344 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 17, NO. 2, FEBRUARY 2009

Particle Swarm Optimization for Sorted
Adapted Gaussian Mixture Models

Rahim Saeidi, Hamid Reza Sadegh Mohammadi, Member, IEEE, Todor Ganchev, Member, IEEE, and
Robert David Rodman

Abstract—Recently, we introduced the sorted Gaussian mixture
models (SGMMs) algorithm providing the means to tradeoff per-
formance for operational speed and thus permitting the speed-up
of GMM-based classification schemes. The performance of the
SGMM algorithm depends on the proper choice of the sorting
function, and the proper adjustment of its parameters. In the
present work, we employ particle swarm optimization (PSO) and
an appropriate fitness function to find the most advantageous
parameters of the sorting function. We evaluate the practical
significance of our approach on the text-independent speaker
verification task utilizing the NIST 2002 speaker recognition
evaluation (SRE) database while following the NIST SRE ex-
perimental protocol. The experimental results demonstrate a
superior performance of the SGMM algorithm using PSO when
compared to the original SGMM. For comprehensiveness we also
compared these results with those from a baseline Gaussian mix-
ture model-universal background model (GMM-UBM) system.
The experimental results suggest that the performance loss due
to speed-up is partially mitigated using PSO-derived weights in a
sorted GMM-based scheme.

Index Terms—Gaussian mixture model-universal background
model (GMM-UBM), particle swarm optimization (PSO), sorted
GMM, speed-up, text-independent speaker verification.

I. INTRODUCTION

Gaussian mixture model (GMM) is a common baseline

system in speaker recognition applications [1]. Such a
system is normally used as a reference when one needs to
evaluate the effectiveness of novel algorithms or modeling
approaches. The GMM is a statistical approach for text-inde-
pendent speaker recognition with a high computational load
during the test phase. A popular method for training GMM:s is

Manuscript received March 26, 2008; revised October 05, 2008. Current ver-
sion published January 14, 2009. This work was supported by the Iranian Re-
search Institute for Electrical Engineering, ACECR. The associate editor coor-
dinating the review of this manuscript and approving it for publication was Dr.
Richard C. Rose.

R. Saeidi and H. R. S. Mohammadi are with the Iranian Research Institute
for Electrical Engineering (IRIEE), Academic Center for Education, Culture,
and Research (ACECR), Tehran, Iran (e-mail: rahim.saeidi@gmail.com;
h.sadegh@ijece.org).

T. Ganchev is with the Wire Communications Laboratory, Electrical and
Computer Engineering Department, University of Patras, 26 500 Rio-Patras,
Greece (e-mail: tganchev @ieee.org).

R. D. Rodman is with the Department of Computer Science, North Carolina
State University, Raleigh, NC 27695-8206 USA (e-mail: rodman@ncsu.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TASL.2008.2010278

based on the maximum-likelihood (ML) criterion, which has
been shown to outperform several other existing techniques.
In state-of-the-art systems, speaker-dependent GMMs are de-
rived from a speaker-independent universal background model
(UBM) by adapting the UBM components with maximum a
posteriori (MAP) adaptation using speakers’ personal training
data [2]. This method constructs a natural association between
the UBM and the speaker models. For each UBM Gaussian
component there is a corresponding adapted component in the
speaker’s GMM. In the verification phase each test vector is
scored against all UBM Gaussian components, and a small
number of the best-scoring components in the corresponding
speaker-dependent adapted GMM are chosen. The decision
score is computed as the log likelihood ratio (LLR) of the
speaker GMM and the UBM scores. Because of the need to
score twice—against both the UBM and speaker-dependent
GMM, and the tendency to have large-sized GMMs—the
computational load during the test phase is high.

Chan et al. have categorized the existing methods for fast
GMM computation in four layers, referred to as: frame-layer,
GMM-layer, Gaussian-layer, and component-layer [3]. Here,
we consider the Gaussian-layer scheme of this categorization
as a reference point to describe the SGMM algorithm [4]. The
speed-up concept of a GMM-UBM-based system with prepro-
cessing was previously investigated for speaker verification sys-
tems in [5], [6]. In the literature, various speed-up approaches
were reported to reduce the computational complexity, such as
the use of Gaussian selection (hash GMM) [7], vector quantiza-
tion (VQ) pre-classifier [8], structural GMM [9], tree-structured
Gaussian densities [10], pruning methods [11], [12], approxi-
mated cross entropy (ACE) [13], and discriminative mixture se-
lection [14]. These methods degrade the system performance to
some extent in exchange for gaining speed-up.

In the present contribution, we build on the SGMM algorithm
[4], which belongs to the group of methods operating in the
Gaussian-layer. Investigation of the SGMM speed-up concept
for GMM-UBM-based classification schemes on the speaker
verification task is documented in [5], [6]. Here, we elaborate
further on the SGMM algorithm by introducing an efficient
scheme for adjusting the parameters of the sorting function by
means of the PSO algorithm [16].

The remainder of this paper is organized as follows. In
Section II, the GMM-based classification method and its sorted
variant, SGMM, are described. The PSO algorithm is explained
in Section III. Section IV presents the computer simulation and
experimental results. Finally, Section V concludes the paper.

1558-7916/$25.00 © 2009 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 18, 2009 at 04:23 from IEEE Xplore. Restrictions apply.

SAEIDI et al.: PARTICLE SWARM OPTIMIZATION FOR SORTED ADAPTED GMMs

II. GMM-UBM-BASED SPEAKER VERIFICATION

A. Principals

Given a segment of speech X and a hypothesized speaker
S, the task of speaker verification—also referred to as one-
speaker detection—is to determine whether X was spoken by
S. (Throughout this paper we refer to X as a speech segment
or, alternatively, as a sequence of feature vectors extracted from
a speech segment. In the later case, x; is used to represent one
of the feature vectors.) An implicit assumption often used is that
X contains speech from only one speaker. The single-speaker
detection task can be stated as a basic hypothesis test between
two hypotheses.

Hy X is from the hypothesized speaker S.
H; X is not from the hypothesized speaker S.

The optimum test to decide between these two hypotheses is a
likelihood ratio (LR) test given by

p(X[Ho) {2 0,
p(X|Hy) | <0,

Accept Hy)
Accept Hy

where p (X |Hy) is the probability density function for the
hypothesis Hy evaluated for the observed speech segment X,
also referred to as the likelihood of the hypothesis H given
the speech segment. The likelihood function for H; is likewise
p(X|Hy). The decision threshold for accepting or rejecting
Hy is 6. The main goal in designing a speaker detection system
is to determine techniques for computing values for the two
likelihoods p(X |Hy) and p (X |Hy) [17].

The output of the speech parameterization stage is typi-
cally a sequence of feature vectors. Mathematically, a model
denoted by A, represents Hy, which characterizes the hy-
pothesized speaker S in the feature space.)\% represents the
alternative hypothesis, H1. The likelihood ratio statistic is then

(X|)\th)/p(X|/\ —)- Often, the logarithm of this statistic is
used giving the log- hkehhood ratio as

AX) =Tog [p (X Auyp)| —Tog [p (XIiz)] @

‘While the model for Hy is well defined and can be estimated
using training speech from .S, the model for A\;— - is less well
defined since it potentially must represent the entlre space of
possible alternatives to the hypothesized speaker.

The widely used approach to the alternative hypothesis mod-
eling is to pool speech from a large number of speakers and train
a single model. Various terms for this single model are a gen-
eral model, a world model, and a UBM [2]. Given a collection of
speech samples from a large number of speakers which are rep-
resentative of the population of speakers expected during veri-
fication, a single model Aygy is trained to represent the alter-
native hypothesis. The main advantage of this approach is that
a single speaker-independent model can be trained once for a
particular task and then used for all hypothesized speakers in
the same task. It is also possible to use multiple background
models tailored to specific sets of speakers. The use of a single

345

background model has become the predominant approach used
in speaker verification systems.

B. Gaussian Mixture Models

Having X = {x;},_, where x, is a D-dimensional feature
vector at instance ¢ and T is the total number of feature vectors,
an important step in the implementation of the aforementioned
likelihood ratio is the selection of the actual likelihood function
p (x¢|A). The choice of this function largely depends on the fea-
tures being used as well as on the specifics of the application.
The mixture density used for the likelihood function is defined
[2] as follows:

Xt |/\ Z W;P; Xt 3)

The density is a weighted linear combination of M unimodal
Gaussian densities p; (x;), each parameterized by a D x 1 mean
vector p; and a D X D covariance matrix ¥;. Here, p; (x;) are
defined as

1
(2m) /2 |5/

1
X €exp {_E(Xt - l"i)lzfl(xt - ”’i)} G

Pi (Xt) =

The mixture weights, w;, further satisfy the constraint
ZMl w; = 1. While the general form of the model supports
full covariance matrices; that is, a covariance matrix with all its
elements, typically only diagonal covariance matrices are used
in order to reduce the number of adjustable parameters, hence
the amount of computation [2]. Collectively, the parameters
of the density model are denoted as ¥ = {w;, p;, 0;}, where
i=(1,...,M).

Given a collection of training vectors, maximum-likelihood
model parameters are estimated using the expectation-maxi-
mization (EM) algorithm. The EM algorithm iteratively refines
the GMM parameters to monotonically increase the likelihood
of the estimated model for the observed feature vectors. Under
the assumption of independent feature vectors, the log-like-
lihood of a model A for a sequence of T feature vectors is
computed as follows:

T
=7 Z log[p(x: [A)]. (5)

C. Adapted GMM

As discussed earlier, the dominant approach to background
modeling is to use a single, speaker-independent background
model to represent p(X| ;). Using a GMM as the likelihood
function, the background model is implemented typically as a
large GMM trained to represent the speaker-independent dis-
tribution of features. Specifically, the training set should be se-
lected in such a way as to reflect the expected alternative speech
to be encountered during recognition.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 18, 2009 at 04:23 from IEEE Xplore. Restrictions apply.

346 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 17, NO. 2, FEBRUARY 2009

In the original GMM scheme [1], the speaker model is trained
using the EM algorithm on the speaker’s enrollment data. In the
adapted GMM, the speaker model is derived by adapting the pa-
rameters of the background model using the speaker’s training
speech and a form of Bayesian adaptation known as maximum
a posteriori (MAP) estimation [18]. The rationale underlying
this method is to derive the speaker’s model by updating the
well-trained parameters in the background model via adaptation
as opposed to the standard approach, where the maximum like-
lihood training of a model for the speaker occurs independently
of the background model [1]. This provides a tighter association
between the speaker’s model and the background model that not
only produces better performance than decoupled models, but,
as discussed later in this section, also allows for a fast-scoring
technique. Evidence shows that instead of adapting all UBM
parameters, adapting only the mean vectors provides the best
performance [2].

The adapted GMM approach also leads to a fast-scoring tech-
nique. Computing the LLR requires computing the likelihood
for the speaker and background models for each feature vector,
which can be computationally expensive for large mixture or-
ders. However, the fact that the hypothesized speaker model
was adapted from the background model allows a faster scoring
method because the components of the adapted GMM retain
a correspondence with the mixtures of the background model
so that vectors close to a particular mixture in the background
model will also be close to the corresponding mixture in the
speaker model.

The fast-scoring procedure operates as follows. For each
feature vector, determine the top-C' scoring mixtures in the
background model and compute the background model likeli-
hood using only these top-C' mixtures. Next, score the vector
against only the corresponding C' components in the adapted
speaker model to evaluate the speaker’s likelihood. For a
background model with M mixtures, this requires only M + C
Gaussian computations per feature vector compared to 2M
Gaussian computations for normal likelihood ratio evaluation.
When there are multiple hypothesized speaker models for each
test segment, the savings become even greater. Typically, a
value of C' = 5 is used.

D. Sorted GMM

The sorted Gaussian mixture model (refer to Fig. 1) is a re-
cently reported method for the fast scoring GMM [4], [6]. Given

related to the speech frame at the time instance ¢, and
a GMM of order M, we define a sorting parameter

a sorting function, chosen in such a way that neighboring target
feature vectors provide almost neighboring values of s;. The
mixtures of the GMM are sorted in ascending order of the asso-
ciated sorting parameter of their mean vectors according to the
vector Sypnm = [81, §9, 00, SA/[]T with 51 < 59 < +++ < sy7.
To compute the likelihood of an unknown input feature vector
we first scalar quantize s; by Sypy giving s; 1 < ¢ < M.
We name ¢ central index. Next, we evaluate the input feature
vector’s likelihood using the ordinary method by an extensive
local search in the neighborhood of the central index ¢ which

includes a subset of M mixtures where My < M. For example,
only the mixtures with indices within the range of 2 — k + 1 to
i + k may be searched, where k is an offset value (k = M,/2).
M, is called the search width.

To achieve a better performance for the SGMM, we always
search 2k mixtures. For example, for the case 7 < k, the first
2k mixtures in the GMM are considered for local search, and
for i > M — k the last 2k mixtures are evaluated for the like-
lihood calculation. Generally, the computational complexity of
this method grows linearly with M, which normally is set to be
less than M. In Fig. 1, we summarize the structure of a SGMM
system, and in Fig. 2 we illustrate the mixture selection process.

In previous work [4], [6], we relied on the sorting function
defined as follows:

D
5¢ = f(x¢) = Zl’it- (6)
i=1

This sorting function will be considered as the baseline for
comparison with the PSO-optimized one.

The SGMM method can be applied to any GMM, such as
a UBM, without any further training process. However, the
overall performance can be further enhanced if the following
optimization algorithm is used to optimize the GMM.

Step 1) Initialization: Set k =0, A\, = Ayswm, Where Aypm
is the EM derived GMM. Calculate the sorting pa-
rameter related to each mixture and sort the GMM
in ascending order of the sorting parameter.

Step 2) Likelihood Estimation: Calculate the likelihood of
the entire training database with \; mixtures using
the SGMM method.

Step 3) GMM Adaptation: Compute the A1 GMM. This
is done simply by adapting each mixture from Ay
using associated training vectors found in the pre-
vious step.

Step 4) Sorting: Recalculate the sorting parameters related
to the mixtures of the new GMM A1 and sort the
GMM in ascending order of the sorting parameter.
Also, setk = k + 1.

Step 5) Termination: If the total likelihood is higher than
a certain threshold the algorithm terminates; other-
wise, go back to Step 2.

After the optimization stage with the optimized UBM at
hand, the speakers’ GMMs are simply adapted from the opti-
mized UBM in the same way the ordinary GMM-UBM training
is performed. The memory storage required for the SGMM is
(2D + 2)/(2D + 1) times that needed for the ordinary GMM.
The negligible extra storage is required to store the sorting
parameter quantization table. On the other hand, the number
of Gaussian computations (which is used as a measure of
speed-up) is reduced to M + C (where C is the number of top
scoring mixtures whose corresponding mixtures are evaluated
in the speaker GMM). This is less than M + C which is the
number of Gaussian computations in the baseline system. Thus,
the speed-up factor of the SGMM algorithm is approximately
equal to (M +C)/(M, + C). Here we ignore the computations
used to find the M, Gaussians which are negligible compared
to that of the Gaussian evaluation computations. To incorporate

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 18, 2009 at 04:23 from IEEE Xplore. Restrictions apply.

SAEIDI et al.: PARTICLE SWARM OPTIMIZATION FOR SORTED ADAPTED GMMs

347

7
X= {X, }:71 N
. e e Likelihood Estimation: Calculate likelihood of GMM using
J z 3 . g .
Feature Tra.m i Aupa [n:tlall{aflon 5 .0 plM SGMM method (an example given in Fig. 2) and associate each
N . > withEM |7 * Setd,, as A, ={wlu I T e he retrain list with mixtures that exist in t}
extraction alsorithii Set k=0 feature vector in the retrain list with mixtures that exist in the
Y > search width
&
v
Development data Sorting functi Set k=k+1 and - —
o ‘1"% 'Uf_lt 10n Susy = N reorder S GMM adaptation: Gl.vcn T, .vc.ctors.(.ﬂ <T) as the
eyaluation .) to have training vectors associated with i-th mixture (mixture
f(iseeer) 81582500 8] retrain list), X’ = {x'!’ , X' < X where the mean
EA Yl heilal 558 <S8y it b P ¢ e

No

of each mixture 7 is adu’i:tcd with these feature vectors:

Yes aximum iteration

reached?

M
0 kil N0
A= {wl L EN e

M
pGIxL) =wp, (x)/ 2w p(x)
Jj=1

v
Final UBM selected as:
Sorted UBM =arg max p(X|Ax)

k
With appropriate sorting values: S,

A .) U .
m =2, plIx, %), E(X')=3 plilx,2)X
=1 =1

et = B (X)) +—S—p
n,+r n+r

i

(a) sorting in UBM training

Compute sortin|
Feature p 2

S =[8150es Sppees

57

For each s, find closest value in Suw and

value
(X Xpsees Xpy,)

Test utterance —»| A
extraction

Hypothesized model
Background model

e

name its index as Central Index (ci,)

ci =[ci|,..., Ci,..., Ci;]
1<ci <M
Make a table of the best-matched indices and mixtures
as evaluated in the UBM for each feature vector
(M Jborder of ci,pcr feature vector)

. I'xM, lookuptable

Log Likelihood estimation
=

1
LLR(2) = llog [(%, 4,) ~log [(x, A7)

hyp
t=1

v

Decision score

(b) Sorted GMM in test phase

Fig. 1.
m, m m m, m, n n m
Mixtures and their corresponding sorting values 1 L 3 4 » b 1 $
(for an eight-mixture UBM example) S S, S Sy 8 S5 S Sg
Mixtures sorted based on the ascending m, n, my m mg ny mg m,
order of their sorting values s, <s, <...<s,
to form M P ! S, $7 Ss S Sg S S S,
Sugy = {SII!\I‘ }:=| A I N AN I A I AN I A O O O
Some mixtures are selected for Gaussian]]
evaluali.on dependir{g. on thAe search width (e,g..v 4) m, | |m, mg| | my mg | | my mg| | my
and sorting value of input feature vector. 5, = f(x,)
regarding to Central Index=arg min|s, o, —s,| S, | 87 Ss || S S | |5 Se | | S4
i L1 I S) SO | | B O
Central index
Fig. 2. Example of SGMM algorithm performance for a simple GMM of

order 8.

Tnorm in the score calculation, N Tnorm speakers are consid-
ered; therefore, the speed-up factor of SGMM is reduced to
(M + NC)/(Ms+ NC).

III. PARTICLE SWARM OPTIMIZATION

Swarm intelligence (SI) is an innovative distributed intelli-
gence paradigm for solving optimization problems that orig-
inally took its inspiration from the biological phenomena of
swarming, flocking, and herding [19]. Particle swarm optimiza-
tion (PSO) incorporates group behaviors observed in flocks of
birds, schools of fish, swarms of bees, and even human so-
cial behavior, from which the idea emerged. PSO is a popula-

Simplified flow diagram of the SGMM algorithm. (a) Training stage. (b) Test stage.

tion-based optimization tool which can be easily implemented
and applied to solve various function optimization problems, or
the problems that can be transformed into function optimiza-
tion problems. As an algorithm, the main strength of PSO is its
fast convergence, which compares favorably with many global
optimizations. Following the original PSO [15], various modifi-
cations and improvements have been reported in the literature to
enhance its stability and performance. In the present work, we
rely on the PSO of Clerc [16], which is known with its robust
operation.

The PSO algorithm is employed here in a scheme for adjust-
ment of the weight coefficients of the sorting function outlined
in Section II-D. With this optimization scheme, we aim at es-
timating data-driven importance factors for the different mem-
bers of the speech feature vector, hoping to enhance the overall
speaker verification performance. Before describing in details
the optimization of the sorting function (Section III-B), for the
purpose of comprehensiveness we will outline briefly the basics
of the PSO algorithm.

A. PSO Algorithm Description

We adhere to standard PSO which is described in [16]. Let
h(y) : R™ — R be the cost function. Let there be n particles,
each with associated positions y; € R™ and velocities v; €

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 18, 2009 at 04:23 from IEEE Xplore. Restrictions apply.

348 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 17, NO. 2, FEBRUARY 2009

R™, i =1,...,n.Lety; be the current best position (PBest) of
each particle and let g; be the global best (GBest). In summary
the PSO algorithm consists of the following steps.
¢ Initialize y; and v; for all 2. One common choice is to take
vij € U(aj,b;)and v, = Oforalliandj = 1,...,m,
where U is a uniform pdf, and a;, b; are the limits of the
search domain in each dimension.
e yi—yiand g «— argminh(y;),i=1,...,n
* While not converged: "

Forl1 <i<mn
oy, — Yyi+ Vi
OV — wV;+ 111 Q (¥ —¥i) + c2r2 @ (& — yi)-
olf h(yl) < h(yl) Then }A’Z — Y.
oIf h(y;) < h(g) Then § — y;.

In the above equations, the symbol “ ® ”

ment-by-element vector multiplication.

* w is an inertia constant. It is usual to decrease w linearly
from an initial value to a final value while running itera-
tions.

e ¢y and co are constants that define the extent to which
the particle is directed towards improved positions. They
represent a “cognitive” and a “social” component, respec-
tively, in that they affect the extent to which the particle’s
individual best and its global best influence its movement.

e r; and ry are two random vectors, whose elements are
random numbers uniformly distributed between O to 1.

The particles search the space for better solutions by learning

from their own and their neighbors’ experiences. The learning
factors c¢; and ¢, represent the weights of the stochastic accel-
eration terms that pull each particle toward PBest (cognitive be-
havior) and GBest (social behavior) positions. The velocities of
the particles are clamped to a maximum velocity v,.x, Which
serves as a constraint on the speed of the particles to avoid global
explosion. It limits the maximum step change of the particle,
thus constraining the moving speed of the entire population in
the hyperspace. Generally, v,,,x is set to the value of the dy-
namic range of each variable to prevent particles from leaving
the problem space, so that no inherent limitations are intro-
duced. If v,,,x Was set to a lower value, it might slow down the
convergence speed of the algorithm, although, on the other hand,
it might help prevent PSO from local convergence. To prevent
dealing with this, we used the dynamic range of each variable
as maximum speed. The PSO terminates when the prespecified
number of iterations has taken place or when no improvement of
GBest has been achieved within a specified number of iterations.
As well, iterations may terminate when a satisfactory value of
the fitness function is reached.

stands for ele-

B. PSO of the Sorting Function

Suppose a sequence of feature vectors is given as X =
xr]. One can write this sequence in the form of X =

,05/37A , ACD/3 AAcT, ..., AACD/3 !

(superscript T stands for matrix Transpose and in all other
cases 7' indicates the number of feature vectors per utterance)
where ¢; = [ci1,...,cr], Ac; = [Acit,...,Acr] and
AAc;, = [AAc¢,...,AAc¢r] are the ith Mel-frequency

T
Ci,...

cepstral coefficent (MFCC), AMFCC and AAMFCC over
all feature vectors, respectively. For convenience, we rewrite
the feature vectors as X = [x{7,... x}]T, where the x/s
represent the MFCCs for 1 < i < D/3, AMFCCs for
D/3 < i < 2D/3 and AAMFCCs for 2D/3 < i < D over
all feature vectors.

The introduction of a sorting function as the sum of feature
vector elements is based on correlations between sorting func-
tion values s = [sq, ..., s7| and X}s, where they are highly cor-
related for low index values such as x}, x5 and x% with cor-
relations decreasing to x/,. It is straightforward that a sorting
function which generates sorting values better correlated with
x;s would offer better results in the Gaussian selection stage.

If we consider X = [24],1 <7 < D,1 <t <T (x; stands
for ith MFCC in the ¢th feature vector) and s’ = [s}],1 < ¢ < T
then we have X, = [2;4], 1 <t < Tandx; = [£4], 1 <7 < D,
so that the sorting function (6) can be redefined as

Zamt (7

The new sorting function is considered as a weighted sum
of the elements x;; of a feature vector, while in the earlier for-
mulation (6), unit weights were assumed. In the new more gen-
eral form of the sorting function the adjustable weights a can be
learned in a data-dependent manner. The fitness function that is
function of the weights a is defined as follows:

E{(Xﬁ — E(x})) (s" — E(s"))}
Z
\/E{ x; —

sy = fl(x) = ax; =

Fitness(a

GV E((— B(5))

®)
Here, E{.} stands for mathematical expectation. The weights a
should be chosen in such a way that the defined fitness function
is maximized. This definition of the fitness function is motivated
by previous experience [4], [20], where summing all correla-
tions between s’ and x/s led to positive results. The optimization
problem defined so far has the goal of finding out the optimal
weights for the sorting function a,p¢ so as to attain the max-
imum correlations.

We expect that by maximizing the fitness function (8), we
optimize the weights of the sorting function (7) in such a way
that neighboring feature vectors would result in almost-neigh-
boring sorting values. These would consequently correspond to
the most valuable mixtures for this purpose in that they would
provide a level of discrimination comparable to top-C' selection
in conventional GMM-UBM systems. (Here, we assume that if
we chose the appropriate sorting function, we would reach the
same likelihood value of UBM, as well as the same log likeli-
hood ratio for a specific speaker, by evaluating a smaller number
of Gaussians M, when compared to the model order M). Be-
cause the search space is unknown, such an optimization algo-
rithm is needed that is capable of searching a wide area while
avoiding local maximums.

Compared with basic sorted GMM where only M, must
be estimated for system performance, in PSO optimization of
SGMM weights we need to estimate other parameters of PSO
such as inertia weight and learning rates. This may be viewed
as a weak point for using PSO in SGMM as we used standard

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 18, 2009 at 04:23 from IEEE Xplore. Restrictions apply.

SAEIDI et al.: PARTICLE SWARM OPTIMIZATION FOR SORTED ADAPTED GMMs

v

349

Loop counter initialization
Iteration=0

v

Swarms Creation
Ireration =0: a,-=kl ji |, <D a ,','=U (GRS

Iteration #0: a jEeajtv;

v

Compute sorting value for all features per swarm

D
i = f (x,) =aj X, = El ajixip »j=liant=1,..1

i =

Feature X= {xr}r=| | s' =[s" 5]

extraction v - i E e/ §
- Fitness function evaluation
> D ‘ E{(Xj=E(x})5 -E6))} ‘
UBM Development Fitness(a .) = X J J =1l...n
Speitie =11 PR
v v
Finding Pbest Finding Gbest
lreration =0: a»,’(—a_/; R P g < argmax Fimess(a;), j = 1,.n
Iteration #0:If Fitness (aj YFitness (aj Y hen ajeaj ’ aj

A 4

Velocity calculation
lteration=0: v j=p ji], WD v ;U 11) ; o
lteration #0: v j«v j4c @ (@ j-a; Hc ro®(g-a ;) "

= Liisn

v

Loop counter increase
Iteration=Iteration+1

aupl -8 Yes

sp=1"(x)= Aopt - N

Termination
condition satisfied?

Fig. 3. Block diagram of fitness function optimization via PSO iterations.

PSO with recommended parameters and achieved good results
without further tuning.

C. PSO Utilization

In the experiments, we set X to be the total feature vector for
the UBM training, which is a D x T matrix (D and T values
were used as 36 and 122 364 for males and 36 and 118 370 for
females, respectively). In Fig. 3, we present a block diagram of
the operation of the PSO-based weights adjustment. We relied
on a swarm of one hundred particles, whose elements were ran-
domly initialized to take values in the range of (-5, 5). The in-
ertia weight was set to linearly decrease from 0.94 to 0.4 during
the first 70% of 1000 iterations of optimization, and then remain
constant. Both learning factors were set to 1 based on initial ex-
periments on the dataset. Termination occurred when the algo-
rithm reached its maximum number of iterations or when the
fitness function value of the best particle remained constant for
250 iterations. The maximum value of particles’ velocity was

confined to the default range of (—5, 5) to avoid divergence of
the swarm. To obtain a different set of optimal weights for males
and females this process was repeated for each gender-specific
UBM.

In Fig. 4, we show the result of the PSO optimization on the
value of the fitness function for the male and female cases. (The
evolution of the values of the multidimensional weights vector
a is difficult to illustrate). Initial values shown in Fig. 4 are for
unit weights, as they are in the basic formulation of the sorting
function (6). The final values are those estimated via the PSO.
The figure indicates that the PSO enhanced the fitness function
significantly and therefore we assume that the adjustment of the
weights a is beneficial.

IV. PERFORMANCE EVALUATION

To evaluate the practical significance of the proposed PSO-
based SGMM speed-up method, we performed a series of ex-
periments. After detailing the experimental setup, we explain
different aspects of these trials.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 18, 2009 at 04:23 from IEEE Xplore. Restrictions apply.

350 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 17, NO. 2, FEBRUARY 2009

e

Fitness function value

Males Initial value = 3.5579, Final value = 9.0053 i

Females Initial value = 3.9807, Final value = 8.7359

iterations

Fig. 4. Fitness function optimization during PSO iterations.

A. Speech Database

The speaker recognition experiments were conducted on the
NIST 2002 SRE data [21], which consist of cellular telephone
conversational speech and excerpts from the Switchboard
corpus. The NIST SRE experimental protocol as defined in the
one-speaker detection task was used. In brief, given a speech
segment of about 30 s, the goal is to decide whether this segment
was spoken by a specific target speaker or not. For each of 330
target speakers (139 males and 191 females), two minutes of
untranscribed, concatenated speech is available for the training
of the target model. Overall 3570 test segments (1442 males
and 2128 females), mainly lasting between 15 and 45 s, must
be scored against roughly ten gender-matching impostors and
against the true speaker. The gender of the target speaker is
known. A subset of the NIST 2001 speech data was used to train
the universal background model and impostor speakers’ model
for use in Tnorm score normalization [22]. This subset consists
of 174 target speakers, 74 males and 100 females. To avoid
any bias in results, the speakers from NIST 2001 SRE who
are present in the 2002 evaluation were discarded (14 males
and 14 females were excluded in this manner). Consequently,
the speech of 30 males and 30 females chosen from 60 males
and 86 females, respectively, were used to train gender specific
UBMs. The speech of the remaining 30 males and 56 females
was used to create Tnorm speakers models.

B. Evaluation Measure

The evaluation of the speaker verification system is based on
detection error tradeoff (DET) curves, which show the tradeoffs
between false alarm (FA) and false rejection (FR) errors. We
also used the detection cost function (DCF) defined in [21]

DCF = CmissEmissPtarget + CvfaE’fa(1 - Ptarget) (9)

where P arget 18 the a priori probability of target tests (i.e., 0.01),
the specific cost factors Ch,iss = 10 and C, = 1, so the point
of interest is shifted towards low FA rates. We also calculated

an equal error rate (EER) as a more intuitive measure of system
performance.

C. Experimental Setup

A 30-ms sliding Hamming window with a 15-ms skip rate
was used to obtain a sequence of frames for which speech
feature vectors were estimated. The feature vector consisted
of 12-dimensional MFCCs concatenated with 12A-MFCC
and 12AA-MFCC. Thus, a 36-dimensional feature vector was
formed. The Oth cepstral coefficient was excluded.

It is common to postprocess the MFCCs to compensate for
channel-related undesirable effects. Based on results given in
Table I of Burget, et al. [23], where performance improvement
could be attained by applying different types of channel com-
pensation methods were studied, we choose RASTA filtering for
feature postprocessing because of its major contribution to per-
formance improvement. This choice is also made in [24], where
intersession variability is of interest. Cepstral mean and variance
normalization was performed afterwards. Following the system
setup described in [25], we trained gender-dependent UBMs and
investigated the effect of the Tnorm score normalization [22] on
system performance.

For each target speaker, a speaker-specific GMM with diag-
onal covariance matrices was trained via MAP adaptation of
the Gaussian means of the UBM. The relevance factor, which
is a parameter for determining the impact of new data in model
adaptation from the UBM, was set to 16. (In this study the UBM
model order was 1024.) The UBM was trained with a minimum
of 100 iterations of the EM algorithm. Variance flooring of 0.01
was imposed to avoid singularity.

For each verification test, i.e., a pair of a test segment and
a target speaker, the test segment is scored against both the
target model and the background model matching the target
gender, ignoring low energy frames (silence removal was per-
formed by applying a bi-Gaussian modeling of frames energy
and discarding frames with low mean values). Search width of
the SGMM algorithm was varied from 8 to 512.

D. Experiments and Results

We compared the performance of the PSO-optimized SGMM
using s, against the nonoptimized SGMM that uses the basic
sorting function s,. The GMM-UBM system was used as a base-
line in both cases. The results are summarized in Figs. 5 and 6
with DET plots for the SGMMs, where the search width was se-
lected as powers of 2. In Fig. 7, we present the speed up factor
for each value of M. The effect of Tnorm score normalization
can be seen in Figs. 5 and 6 which include the results both with
(left) and without (right) Tnorm score normalization.

As expected, the speaker verification performance degrada-
tion is small when the search width values M, are close to
the model order. Performance degradation increases as M ap-
proaches C'. However, the acceleration rate becomes larger in
this region. As shown in the DET plots in Figs. 5 and 6, the
performance of the SGMM algorithm improves substantially by
using optimal weights. In addition, applying Tnorm degrades
system performance from an EER perspective but enhances it if
we focus our regard on the low false alarm region which is des-
ignated by “min. DCF.” From the DET plots for the optimized

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 18, 2009 at 04:23 from IEEE Xplore. Restrictions apply.

SAEIDI et al.: PARTICLE SWARM OPTIMIZATION FOR SORTED ADAPTED GMMs

NIST 2002 Cellular Task (Basic Sorted GMM with Tnorm)

NIST 2002 Cellular Task (Basic Sorted GMM)

99 [T r o — 99y ey : — :
98 | Search Width = 8 H Search Width =8 H
© min. DCF = 0.996022, EER = 31.992337% © min. DCF = 0.997447, EER = 32.425324%
95 Search Width = 16 H Search Width =16 H
© min. DCF = 0.942034, EER = 23.815890% © min. DCF = 0.976223, EER = 24.719305%
Search Width = 32 N Search Width = 32 N
© min. DCF = 0.792154, EER = 18.070830% © min. DCF = 0.868137, EER = 18.612007%
S_earch Width = 64 H Search Width = 64 1
min. DCF = 0.572348, EER = 14.461305% min. DCF = 0.666647, EER = 14.321187%
= - hbNi N N |7 Search Width = 128 S oo INSNDON N\ Search Width =128
s: ==0==-min. DCF = 0.446363, EER = 11.401454% 3: =<0-= min. DCF = 0.525083, EER = 11.527789% ||
= e R R B Search Width =256 4 - ==~ Search Width = 256
£ SEYSEMnDCR =0.391491, EER=0S0ITOT6 | = -0~ min. DCF = 0.455558, EER = 9.557182% ||
- A XN - N B Search Width =512] -==~ Search Width = 512
g e T, DO =U2A510, EER=0.000750% g -0~ min. DCF = 0.409565, EER = 8.727272%
I : _ _ o || 8 Baseline I
s 229 min: DCE=0.336480; EER =8.551000% s min. DCF = 0.392987, EER = 8.316565%
TN 4 0%, q
X v
T, IS
5 L Pads] 5 L NS 1
\‘\ Qs:\
2 | . 2+ ”’\% 1
1 1 1 ™]
05 g 05 - 2 1
02 1 02+ = S .
04 Lt 1 R T S i 04 Lt 1 A S i i |
0102051 2 5 10 20 40 60 80 90 95 98 99 0102051 2 5 10 20 40 60 80 90 95 98 99
False Alarm probability (in %) False Alarm probability (in %)
Fig. 5. Performance comparison of the baseline versus basic SGMM for multiple values of M.
NIST 2002 Cellular Task (PSO Optimized Sorted GMM with Tnorm) NIST 2002 Cellular Task (PSO Optimized Sorted GMM)
99 T T T T T T : e S st 99 1 T . T T
98 Search Width = 8 i 98 Search Width = 8 H
O min. DCF = 0.947586, EER = 23.474554% © min. DCF = 0.960438, EER = 24.050415%
95 Search Width = 16 H 95 | Search Width = 16 |
O min. DCF =0.727333, EER = 16.968954% © min. DCF = 0.791289, EER = 17.236785%
90 Search Width = 32 H 90 Search Width = 32 A
O min. DCF =0.523492, EER = 12.743369% © min. DCF = 0.618459, EER = 12.701792%
80 Search Width = 64 H 80 Search Width = 64 H
min. DCF = 0.422359, EER = 10.389849% min. DCF = 0.511040, EER = 10.119260%
TN TN N | e Search Width = 128 a BRNON NG N [|re——== Search Width = 128
X 60 =-0--min. DCF = 0.369166, EER = 9.322657% [{ & 60 ===~ min. DCF = 0.452561, EER = 9.054825% ||
€ ARUNE N\ Y- Search Width = 256 € | R_ANN N\ | - Search Width = 256
£ 4 ===~ min. DCF =0.353162, EER =8.617704% || 2 ,, == == min. DCF = 0.416232, EER = 8.477585% ||
2 T RN N - Search Width = 512 R SN A Search Width = 512
8 ==& =~ min. DCF =0.339728, EER = 8.551090% 8 ===~ min, DCF = 0.402460, EER = 8.216645%
) Baseline H o 20 Baseline H
g min. DCF = 0.336480, EER = 8.551090% g min. DCF = 0.392987, EER = 8.316565%
10 10 1
5 1 5 1
2 4 2 4
1 1 1 1
05 - 1 05 | 1
02f Lo 02t 3 1
I R i T i i VaFrech

04 L i i i
0.10.2051 2 5 10 20 40 60 80
False Alarm probability (in %)

90 95 98 99

0 b1 H i i i
0.10205 1 2 5 10 20 40 60 80
False Alarm probability (in %)

Fig. 6. Performance comparison of the baseline GMM-UBM versus PSO optimized SGMM for multiple values of M.

——SGMM
———SGMM with N=30 Tnorm speakers (Males trials)
—— SGMM with N=56 Tnorm speakers (Female trials)

Speed-up factor achievd
5
T
i

i i 1 1 I i
512 256 32 16 8

o
19024 128 64
Search width in SGMM algorithm

Fig. 7. Speed-up factor achieved in the SGMM versus the search width.

SGMM, we can see that M = 128 is the knee of performance
degradation for SGMM. Considering the baseline system per-
formance, it is noticeable that the main effect of using optimized

weights in SGMM is to partially compensate the system degra-
dation (performance degradation in EER from 8.32% to 9.06%
and in min. DCF from 0.393 to 0.453 in PSO-based SGMM
compared with performance degradation in EER from 8.32% to
11.53% and in min. DCF from 0.393 to 0.526 in basic SGMM).
It provides a speed-up factor of 7.74, as we see from the knee
of the performance plot. Also, it can be stated that the knee of
performance changed to M, = 64 by using optimized weights
in SGMM since it has a minor degradation in performance com-
pared to that of the baseline system (degradation in EER from
8.32% to 10.12% and in min. DCF from 0.393 to 0.511) while
reaching a speed-up factor of 14.9. Although adding Tnorm to
PSO optimized SGMM enhances system performance to some
extent, when compared to the loss in speed-up factor (for ex-
ample, from 14.9 to 4.29 for M, = 64) this is insignificant. To
clarify the performance improvement attained using optimized
weights in SGMM, detailed results of all experiments are re-
ported in Table I, partitioned to male and female trials. There
are some interesting observations in this table. First, baseline
system performance is better for males than females. Second,

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 18, 2009 at 04:23 from IEEE Xplore. Restrictions apply.

352 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 17, NO. 2, FEBRUARY 2009

TABLE I
SPEAKER RECOGNITION PERFORMANCE FOR
SGMM DIFFERENT SYSTEMS (MALES)

(MALES)
Evaluation EER Min. DCF
Point With Tnorm Without Tnorm With Tnorm Without Tnorm
System Basic PSO Basic PSO Basic PSO Basic PSO
Type sort sort sort sort sort sort sort sort
Baseline 8.60 8.60 8.27 8.27 0.33 0.33 0.36 0.36
Ms =512 9.01 8.60 8.52 8.26 0.34 0.34 0.38 0.37
Ms =256 9.57 8.84 9.41 8.27 0.38 0.35 0.44 0.38
Ms =128 1152 9.34 1120 8.94 0.41 0.36 0.48 0.43
Ms =64 1331 = 9.82 1297 = 9.90 0.50 0.41 0.57 0.48
Ms =32 16.23 11.59 1647 11.68 0.67 0.52 0.74 0.60
Ms =16 2086 1583 21.10 16.63 0.82 0.69 0.87 0.74
Ms=8 27.84 23.13 2833 23.68 0.99 0.89 0.99 0.91
(FEMALES)
Evaluation EER Min. DCF
Point With Tnorm Without Tnorm With Tnorm Without Tnorm
System Basic PSO Basic PSO Basic PSO Basic PSO
Type sort sort sort sort sort sort sort sort
Baseline 8.51 8.51 8.34 8.34 0.32 0.32 0.40 0.40
Ms =512 9.09 8.40 8.91 8.17 0.34 0.33 0.41 0.41
Ms =256 9.77 8.50 9.59 8.62 0.38 0.35 0.45 0.43
Ms =128 HES8) 9.25 11559 9.14 0.46 0.36 0.54 0.46
Ms = 64 1542 1074 1525 1028 0.61 0.41 0.71 0.51
Ms =32 1896 13.60 19.93 1337 0.86 0.52 0.90 0.62
Ms =16 2593 17.59 26.57 17.77 0.96 0.73 0.97 0.82
Ms=8 3445 23.83 3497 2434 0.99 0.97 0.99 0.97

SGMM system performance in the case for the male speakers is
less sensitive to speed-up factor increase than that of the one for
females. This is shown in Table I with shadowed cells, where
M, = 128 is considered as the knee of performance for basic
SGMM, and M = 64 is the knee for PSO optimized SGMM.
Clearly, when compared to the corresponding baseline, perfor-
mance degradation due to SGMM in males trials is far less than
in females trials.

E. Comparison With Other Accelerating Techniques

In hash GMM [7], a smaller UBM (named hash UBM) is
created initially, based on those training data used for main
UBM training. Then, hash UBM is used to address the mixtures
of the main UBM. Each mixture of hash UBM has a short list
of mixtures of main UBM that occurred with more frequency
during the simultaneous evaluation of the main UBM and
hash on the training database. In hash GMM, it was found a
speed-up factor of 16 to be a compromise between the reduc-
tion of computational demands and an increase in verification
error. However, hash GMM needs nearly 4% memory overhead
compared to the baseline system in order to store the hash
model, while SGMM has merely 0.1% memory overhead to
store sorting function parameters. In [8], a VQ preclassifier is
used in a GMM-based speaker identification. A VQ codebook
is constructed by pooling all the different speakers’ GMM mean
vectors together and running the K-means. Each VQ partition
is associated with a shortlist of Gaussians to be evaluated. The

shortlists contain Gaussians from all models. In the testing
phase, VQ codebook is searched for the nearest neighbor
for each test vector, and the Gaussians associated with this
partition are scored from different models. All test vectors are
processed, and the N-top scoring models are retained for final
scoring. It was reported that this method provides a speed-up
factor of 4 compared to the baseline with some degradation in
performance. Structural GMM [9], [10] was reported to have
the ability of reaching a speed-up factor of 17 while improving
the system performance when combining with a multilayer
perceptron neural network. This superior performance was
achieved by modeling feature space in different resolutions
and constructing a tree on them, and then finally constructing
appropriate structural GMMs for speakers with multilevel MAP
adaptation. Algorithm complexity and memory overhead are
not comparable with SGMM, so that consideration of neural
network computations may be excluded insofar as speed-up
factors are concerned.

In [12], the authors examined multiple pruning methods for
speaker identification based on GMM and vector quantization
techniques. Pruning methods were used to improve efficiency
in the test score normalization stage resulting in fast cohort se-
lection. As authors claimed, a speed-up factor of 23 could be
reached, with improved performance. Techniques presented in
this work could be effectively cascaded with SGMM.

In [13], a new framework was introduced for constructing a
speaker recognition system based on GMMs that used Gaussian
pruning based on approximated cross entropy (ACE). ACE is re-
ported to have a speed-up factor of 3 with a statistically insignif-
icant degradation in accuracy. Furthermore, by using two-phase
scoring they reported a speed-up factor of 5 with minor degra-
dation in performance. In discriminative mixture selection [14],
the most discriminative of all UBM mixtures are selected for
use by identifying ambiguous regions within the mixtures and
eliminating them from consideration by a minimum classifica-
tion error (MCE) training algorithm. This technique was applied
to a dialect classification task where it was shown that by se-
lecting only 65% of mixtures the system performance could be
improved.

V. CONCLUSION

We presented an efficient PSO-based scheme to enhance the
performance of SGMMs by means of fine-tuning the sorting
function parameters. A comparative evaluation with the base-
line approach on the one-speaker detection task, as defined in
the NIST 2002 experimental protocol, confirmed the superior
performance of the proposed approach. In this paper, only PSO
optimization for the proposed sorting function was considered.
Finding a more relevant fitness function or using a type of dis-
criminative training may also improve the results and achieve
superior performance.

REFERENCES

[1] D. A.Reynolds and R. C. Rose, “Robust text-independent speaker iden-
tification using Gaussian mixture speaker models,” IEEE Trans. Speech
Audio Process., vol. 3, no. 1, pp. 72-83, Jan. 1995.

[2] D. A. Reynolds, T. F. Quatieri, and R. B. Dunn, “Speaker verification
using adapted Gaussian mixture models,” Digital Signal Process., vol.
10, no. 1-3, pp. 19-41, Jan. 2000.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 18, 2009 at 04:23 from IEEE Xplore. Restrictions apply.

SAEIDI et al.: PARTICLE SWARM OPTIMIZATION FOR SORTED ADAPTED GMMs

(3]

4

[inar}

[5

—

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22

[23

[24]

A. Chan, R. Mosur, A. Rudnicky, and J. Sherwani, “Four-layer catego-
rization scheme of fast GMM computation techniques in large vocabu-
lary continuous speech recognition systems,” in Proc. Interspeech’04,
2004, pp. 689-692.

H. R. S. Mohammadi and R. Saeidi, “Efficient implementation of
GMM based speaker verification using sorted Gaussian mixture
model,” in Proc. EUSIPCO’06, Florence, Italy, Sep. 4-8, 2006,
CD-ROM.

R. Saeidi, H. R. S. Mohammadi, R. D. Rodman, and T. Kinnunen, “A
new segmentation algorithm combined with transient frames power for
text independent speaker verification,” in Proc. ICASSP’07, Apr. 2007,
vol. 1, pp. 305-308.

H. R. S. Mohammadi, R. Saeidi, M. R. Rohani, and R. D. Rodman,
“Combined inter-frame and intra-frame fast scoring methods for effi-
cient implementation of GMM-based speaker verification systems,” in
Proc. ICASSP’07, Apr. 2007, pp. 309-312.

R. Auckenthaler and J. Mason, “Gaussian selection applied to text-in-
dependent speaker verification,” in Proc. “A Speaker Odyssey,”
Speaker Recognition Workshop, 2001, pp. 83-86.

M. Roch, “Gaussian-selection-based non-optimal search for speaker
identification,” Speech Commun., vol. 48, pp. 85-95, 2006.

B. Xiang and T. Berger, “Efficient text-independent speaker verifica-
tion with structural Gaussian mixture models and neural networks,”
IEEE Trans. Speech Audio Process., vol. 11, no. 5, pp. 447-456, Sep.
2003.

Z. Xiong, T. F. Zheng, Z. Song, F. Soong, and W. Wu, “A tree-based
kernel selection approach to efficient Gaussian mixture model-uni-
versal background model based speaker identification,” Speech
Commun., vol. 48, pp. 1273-1282, 2006.

B. L. Pellom and J. H. L. Hansen, “An efficient scoring algorithm for
Gaussian mixture model based speaker identification,” IEEE Signal
Process. Lett., vol. 5, no. 11, pp. 281-284, Nov. 1998.

T. Kinnunen, E. Karpov, and P. Frinti, “Real-time speaker identifica-
tion and verification,” IEEE Trans. Audio, Speech, Lang. Process., vol.
14, no. 1, pp. 277-288, Jan. 2006.

H. Aronowitz and D. Burshtein, “Efficient speaker recognition using
approximated cross entropy (ACE),” IEEE Trans. Audio, Speech and
Language Processing, Special Issue on Speaker and Language Recog-
nition, vol. 15, no. 7, pp. 2033-2043, 2007.

R. Huang and J. H. L. Hansen, “Unsupervised discriminative training
with application to dialect classification,” IEEE Trans. Audio, Speech,
Lang. Process., vol. 15, no. 8, pp. 2444-2453, Nov. 2007.

J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” in Proc.
IEEE Int. Conf. Neural Netw., 1995, vol. IV, pp. 1942-1948.

M. Clerc, “The swarm and the queen: Towards a deterministic and
adaptive particle swarm optimization,” in Proc. IEEE Congr. Evol.
Comput., 1999, vol. 3, pp. 1951-1957.

P. Rose, Forensic Speaker Identification, ser. Forensic Science Se-
ries. New York: Taylor & Francis, 2002.

J.-L. Gauvain and C.-H. Lee, “Maximum a posteriori estimation for
multivariate Gaussian mixture observations of Markov chains,” IEEE
Trans. Speech Audio Process., vol. 2, no. 2, pp. 291-298, Apr. 1994.
A. Abraham, H. Guo, and H. Liu, “Swarm intelligence: Foundations,
perspectives and applications, swarm intelligent systems,” in Studies
in Computational Intelligence. Berlin, Germany: Springer Verlag,
2006, pp. 3-25.

H. R. S. Mohammadi and W. H. Holmes, “Low cost vector quantiza-
tion methods for spectral coding in low rate speech coder,” in Proc.
ICASSP’95, Detroit, MI, 1995, vol. 1, pp. 720-723.

“The NIST Year 2002 Speaker Recognition Evaluation.” [Online].
Available: http://www.nist.gov/speech/tests/

R. Auckenthaler, M. Carey, and H. Lloyd-Thomas, “Score normaliza-
tion for text-independent speaker verification systems,” Digital Signal
Process., vol. 10, pp. 42-54, 2000.

L. Burget, P. Matejka, P. Schwarz, O. Glembek, and J. Cernocky,
“Analysis of feature extraction and channel compensation in a GMM
speaker recognition system,” Trans. Audio, Speech, Lang. Process.,
vol. 15, no. 7, pp. 1987-1998, Sep. 2007.

D. Garcia-Romero and C. Y. Espy-Wilson, “Intersession variability
in speaker recognition: A behind the scene analysis,” in Proc. Inter-
speech’08, Melbourne, Australia, 2008, pp. 1413-1416.

353

[25] C. Barras and J.-L. Gauvain, “Feature and score normalization for
speaker verification of cellular data,” in Proc. ICASSP, May 2003, vol.
2, pp. 49-52.

Rahim Saeidi received the B.S. degree in electrical
engineering from Azad University—Save branch,
Saveh, Iran, in 2002, and the M.Sc. degree in
telecommunication systems engineering from the
Iran University of Science and Technology, Tehran,
Iran, in 2005.

He joined the Iranian Research Institute for
Electrical Engineering, Jahade Daneshghahi, in 2006
where he is currently Research Assistant involved
in digital signal processing for speech applications.
His research interests include speech processing,
machine learning, neuroscience and pattern recognition.

Hamid Reza Sadegh Mohammadi (M’96) was born
in Tehran, Iran, in 1960. He received the B.Sc. degree
in electrical engineering in 1984, the M.Sc. degree in
electronics in 1988 both from the Iran University of
Science and Technology, Tehran, and the Ph.D. de-
gree in electrical engineering from the University of
New South Wales, Sydney, Australia, in 1997.

He has been with the Academic Center for Educa-
tion, Culture, and Research (ACECR), Tehran, Iran,
since 1982. Currently, he is with the Iranian Research
Institute for Electrical Engineering (IRIEE) as an As-
sistant Professor and Head of the Institute. He has published more than 25 sci-
entific papers. He is the founding editor of the Iranian Journal of Electrical
and Computer Engineering (IJECE). His research interests include speech and
signal processing.

Todor Ganchev (S’96-A’99-M’02) received the
Diploma Engineer degree in electrical engineering
from the Technical University of Varna, Varna,
Bulgaria, in 1993 and the Ph.D. degree from the
Department of Electrical and Computer Engineering,
University of Patras, Patras, Greece, in 2005.

From February 1994 to August 2000, he conse-
quently held Engineering, Research, and Teaching
Staff positions at the Technical University of Varna.
Since September 2000, he has been a Research
Fellow at the Wire Communications Laboratory,
University of Patras. Currently, he holds a Senior Researcher position at the
Wire Communications Laboratory. His research interests are in the areas of
pattern recognition, signal processing, and applications.

Robert David Rodman received the B.A. degree
in mathematics in 1961, the M.A. degree in math-
ematics in 1965, the M.A. degree in linguistics in
1971, and the Ph.D. degree in linguistics in 1973, all
from the University of California, Los Angeles.

He has been on the faculties of the University of
California at Santa Cruz, the University of North Car-
olina at Chapel Hill, Kyoto Industrial College, Kyoto,
Japan, and North Carolina State University, Raleigh,
where he is currently a Professor of computer sci-
ence. He is also a consulting forensic linguist. His re-
search areas are forensic linguistics and computer speech processing.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 18, 2009 at 04:23 from IEEE Xplore. Restrictions apply.

