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— ) maximizing the between-class variance with an exhaustive
Abstract. We propose a fast pairwise nearest neighbor (PNN)-

based O(N log N) time algorithm for multilevel nonparametric thresh- searctf. In Pun’s methoJ, as modified by Kapur, Sahoo,

olding, where N denotes the size of the image histogram. The pro- and Wongff the threshold is found by maximizing the en-
posed PNN-based multilevel thresholding algorithm is considerably tropy of the histogram of gray levels of the resulting

faster than optimal thresholding. On a set of 8 to 16 bits-per-pixel classes. 1-D thresholding techniques can also be general-
real images, experimental results also reveal that the proposed ized f bil | h holdi il |
method provides better quality than the Lloyd-Max quantizer alone. 1ze rom lieve thresholding to multileve

Since the time complexity of the proposed thresholding algorithm is thresholdingt™ In contrast to 1-D thresholding methods,
log linear, it is applicable in real-time image processing applications. 2-D methods essentially do image segmentation by using
© 2003 SPIE and IS&T.  [DOI: 10.1117/1.1604396] spatial information in an image:'°Kirby and Rosenfeltf
proposed a 2-D thresholding method that simultaneously
1 Introduction _considers bqth th(_a pixel gray Ievgl and the local statis_tics of
its neighboring pixels. One particular 2-D method is en-
Thresholding is one of the most common operations in im- tropic thresholding, which makes use of spatial entropy to
age processing. It tries to extract a target from the back-fing the optimal thresholds. Abutaléband Pal and P&l
ground on the basis of the distribution of pixel values. Most proposed that optimal thresholds can be selected by maxi-
thresh_olding techniques are based on the statistics of th%izing the sum of the posterior entropies of two classes.
1-D histogram of the gray levels, or on the 2-D CO- cpen \wen, and Yarg proposed a two-stage approach to
occurrence matrix of an image. search for the optimal threshold of 2-D entropic threshold-

Many 1-D thresholding methods have been . .
investigated° Locating the thresholds can occur in para- "9 39 that the computation complexity can be reduced to
metric or nonparametric approaches. In parametric O©(N %) for an image withN gray levels. Recently, Gong,

approached? the gray-level distribution of an object class Li. and Cher® designed a recursive algorithm for 2-D en-
leads to finding the  thresholds. In Wang and Haralick’s tropic thresholding to further reduce the computation com-
study? the pixels of an image are first classified as either plexity to O(N?). However, it is still inefficient to apply
edge or nonedge pixels. According to their local neighbor- this algorithm to a 1-D multilevel thresholding selection,
hoods, edge pixels are then classified as being relativelyowing to their computation of threshold without taking ad-
dark or relatively bright. Next, one histogram is obtained vantage of the recursive structure of entropy measures.
for the dark-edge pixels and another one for the bright-edge  Sahooet al. concluded in their studyon global thresh-
pixels. The highest peaks of these two histograms are choolding that Otsu’s method was one of the best threshold
sen as the thresholds. Moment preserving thresholding isselection methods for general real-world images with re-
another parametric method, which is based on the conditiongard to uniformity and shape measures. However, Otsu’s
thgt. the_thresholded image has the same moments as th§ethod uses a®(NM~1) time exhaustive search to solve
original image” the thresholds that maximize the between-class variance,

. 8 _
In nonparametric approach&s;’ the thresholds are ob whereM is the number of classes. As the number of thresh-
tained in an optimal manner according to some criteria. For - , :
Ids increases, Otsu’'s method takes too much time to be

instance, Otsu's method chooses the optimal thresholds b\&actical for multilevel thresholding. Recently, Liao, Chen,

and Chund’ proposed a recursive form of the modified
between-class variance and achieved a significant speed up

Paper 02074 received Jul. 9, 2002; revised manuscript received Mar. 3, 2003, an ) : ;
May 30, 2003: accepted for publication Jun. 3, 2003. %f Otsu’s method. However, the faster implementation of

1017-9909/2003/$15.00 © 2003 SPIE and IS&T. Otsu’s method still has the same time complexity.
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The optimal multilevel thresholding can still be a bottle- the intensity value of the pixel. The time complexity of
neck in real-time machine vision applications. For example, optimal thresholding with one threshold valueQgN).
in medical imaging the images can have more than 8 bits If the image histogram is characterized by three or more
per pixel, and if we have ten distinct threshold values, the dominant modes, we need multilevel thresholding to extract
number of operations in optimal thresholding can be the objects from the background. Here with three modes,
~65536°. There are also faster suboptimal methods for the same basic approach classifies a poing) as belong-
calculating the threshold values. The Lloyd-Max quantizer ing to one object class tf; < f(x,y)<t,, to the other object
(LMQ)"" takes onlyO(N) operations per iteration, but it class iff(x,y)>t,, and to the background fi(x,y)<t; .
does not necessarily provide optimal thresholding. MethodsTpe optimal thresholding withl — 1 threshold values can

from vector quantizer can also be ap_plied for calculz_iting be achieved by an exhaustive search with a time complex-
the threshold values, as the thresholding can be con55|derepiy of O(NM~1).

as a special case of vector quantization.
We propose a new multilevel thresholding algorithm de-
rived from the we!l-known pai(wise nearest nei%gbor 2.1 Otsu’s Method
(PNN) method previously used in vector quantizatidn. . . . . .
The PNN has been considered a slow algorithm, as the tim¢\ image is a 2-D grayscale intensity function, and con-
complexity of the original method was shown to be tainsN,eis Pixels with gray levels from 1 tb. The number

O(N®).2° "Faster approaches have been proposed by?f pixels with gray level is denotedk; , giving a probabil-

Kurita® using a heap structure, and by Fiset al?* using ity of gray leveli in an image of
nearest neighbor pointers. Nevertheless, the time complex-
ity of the PNN is still lower limited byQ(N2) in vector  Pi=Xi/Npicls- )

guantization. It is therefore not self-evident that the PNN . . . .
could be useful in real-time applications. In the case of bilevel thresholding of an image, the pixels

Our contribution is to show that PNN thresholding can are divided into two classes; with gray levels[1,...f],
be implemented efficiently. Unlike vector quantization, the ands, with gray levels[t+1,...L]. Let u and uy be the
one-dimensionality of the histogram can be utilized so that mean intensities for the clasg and whole image, respec-
the neighbor classes can be determined by using a simpléively. Using discriminant analysis, Otsudefined the
linked list structure. This allows constant time update of the between-class variance of the thresholded image as:
data structures. At the same time, we use a heap structure

for the search of the minimum cost class pair. The time 03=w(u;— u1)?+ wo(wo— ur)?, (3
complexity of a single step of the algorithm takeslog N)
time, and the overall algorithm take®(NlogN) time. where w4(t) and w,(t) are cumulative sums of the prob-

Thus, the proposed method is significantly faster than theabilities in each class. For bilevel thresholding, Otsu veri-
optimal multilevel thresholding. By experiments, we also fied that the optimal thresholt¥ is chosen so that the
show that the quality of PNN thresholding is closer to the petween-class varianaﬁé is maximized.

optimal solution than the quality of the Lloyd-Max quan-  The previous formula, Eq3) can be easily extended to

tizer. ) . multilevel thresholding of an image. Assuming that there
The rest of the work is organized as follows. In Sec. 2, gre M—1 thresholds{t;,t,,... ty_1}, which divide the

we first define the thresholding problem, and then recall the i i 41 i ;

relevant thresholding methods. These include the optimalcjrnlgmel1| ]|mags§ ;S:OE{['_ Clafiesi_l] for [;’r']at;]’ %r fE)tr [t
thresholding and the Lloyd-Max quantizer, which we use = 7720 2 =0 Lii=1 0 2edidoeey M M~1
for comparison. The PNN-based thresholding method is 7111, th(_a qp_tlmal thresholddty ,t; ...ty -4} are cho-
then proposed in Sec. 3. Experimental results are reportec€n by maximizing:

in Sec. 4, and conclusions are drawn in Sec. 5. M

2 _ _ 2
2 Multilevel Thresholding (trtotu-1) gl O )" @

Suppose that the image consists of one or more objects and _ )
background, each having distinct gray-level values. The Regardless of the number of classes being considered

purpose of thresholding is to separate these areas from eaciuring the thresholding process, the sum of the cumulative
other by using the information given by the histogram of probability functions oM classes equals one, and the mean

the image. If the object and the background have clear uni-of the image is equal to the sum of the meand/oflasses

form gray-level values, the object can be detected by Sp”t_weighted_ by their cumulative probabilities. The between-
ting the histogram using a suitable threshold value. Then,class variance in Ed4) of the thresholded image can thus

any point (,y) for which f(x,y)>t is called an object D€ rewritten as:
point; otherwise, the point is called a background point. M
The thresholding can be performed by:
9 P Y Ué(tlytz,---:thl):kZl WUE— 15 )

1 if f(x,y)>t
g(xy)= 0 if f(x,y)<t’ (1) Because the second term in H§) is independent of the
choice of the thresholddt,,t,,...,ty_1}, the optimal
wherex andy are the coordinates of the pixel afgk,y) is thresholdg(t] ,t5 ...ty _1} can be chosen by maximizing
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a modified between-class varianceg)?, defined as the
summation term on the right-hand side of Eg):*°

M

(Ué)z(tlitZ!"'itM—l):kEl wk/-l“ﬁ' (6)

To reduce the computations of E(), we make a small
modification to it by using absolute frequenciesinstead
of the relative frequencieg; :

) 2

In this way, we can save at leas;,¢s divisions in com-
parison to the original implementation. In the rest of this
work, we call this Otsu’s method. Still a faster algorithm
can be achieved by recursive calculation of E. Let us
define the look-up tables for the—v interval:

2 iX;

€Sy

2 Xj .

I €Sy

M
(08)2(ty, by, ty—1)= >, ( (7)

k=1

P(up)=>, x, and S(u,v)=>, ix;.

I1=u I1=u

()

For indexu=1, Eq.(8) can be rewritten as:

P(1y+1)=P(1p)+X,+; and P(1,00=0,

9

S(1p+1)=S(1p)+(v+1)x,,, and S(1,0=0,

wherex, ,, is the number of pixels of the gray level being
v+ 1. From Eqs(8) and(9), it follows that:

P(u,v)=P(1p)—P(1u—1)

and

S(u,v)=8(1p)—S(1u—1). (10
Now we can write:

P(ty_1t1t)=P(1t)—P(1ltc_1)

and

S(tg—1 T 1) =S(Lt, ) —S(Lty—1). (11

In Eqg. (1), note thatty andt,, are defined as;=0 and
ty=L, respectively. Now the modified between-class vari-
ance @g)? can be rewritten as:

(0g)2(ty,ta, i ty—) =H(Lt) +H(t + 1t) + ...

+H(ty_1+1L), (12

where the modified between-class variance of ckass
defined as:
H(ti_1+ 1) =S(tj_,+1t)%/P(ti_ 1+ 11). (13

In the rest of this work, we call this fast Otsu’s method. The
algorithm for the fast Otsu’s method is shown in Fig. 1.
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Fast_OTSU(X, Xmax, M) &> T

P(1,0) « 0;
5(1,0) < 0;
FOR v <0 TO Xmax-1

P(1, v+1) « P(1,V) + Xu1;

S(1,v+1) « S(1,V) + (v41)Xua1;
END-FOR
FOR v 1 TO Xmax

FORu«1TO Vv

Huy) « S(uy) * Suv) / Puv);

END-FOR
END-FOR

Smax « 0.0;
FOR W15 155t sveistipy) 1S4 < i<ty < Xau
(05" (s taseestipesty ) — HL 1)+ H(t +1,0,) + .+ Hty +1x,. )5
IF ((6,")* > Smax)
Smax « (0,')*;
T~ (titasstpmestian )’
END-IF
END-FOR ;

Fig. 1 The algorithm for the fast Otsu’s method for thresholding.

2.2 Lloyd-Max Quantizer

Lloyd!” has proposed an algorithm known as the Lloyd-
Max quantizelLMQ) for solving M-level scalar quantiza-
tion problems. The algorithm aims at minimizing the mean
square errofMSE), which is equivalent to the multilevel
thresholding problem maximizing intercluster variance.
The LMQ algorithm starts with a set of initial threshold
values, which are modified through a sequence of itera-
tions. The LMQ applies the necessary conditions for an
optimal quantizer, which appears to have been first discov-
ered by the Polish mathematicians Lukaszewicz and
Steinhaug?

* Nearest neighbor condition: For a given set of class
representatives, each pixel value is mapped to its near-
est class centroid.

e Centroid condition: For a given mapping, the optimal
class representatives are the average values of the
classes.

LMQ(X, Xmin, Xmax, M) => T, C

FOR i <0 TO M DO ti< Xmin *+ (I * (Xmax - Xmin)) | M ;
REPEAT

Segment the image using ti; i <1,2, ..., M-1;
Calculate segment averages:

rl ’l
FORi<1TOMDO ¢, « Y jx, [ D x,;
J=tig+l J=tig+l
Recalculate thresholds:
FORj«<1TOM-1DOtie (Ci+Cin1)/2;

UNTIL T does not change ;

Fig. 2 Structure of the Lloyd-Max quantizer.
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A
PNN(X, M) = S

FOR i—1to NDO
si {x};

REPEAT ‘
(Sa, Sb) < SearchNearestClusters(S); 5 5 5 A
Merge(ss, Sb); ‘
UpdateDataStructures; >

t t
UNTIL |S|=M; u 2 s

Fig. 4 Removal of the threshold t; corresponds to the merge of

clusters s3 and s,.
Fig. 3 Structure of the PNN method.

The LMQ for thresholding is presented in Fig. 2. The therefore expected that algorithms developed for VQ can
method starts by generating initial thresholding valtjes  also be applied to the multilevel thresholding problem.
i=1,2,..M—1, in which the gray-level values are divided
to M partitions, which are the intervals of equal size. We o
call this initial thresholding the uniform quantizer. On the 3.1 Vector Quantization
basis of the two optimality conditions, the Lloyd-Max al- The goal of vector quantization is to map a set of
gorithm for thresholding is formulated as a two-phase itera- K-dimensional input vectors to a reduced set of representa-
tive process: 1. divide the data vectogsto the segments  tive vectors, so that the quantization error is minimiZéd.
according to the current threshold values, and 2. calculateThe set of representative vectors are called code vectors,
the segment averages of each thresholded region. The newand set of code vectors is called codebook. The quantiza-
threshold values are now calculated as an average of twdion error is usually measured by the MSE between the data
neighbor segment averages. vectors and the code vectors. Given a sdtl@fiput vectors

Both stages of the algorithm satisfy the optimality con- X={x;,X,,... Xy}, and the codebook=1{c;,C5,...,Cu},
ditions, thus the resulting thresholding after one iteration the error is calculated as:
can never be worse than the original one. The iterations are
continued until no change is achieved. However, the final LN
result is not necessarily global optima, because the iteratio -~ 2
can be stopped in a local optima. Mseic,p)- N'izzl Ixi=cp I (14)

The calculation of the new threshold values talg$1)
time because we computd —1 new threshold values as hereP — defi th ina f the i
the average values of the neighboring segments. The CaICU\évute\;ZCt;r{Xplté)pizté. .r{égh;c}estecggs veitr;rairr?l p;ﬂg crc?g?abo%Ln-

i .
lation of the segment averages tal@gN) time, because There is a clear relationship between the MSE and the

we computeM new segment averages each havhidy criterion used in Otsu’s method in Sec. 2.1. Otsu’s method
elements on average. The calculation of the segment aver:

. . . .. “'maximizes the between-class variance of . It is
ages dominates the time complexity of the LMQ, which is known that the total variance of the vectorsE‘it,) a sum of
thusO(N).

between-class and within-class varian&és:

3 PNN-Based Thresholding v v

Thresholding can be considered as a special case of vectog2_ ;24 ;2 -\ 0 2. N 2 15
guantization(VQ), where the vectors are 1-D only. It is B TW kgl s pr) kgl KTk (19

minimum distance
73 15 *12 70
:8°5:8:0;
73 28 88
= CRF
-

Fig. 5 Changes in the data structures due to the threshold removal.

remove
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Index [Index of the [Index of the |Mean gray [|Maximal gray |[Distance tothe | Number of
previous next cluster | level level next cluster pixels
cluster

i prev; next; Ci t d; n

Fig. 6 The data structure of the linked list.

Thus, maximizing between-class variance is equivalent toLloyd algorithm (GLA)? and the PNN?® are used for gen-
minimizing within-class variance. As the MSE is equivalent erating the codebook in vector quantization.
to the within-class variance, we can conclude that Otsu’s
method also minimizes the MSE. 3.2 PNN Method

The problem of finding the codebook for vector quanti-
zation can be considered as a clustering proiffem.gen-
eral, clustering aims at partitioning the dataset Mtalus-

The pairwise nearest neighb@NN) method generates the
clustering hierarchically using a sequence of merge opera-

. . - . l , 9 "
ters, such that similar vectors are grouped together andionS as described in Fig. 8:%1n each step of the algo
rithm, the number of clusters is reduced by merging two

dissimilar vectors are sent to different groups. A cluster

) ) nearby clusters.

is defined as the set of data vectors that belong to the same . : .
The cost of merging two clusters, and s, is the in-

artition a: :
P crease in the MSE value caused by the merge. It can be
s.={x|pi=al (16) calculated using the following formuf&:2°
a | | .
The clustering is then represented as the <t _ M 1
2ot _dap llca=coll*, (17)
={s1,S5,...,5v}. In vector quantization, the codebook is Nat+ Ny

taken as the average vectdcentroids of the clusters. ) )

The problem in finding the optimal codebook is known Wheren, andn, are the corresponding cluster sizes. The
to be NP completé® In other words, there is no known PNN applies a local optimization strategy: all possible clus-
polynomial time algorithm for finding the optimal solution. ter pairs are considered and the one increasing the MSE
In principle, the optimal codebook can be solved by using aleast is chosen. There exist many variants of the PNN
branch-and-bound technique, as proposed in Ref. 27. Thénethod. Straightforward implementation recalculates all
method, however, has exponential time complexity and isdistances at each step of the algorithm. This taRébI®)
applicable for small clustering problems only. Therefore, time, because there a@(N) steps in total, andD(N?)
faster but suboptimal methods, such as the generalizectluster pairs to be checked at each step.

PNNThresholding(X, Xmax, M) = T Merge(S, sa, 55) = S
S, H < Initialize(X, Xma); Ng < Na + No,
m < Xmax;, Cq < (NaCa + NuCo) / Ng;
REPEAT bty
(Ss,55) — SearchMinDistFromHeap(H); e
S « Merge(S, s,, sv); RETURN S;
S, H < UpdateDataStruct(S, s ,,,, ,S,,5,, H);
mem-1; UpdateDataStruct(S, s prev,»Sa»Sb H)— (S, H)
UNTIL m= M, nexty «— nexty,
Set the previous neighbor cluster for next, to a;
Initialize(X, \) = S, H Recalculate distance of the next neighbor
) cluster for aand preva;
FOR i1 t9 N ) Remove s, from the heap;
previ— F1; nexti— i1; Shift down clusters aand preva in the heap;
G b lieh RETURN S, H;
Calculate dj; Y
si — { prev, next, ¢, b, d, x; };
Insert s; into the heap;
END-FOR
RETURN S, H,

Fig. 7 The proposed fast PNN-based algorithm for thresholding.
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8000 T——— 2500 Table 2 Time complexities of the Lloyd-Max quantizer!” and the
7000 Lena 28
O I DO N N ol GLA.
- 6000 2
< 5000 BsootfL-{MFIM-oo-
$ 4000 s Lloyd-Max quantizer GLA
3 3000 s 1000 -3 - b - - - - - P ---o----
ey R R bk b Partition step o(M) O(NM)
0 : o o0 oo Codebook step O(N) O(N)
Whole iteration step O(N) O(NM)
2000 12000
Medical 1
10000
2 el . 2 8000
§ 1000 f - - - - - - - - - -- oo - - oo £ 8000 . . .
3 3 o MSE least. The difference is that we find a threshold to be
=4 z

removed instead of a cluster pair to be merged. This sim-
plifies the process remarkably, as there are 0DIN)

2000
[}

© 200 400 800 800 1000 0 1000 2000 3000 thresholds to be considered, whereas in vector quantization,
300 there areO(N?) cluster pairs in total.

--------------- Medieald | asof o Medwd The second step corresponds to the merge of the two

“““““““““““““ 200 ff << mm e clusters. In thresholding, the merge is performed by remov-

...................... ing the selected thresholdee Fig. 4 This step is simple
____________________ both in vector quantization and in thresholding. In vector
. S - e O guantization, the new cluster centroid can be calculated on
e the basis of the centroids of the merged clusters. In thresh-
40 600 800 1000 0 s 10 S0 200 olding, the step consists merely of the removal of the class
and the corresponding threshold from a list structure.
The third step consists of the update of the respective
data structures. In vector quantization, this corresponds to

A fast implementation with linear memory consumption the recalculation of the merge cost values for certain clus-
of the PNN is obtained by maintaining a pointer from each t€rs. The variants in Refs. 19 and 20 store all pairwise
cluster to its nearest neighbor, and the corresponding merg&erge cost values in a 2-D table of siZ¥N?), which
cost value?! The cluster pair to be merged can be found in requiresO(N) amount of updates. The variant in Ref. 21
O(N) time, and only a small numbédenoted byr) of the stores only the nearest neighbor pointers and the corre-
nearest neighbors need to be updated after each merge. THwonding cost values for every cluster. The memory re-
implementation takesO(7N2) time in total. Further Quirement of this variant is more realistic for practical
speed-up can be achieved by using a lazy update of thémplementatlpn, but the amount of necessary updates is
merge cost value¥, and by reducing the amount of work somewhat h|gher._ In _thresholdmg, on the other hand,
caused by the distance calculatidhsKurita’s method® ~ Memory consumption is not a problem, as we have only
stores all pairwise distances into the heap structure and itl-D data space. We can therefore apply any of the earlier
requiresO(N2logN) time originating from the update of Variants without problems.
the heap structure.

No. of Pixels

Fig. 8 Histograms of the test images.

3.4 Data Structures

3.3 Adapting PNN to Thresholding In thresholding, the situation is significantly different from

The PNN can be adapted to multilevel thresholding by Vector quantization in a sense that every cluster has only

implementing the following three steps: 1. find the thresh- one neighbor. This will effect the choice of the data struc-

old to be removed, 2. remove the threshold, and 3. updateures for two reasons: 1. the amount of memory is never

the class parameters. The first step is similar to that of themore thanO(N) even if we store all cost values, and 2. the

vector quantization as it considers all possible thresholds tonumber of necessary updates is always a constant.

be removed, and then selects the one that increases the We maintain a linked list for the class parameters, as
shown in Fig. 5. Each class in the list consists of six values:
(prev ,next,c;,t;,d;,n;) as shown in Fig. 6. The first two

Table 1 Time complexities of the different PNN variants.

Vector quantization Table 3 Test images.
Thresholding:

Heap-PNN: Fast PNN: PNN: Image Min: Max: Difference: Resolution: Bpp:
Initialization: O(N?) O(N?) O(N log N) E16 Jet 16 231 216 512%512 8
Single step: Lena 3 248 236 512X512 8
@ Cluster selection 0(1) O(N) 0(1) Medical 1 0 999 633 256X256 12
@ Merge/removal Oo(1) o(1) O(1) Medical 2 200 2998 2068 2392x1792 12
@® Update O(N log N) O(7N) O(log N) Medical 3 0 940 314 64X64 16
Algorithm in total: O(N? log N) O(7N?) O(N log N) Medical 4 0 179 152 64%64 16
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Table 4 Thresholds for the test image F16 Jet. Table 5 Thresholds for the test image Lena.
Number of thresholds (M—1): Number of thresholds (M—1):
Method: 1 2 3 4 Method: 1 2 3 4
Otsu 152 112,172 91, 143,189 83, 128, 171, 202 Otsu 101 77,145 56, 106, 159 46, 83, 119, 164
PNN+LMQ 152 120,178 90, 141, 188 86, 133, 176, 204 PNN+LMQ 103 78,145 57,108,161 47, 84, 120, 164
LMQ 152 111,172 90, 141, 188 80, 122, 167, 201 LMQ 103 80,148 58,108,161 50, 89, 124, 167

are pointers to the neighbor classes to the left and to the |, the first step of the iteration, we find the removed
right, andc; is the mean gray-level value of the clagsis threshold. This is equal to the minimum-finding problem of

the maximal gray level, and it also serves as the thresholdy,o heap, and it can be implementeddl) time using the
value between the class and its neighbor class to the rightheap strl;cture.

The pointer to the right is augmented also by the merge | the second step, we merge the two classes. We calcu-

cost value ¢;), indicating the increase in the MSE if the |5te a new mean pixel value of the merged class and put it

two classes are merged. The last valog (s the number of  jnto the place of the first of the two classes in the linked

pixels in the class. list. Then we remove the second class. These calculations

The cost valuesd;) are stored also in a heap structure can be performed i®(1) time.

(see Fig. % The heap is used only as a search structure. |n the third step, we update the data structures. The

Thus, it includes merely pointers to the linked list. From the merge cost value must be recalculated only for the merged

linked list, we also have pointers to the heap structure toclass and its preceding class. Their new location in the heap

locate the elements in the heap when the correspondings found by sinking them down in the heap, as the values

cost values are updated. can only increase. This requir€{logN) time in total. The

_ The pseudocode of the proposed PNN-based thresholdremoval of the obsolete cluster from the heap requires also

ing algorithm is outlined in Fig. 7. In the beginning of the  51oq N) time. The update of the list structure is straight-

algorithm, every histogram valuieis assigned to its own forward and it takes onlp(1) time.

class. The corresponding meam)(and maximal (;) gray In total, there are N— M) iterations to be performed

levels are set td for every class. We thus haveN classes F h ,'t Hi the th ¢ togeth a+1 '

to start with. The following steps of the algorithm are then or each fieration, the fhree steps together e ;
+logN)=0(logN) time. Thus, the proposed algorithm

repeated until we reachl classes 1 —1 thresholds We o >
first pop the smallest element from the heap and get thetakes O[(N—M)log N]=O(Nlog N—Mlog N)=O(Nlog N)

corresponding class element from the list. For example,time in total, assuming thaél <N. The time complexities
class 4 has the cost value of 12 in Fig. 5. It is then merged©f the PNN method both in vector quantization and in
with the following class element by removing the latter one thresholding are summarized in Table 1. The time com-
from the linked list. New cost values are then calculated for Plexities of the LMQ(for thresholding and the GLA(for

the class(class 4 in the exampleand for its preceding vector quantizationare shown in Table 2 for comparison.
class(class 2 in the exampleTheir locations in the heap

are also updated. 4 Experiments

For evaluating the proposed method, we use six test im-
ages: F16 Jet, Lena, Medical 1, Medical 2, Medical 3, and
The initialization requireD(N logN) time, as there arél Medical 4. The first two are well known photographic im-

elements for which we must calculate the cost value andages, and the other four are medical images of various
insert into the heap. sources (magnetic resonance, computer radiology, and

3.5 Complexity Analysis

Table 6 MSE values and run times for the test image F16 Jet.

MSE Run time (seconds)
PNN-+ PNN-+ Fast
M uQ PNN LMQ LMQ Otsu PNN LMQ LMQ Otsu Otsu
2 501 378 362 362 362 0.00 0.00 0.00 0.00 0.01
3 227 248 208 206 206 0.00 0.00 0.00 0.22 0.01
4 144 150 130 130 129 0.00 0.00 0.00 17 0.12
5 98.4 94.4 85.2 85.5 84.1 0.00 0.00 0.00 966 10
10 29.4 23.6 21.1 25.4 0.00 0.00 0.00
15 14.3 10.5 10.1 10.2 0.00 0.00 0.00
20 9.5 6.3 5.9 7.2 0.00 0.00 0.00
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Table 7 MSE values and run times for the test image Lena.

Fast pairwise nearest neighbor . . .

MSE Run time (seconds)
PNN+ PNN+ Fast
M uQ PNN LMQ LMQ Otsu  PNN LMQ LMQ Otsu Otsu
2 1021 891 877 877 876 0.00 0.00 0.00 0.00 0.01
3 442 502 403 404 402 0.00 0.00 0.00 0.27 0.01
4 275 214 199 199 198 0.00 0.00 0.00 22 0.23
5 174 151 121 124 120 0.00 0.00 0.00 1378 15
10 45.2 38.3 33.8 39.5 0.00 0.00 0.00
15 21.0 18.9 16.4 19.7 0.00 0.00 0.00
20 12.2 10.8 9.5 121 0.00 0.00 0.00
Table 8 MSE values and run times for the test image Medical 1.
MSE Run time (seconds)
PNN+ PNN+ Fast
M uQ PNN LMQ LMQ Otsu  PNN LMQ LMQ Otsu Otsu
2 11256 2679 2518 2518 2518 0.01 0.01 0.00 0.03 0.11
3 8934 1040 1013 1013 1012 0.01 0.01 0.00 16 0.17
4 5950 648 627 716 627 0.01 0.01 0.01 5514 22
5 3872 421 380 380 380 0.01 0.01 0.01 5788
10 454 137 112 141 0.01 0.01 0.02
15 185 62.1 57.1 82.5 0.01 0.01 0.03
20 108 354 32.3 73.1 0.01 0.01 0.01
Table 9 MSE values and run times for the test image Medical 2.
MSE Run time (seconds)
PNN-+ PNN+ Fast
M uQ PNN LMQ LMQ Otsu PNN LMQ LMQ Otsu Otsu
2 97360 32713 32110 32109 32109 0.02 0.03 0.01 0.30 0.98
3 60520 16725 15985 31411 15983  0.02 0.02 0.01 445 143
4 33332 10487 8675 15397 8674  0.02 0.03 0.01 491
5 19590 6480 5368 8233 0.02 0.04 0.02
10 5116 1785 1614 1982 0.02 0.03 0.06
15 2467 797 644 1164 0.02 0.03 0.05
20 1564 434 376 493 0.02 0.03 0.11
Table 10 MSE values and run times for the test image Medical 3.
MSE Run time (seconds)
PNN-+ PNN+ Fast
M uQ PNN LMQ LMQ Otsu  PNN LMQ LMQ Otsu Otsu
2 3830 3272 3163 3163 3163 0.00 0.01 0.00 0.03 0.10
3 2921 1482 1424 1425 1424  0.00 0.01 0.01 14 0.16
4 2642 782 754 1063 753  0.00 0.01 0.00 4368 20
5 2147 569 500 500 499  0.00 0.01 0.01 5061
10 993 140 124 220 0.00 0.01 0.01
15 352 61.9 59.8 130 0.00 0.01 0.01
20 182 34.2 324 94.1 0.00 0.01 0.01
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Table 11 MSE values and run times for the test image Medical 4.

MSE Run time (seconds)

PNN-+ PNN-+ Fast
M uQ PNN LMQ LMQ Otsu PNN LMQ LMQ Otsu Otsu
2 352 237 237 237 237 0.00 0.00 0.00 0.00 0.00
3 198 130 127 127 124 0.00 0.00 0.00 0.10 0.00
4 134 69.8 64.4 66.8 63.8 0.00 0.00 0.00 6 0.07
5 103 46.5 42.9 45.3 42.1 0.00 0.00 0.00 275 3
10 29.0 12.3 11.3 22.0 0.00 0.00 0.00
15 12.9 55 5.4 12.9 0.00 0.00 0.00
20 6.8 2.9 3.0 6.8 0.00 0.00 0.00

nuclear medicing®® The characteristics of the test images
are summarized in Table 3, and their histograms are shown LMQ
in Fig. 8. All tests are made on a 450-MHz Pentium Il

computer.

4.1 Methods in Comparison

 uniform quantizefUQ)

« PNN
PNN+LMQ
e Otsu’s methodoptimal.

We apply the algorithms for all test images by varying the A uniform quantizer distributes the thresholds equally, and
number of thresholdéfrom M =2 to 20. We use the fol-

lowing methods:

No. of Pixels

T,=1132

T,=2065

it serves as a point of comparison. It is expected that the
studied algorithms perform better than the uniform quan-
tizer. The LMQ is the iterative algorithm from Sec. 2.2. We
use the output of the uniform quantizer as the input for the
LMQ. The PNN is the algorithm proposed in this work, and
the PNN+LMQ is the result of the PNN after it is iterated
by the LMQ. Otsu’'s method serves as another point of
comparison, since it provides the optimal result in the sense
of minimizing MSE.

The threshold values for the F16 Jet and Lena are sum-
marized in Tables 4 and 5. The MSE values and the run
times for the test images are reported in Tables 6 through

0 . . | 11. The number of iterations required by the LMQ and the
0 1000 2000 3000 PNN+LMQ are shown in Table 12.
12000 v 7,=1317 T,=2421
10000 + - - Q___ . 4.2  Quality Comparison
(% . .
© 8000 {--------- From the results, we make the following observations. All
& 5000 L -cc-ooo- methods provide significantly lower MSE values than the
o 4000 uniform quantizer. In the case of a small number of thresh-
S 4000 f---------
2000 4+ ---------
o r . |
0 1000 2000 3000 Table 12 The number of iterations.
T,=2121 T,=2551
12000 — F 16 Jet Medical 1 Medical
oo PNN+LMQ 6 Je edical edical 3
o M  PNN+LMQ LMQ PNN+LMQ LMQ PNN+LMQ LMQ
® 8000 f--------------
9_; 6000 & - - oo 2 4 5 4 11 7 8
S 4000 4o 3 1 1 4 13 4 27
2000 4 7 1 9 28 10 19
I od 5 5 16 9 31 12 25
’ 0 1o'oo 2006 3000 10 ° > 10 o1 1 3
15 4 16 20 112 4 32
Fig. 9 lllustration of the thresholding of Medical 2 for M=3 seg- 20 4 5 7 54 4 30

ments.
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Fast pairwise nearest neighbor . . .

Original PNN+LMQ ILMQ

——— . S . .

USAMRFORCE v t’ ‘ USMRFORCE + T . 4 USMRFORCE »~ L 'd

Fig. 10 Sample thresholded images from top down: F16 Jet (M=10), Lena (M=10), Medical 1 (M
=20), Medical 2 (M=3), and Medical 3 (M=4).

olds (M=2 and 3, the results are optimal or very close to The comparison between LMQ and PNN is two-fold.
optimal. For a large number of thresholds, the optimal re- For small values oM, the LMQ gives lower MSE values,
sult is not always found, and there are significant differ- whereas the PNN is better with large valuesNf For
ences in the performance between the methods. example, for Lena wittM =3, the MSE is 502 by the PNN,
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and 404 by the LMQ(Table 7. On the other hand, for tion of the LMQ is faster than that of the PNN. The LMQ,
Medical 1 withM =20, the MSE is 35.4 by the PNN, and however, is iterated several times, and the overall run times
73.1 by the LMQ(Table §. We therefore recommend com- are similar. With higher values dfl, the PNN has a mod-
bining the PNN and the LMQ methods and use PNN erate time advantage, although both methods are suffi-
+LMQ instead of applying the methods as themselves.  ciently fast for real-time applications.

The PNN+LMQ combination gives near-optimal results It is also noted that the combination of PNIMMQ
in all cases reported here. Even in the worst case, it reachesould be even faster than the LMQ alone. This is because
the MSE value only 2% away from the optimum; 42.9 by the PNN can provide better initial thresholding, and thus,
the PNN+LMQ, and 42.1 by the optimal method for Medi- the LMQ uses less iteratiori$able 12. We would also like
cal 4 (Table 1. The reduction in the MSE, on the other to note that the run times are so small that the implemen-
hand, can be as much as 66% from that of the LMQ: MSE tation details and system level details, such as memory
values 32.4 versus 94.1 for MedicalBable 10. This cor- caching, can affect the time measurement. We therefore
responds to 4.63-dB improvement in the peak signal-to-cannot make any other conclusions between PNN, LMQ,
noise ratio(PSNR. and PNN+LMQ other than that they are all suitable for

Sometimes the deficiency of using LMQ alone appearsre
also with a small value oM, as demonstrated in Fig. 9.
There is a very low, almost invisible peak, around the val- 5
ues 200 to 220 in the histogram. The LMQ starts with the p

al-time image processing.

Conclusions
fast PNN-based multilevel thresholding algorithm is pro-

output of the uniform quantizer and manages to relocate theposed. The time complexity of the methodG&N log N),

second thresholdT(,=2421), but fails to optimize the first
threshold T;=1317). The PNN-LMQ, on the other hand,
finds significantly better solution TG=2121 and T,
=2551).

Visual comparisons of the LMQ and PNNLMQ are

pr

which is significantly better than that of optimal threshold-
ing. In practice, the proposed method works in real time for
any number of thresholds. Experiments also show that the

oposed method, when combined with the LMQ, provides

MSE values that are much closer to that of optimal thresh-

shown in Fig. 10. The differences in quality in F16 Jet and olding than using LMQ alone. The difference is small when

Lena are not so clearly visible, but there are few: the cloudsa

low number of thresholds are needéd €2 or 3, but

in the F16 Jet are somewhat more natural, and the cheek ofhe difference is significant when the number of thresholds

Lena is slightly smoother in the image thresholded by the s
PNN+LMQ. With the medical images the differences are

higher(from M =10 to M = 20).

more clearly visible, as can be seen in Medical 2 and Medi- References
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