiers. Three well-known meth-
ods — Gaussian mixture model-universal background
model (GMM-UBM) (Reynolds et al., 2000), generalized
linear discriminant sequence (GLDS) kernel SVM (Camp-
bell et al., 2006a) and Gaussian supervector (GSV) kernel
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Table 1

Performance of individual classifiers and their fusion of 14U system on
14U’s telephone quality development dataset (Li et al, 2009).
UNC = Uncompensated, EIG = Eigenchannel, JFA = Joint factor anal-
ysis, GLDS = Generalized linear discriminant sequence, GSV = Gaussian
supervector, FT = Feature transformation, PSK = Probabilistic sequence
kernel, BK = Bhattacharyya kernel. All the SVM-based systems use
nuisance attribute projection (NAP) compensation.

Tuning set EER  Eval. set EER
(%) (%)

Gaussian mixture model

1. GMM-UBM (UNC) 8.45 8.10

2. GMM-UBM (EIG) (Kenny 5.47 5.22
et al., 2008)

3. GMM-UBM (JFA) (Kenny 3.19 3.11
et al., 2008)

Support vector machine with different kernels

4. GLSD-SVM (Campbell et al., 4.30 4.44
2006a)

5. GSV-SVM (Campbell et al., 4.47 4.43
2006b)

6. FT-SVM (Zhu et al., 2008) 4.20 3.66

7. PSK-SVM (Lee et al., 2008) 5.29 4.77

8. BK-SVM (You et al., 2009) 4.46 5.16

Fusing systems 2-8 2.49 2.05

SVM (GSV-SVM) (Campbell et al., 2006b) were studied.
In addition, three novel SVM kernels were proposed: fea-
ture transformation kernel (FT-SVM) (Zhu et al., 2009),
probabilistic sequence kernel (PSK-SVM) (Lee et al.,
2008; Lee et al., 2007) and Bhattacharyya kernel (BK-
SVM) (You et al., 2009).

Table 1 reports the performance of individual systems,
together with the weighted summation fusion of the classi-
fiers. The accuracy is measured in equal error rate (EER), a
verification error measure that gives the accuracy at deci-
sion threshold for which the probabilities of false rejection
(miss) and false acceptance (false alarm) are equal (see Sec-
tion 7).

From the results in Table 1 it is clear that intersession
compensation significantly improves the accuracy of the
GMM-UBM system. It can also be seen that the best indi-
vidual classifier is the GMM-UBM system with JFA com-
pensation, and that JFA outperforms the eigenchannel
method (which is a special case of JFA). Finally, fusing
all the session-compensated classifiers improves accuracy
as expected.

Even though JFA outperforms the SVM-based meth-
ods, for practitioners we recommend to start with the
two simplest approaches at this moment: GLDS-SVM
and GSV-SVM. The former does not require much optimi-
zation whereas the latter comes almost as a by-product
when a GMM-UBM system is used. Furthermore, they
do not require as many datasets as JFA does, are simple
to implement and fast in computation. They should be aug-
mented with nuisance attribute projection (NAP) (Briim-
mer et al, 2007) and test normalization (T-norm)
(Auckenthaler et al., 2000).

7. Performance evaluation and software packages
7.1. Performance evaluation

Assessing the performance of new algorithms on a com-
mon dataset is essential to enable meaningful performance
comparison. In early studies, corpora consisted of a few or
at the most a few dozen speakers, and data was often self-
collected. Recently, there has been significant effort direc-
ted towards standardizing the evaluation methodology in
speaker verification.

The National Institute of Standards and Technology
(NIST)* provides a common evaluation framework for
text-independent speaker recognition methods (Przybocki
et al., 2007). NIST evaluations include test trials under
both matched conditions such as telephone only, and
unmatched conditions such as language effects (matched
languages vs unmatched languages), cross channel and
two-speaker detection. NIST has conducted speaker recog-
nition benchmarking on an annual basis since 1997, and
registration is open to all parties interested in participating
in this benchmarking activity. During the evaluation, NIST
releases a set of speech files as the development data to the
participants. At this initial phase, the participants do not
have access to the “ground truth”, that is, the speaker
labels. Each participating group then runs their algorithms
“blindly” on the given data and submits the recognition
scores and verification decisions. NIST then evaluates the
performances of the submissions and the results are dis-
cussed in a follow-up workshop. The use of “blind” evalu-
ation data makes it possible to conduct an unbiased
comparison of the various algorithms. These activities
would be difficult without a common evaluation dataset
or a standard evaluation protocol.

Visual inspections of the detection error trade-off (DET)
curves (Martin et al., 1997) and equal error rate (EER) are
commonly used evaluation tools in the speaker verification
literature. An example of DET curve is shown in Fig. 12.
The problem with EER is that it corresponds to an arbi-
trary detection threshold, which is not a likely choice in a
real application where it is critical to maintain the balance
between user convenience and security. NIST uses a detec-
tion cost function (DCF) as the primary evaluation metric
to assess speaker verification performance:

DCF(0) = 0.1 X Puiss(@) + 0.99 x Py, (6). (23)

Here Piss(©) and P, (©) are the probabilities of miss (i.e.
rejection of a genuine speaker) and false alarm (i.e. accep-
tance of an impostor), respectively. Both of them are func-
tions of a global (speaker-independent) verification
threshold 6.

Minimum DCF (MinDCF), defined as the DCF value at
the threshold for which (23) is smallest, is the optimum
cost. When the decision threshold is optimized on a

3 http://nist.gov/.
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Fig. 12. Example of detection error trade-off (DET) plot presenting
various subsystems and a combined system using score-level fusion.

development set and applied to the evaluation corpus, this
produces actual DCF. Therefore, the difference between the
minimum DCF and the actual DCF indicates how well the
system is calibrated for a certain application and how
robust is the threshold setting method. For an in-depth
and thorough theoretical discussion as well as the alterna-
tive formulations of application-independent evaluation
metrics, refer to (Briimmer and Preez, 2006).

While the NIST speaker recognition benchmarking con-
siders mostly conversational text-independent speaker ver-
ification in English, there have been a few alternative
evaluations, for instance the NFI-TNO evaluation* which
considered authentic forensic samples (mostly in Dutch),
including wiretap recordings. Another evaluation, specifi-
cally for Chinese, was organized in conjunction with the
Fifth International Symposium on Chinese Spoken Lan-
guage Processing (ISCSLP’06).> This evaluation included
open-set speaker identification and text-dependent verifica-
tion tasks in addition to text-independent verification.

Some of the factors affecting speaker recognition accu-
racy in the NIST and NFI-TNO evaluations have been
analyzed in (Leeuwen et al., 2006). It is widely known that
cross-channel training and testing display a much lower
accuracy compared to that with same channel. Including
different handsets in the training material also improves
recognition accuracy. Another factor significant to perfor-
mance is the duration of training and test utterances. The
greater the amount of speech data used for training and/
or testing, the better the accuracy. Training utterance dura-

* http://speech.tm.tno.nl/aso/.
5 http://www.iscslp2006.org/.

tion seems to be more significant than test segment
duration.

7.2. Software packages for speaker recognition

As can be seen throughout this article, the state-of-the-
art speaker recognition methods are getting more and more
advanced and they often combine several complementary
techniques. Implementing a full system from scratch may
not be meaningful. In this subsection we point out a few
useful software packages that can be used for creating a
state-of-the-art speaker recognition system.

Probably the most comprehensive and up-to-date soft-
ware package is ALIZE toolkit®, an open-source software
developed at Université d’Avignon, France. For more
details, the interested reader is referred to (Fauve et al.,
2007).

For research purposes, it is possible to build up a com-
plete speaker recognition system using various different
software packages. The Matlab software by MathWorks
Inc. is excellent especially for developing new feature
extraction methods. Octave’ is an open-source alternative
to Matlab is, and there are a plenty of free toolboxes for
both of them such as Statistical Pattern Recognition Tool-
box® and NetLab.? Aside from Matlab/ Octave, the Hidden
Markov Model Toolkit (HTK)' is also popular in statisti-
cal modeling, whereas Torch!! software represents state-of-
the-art SVM implementation.

For score fusion of multiple sub-systems, we recom-
mend the FoCal toolkit.'"> For evaluation purposes, such
as plotting DET curves, we recommend the DETware tool-
box (for Matlab) by NIST.!* A similar tool but with more
features is SRETools.'

8. Future horizons of speaker recognition

During the past 10 years, speaker recognition commu-
nity has made significant advances in the technology. In
summary, we have selected a few of the most influential
techniques that have been proven to work in practice in
independent studies, or shown significant promise in the
past few NIST technology evaluation benchmarks:

e Universal background modeling (UBM) (Reynolds
et al., 2000).

e Score normalization, calibration, fusion (Auckenthaler
et al., 2000; Burget et al., 2007).

% Now under “Mistral” platform for biometrics authentication. Avail-
able at: http://mistral.univ-avignon.fr/en/.
7 http://www.gnu.org/software/octave/.
8 http://cmp.felk.cvut.cz/cmp/software/stprtool/.
° http://www.ncrg.aston.ac.uk/netlab/index.php.
1% http://htk.eng.cam.ac.uk/.
" http://www.torch.ch/.
12 http://niko.brummer.googlepages.com/focal.
13 http://www.itl.nist.gov/iad/mig/tools/DETware_v2.1.targz.htm.
14 http://sretools.googlepages.com/.
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e Sequence kernel SVMs (Campbell et al., 2006a; Camp-
bell et al., 2006b).

e Use of prosodics and high-level features with SVM
(Campbell et al., 2004; Shriberg et al., 2005; Stolcke
et al., 2007).

e Phonetic normalization using ASR (Castaldo et al.,
2007b; Stolcke et al., 2007).

e Explicit session variability modeling and compensation
(Briimmer et al., 2007; Castaldo et al., 2007b; Hatch
et al., 2006; Kenny et al., 2008).

Even though effective, these methods are highly data-
driven and massive amounts of data are needed for training
the background models, cohort models for score normali-
zation, and modeling session and speaker variabilities.
The data sets need to be labeled and organized in a con-
trolled manner requiring significant human efforts. It is
not trivial to decide how to split the system development
data for UBM training, session modeling, and score nor-
malization. If the development data conditions do not
match to those of the expected operation environment,
the accuracy will drop significantly, sometimes to unusable
level. It is clear that laborious design of data set splits can-
not be expected, for instance, from forensic investigators
who just want to use speaker recognition software in “turn-
key” fashion.

For transferring the technology into practice, therefore,
in future it will be important to focus on making the meth-
ods less sensitive to selection of the data sets. The methods
also require computational simplifications before they can
be used in real-world applications such as in smart cards
or mobile phones, for instance. Finally, the current tech-
niques require several minutes of training and test data to
give satisfactory performance, that presents a challenge
for applications where real-time decision is desired. For
instance, the core evaluation condition in recent NIST
benchmarkings uses about 2.5 min of speech data. New
methods for short training and test utterances (less than
10 s) will be needed. The methods for long data do not
readily generalize to short-duration tasks as indicated in
(Bonastre et al., 2007; Burget et al., 2009; Fauve et al.,
2008).

The NIST speaker recognition evaluations (Leeuwen
et al., 2006; Przybocki et al., 2007) have systematized
speaker recognition methodology development and con-
stant positive progress has been observed in the past years.
However, the NIST evaluations have mostly focused on
combating technical error sources, most notably that of
training/test channel mismatch (for instance, using differ-
ent microphones in training and test material). There are
also many other factors that have impacts on the speaker
recognition performance. We should also address human-
related error sources, such as the effects of emotions, vocal
organ illness, aging, and level of attention. Furthermore,
one of the most popular questions asked by laymen is
“what if someone or some machine imitates me or just
plays previously recorded signal back?”. Before considering

speaker recognition in large-scale commercial applications,
the research community must answer such questions. These
questions have been considered in some studies, mostly in
the context of phonetic sciences, but always for a limited
number of speakers and using non-public corpora. As
voice transformation technique advances, low cost voice
impersonation becomes possible (Bonastre et al., 2007; Pel-
lom and Hansen, 1999). This opens up a new horizon to
study attack and defense in voice biometrics.

Much of the recent progress in speaker recognition is
attributed to the success in classifier design and session
compensation, which largely rely on traditional short-term
spectral features. These features were introduced nearly 30
years ago for speech recognition (Davis and Mermelstein,
1980). Despite there is a strong belief that temporal, pro-
sodic and high-level features are salient speaker cues, we
have not benefited much from them. So far, they are play-
ing a secondary role complementary to short-term spectral
features. This warrants further investigation, especially as
to how temporal and prosodic features can capture high-
level phenomena (robust) without using computationally
intensive speech recognizer (practical). It remains a great
challenge in the near future to understand what features
to exactly look for in speech signal.

9. Summary

We have presented an overview of the classical and new
methods of automatic text-independent speaker recogni-
tion. The recognition accuracy of current speaker recogni-
tion systems under controlled conditions is high. However,
in practical situations many negative factors are encoun-
tered including mismatched handsets for training and test-
ing, limited training data, unbalanced text, background
noise and non-cooperative users. The techniques of robust
feature extraction, feature normalization, model-domain
compensation and score normalization methods are neces-
sary. The technology advancement as represented by
NIST evaluations in the recent years has addressed several
technical challenges such as text/language dependency,
channel effects, speech durations, and cross-talk speech.
However, many research problems remain to be
addressed, such as human-related error sources, real-time
implementation, and forensic interpretation of speaker
recognition scores.
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