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Abstract. We propose a fast pairwise nearest neighbor (PNN)-
based O(N log N) time algorithm for multilevel nonparametric thresh-
olding, where N denotes the size of the image histogram. The pro-
posed PNN-based multilevel thresholding algorithm is considerably
faster than optimal thresholding. On a set of 8 to 16 bits-per-pixel
real images, experimental results also reveal that the proposed
method provides better quality than the Lloyd-Max quantizer alone.
Since the time complexity of the proposed thresholding algorithm is
log linear, it is applicable in real-time image processing applications.
© 2003 SPIE and IS&T. [DOI: 10.1117/1.1604396]

1 Introduction

Thresholding is one of the most common operations in
age processing. It tries to extract a target from the ba
ground on the basis of the distribution of pixel values. Mo
thresholding techniques are based on the statistics of
1-D histogram of the gray levels, or on the 2-D c
occurrence matrix of an image.

Many 1-D thresholding methods have be
investigated.1–10 Locating the thresholds can occur in par
metric or nonparametric approaches. In parame
approaches,3,5 the gray-level distribution of an object clas
leads to finding the thresholds. In Wang and Haralic
study,3 the pixels of an image are first classified as eith
edge or nonedge pixels. According to their local neighb
hoods, edge pixels are then classified as being relati
dark or relatively bright. Next, one histogram is obtain
for the dark-edge pixels and another one for the bright-e
pixels. The highest peaks of these two histograms are c
sen as the thresholds. Moment preserving thresholdin
another parametric method, which is based on the condi
that the thresholded image has the same moments a
original image.5

In nonparametric approaches,2,7,8 the thresholds are ob
tained in an optimal manner according to some criteria.
instance, Otsu’s method chooses the optimal threshold
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maximizing the between-class variance with an exhaus
search.2 In Pun’s method,7 as modified by Kapur, Sahoo
and Wong,8 the threshold is found by maximizing the en
tropy of the histogram of gray levels of the resultin
classes. 1-D thresholding techniques can also be gen
ized from bilevel thresholding to multileve
thresholding.1–5 In contrast to 1-D thresholding method
2-D methods essentially do image segmentation by us
spatial information in an image.11–16Kirby and Rosenfeld11

proposed a 2-D thresholding method that simultaneou
considers both the pixel gray level and the local statistics
its neighboring pixels. One particular 2-D method is e
tropic thresholding, which makes use of spatial entropy
find the optimal thresholds. Abutaleb,12 and Pal and Pal13

proposed that optimal thresholds can be selected by m
mizing the sum of the posterior entropies of two class
Chen, Wen, and Yang15 proposed a two-stage approach
search for the optimal threshold of 2-D entropic thresho
ing, so that the computation complexity can be reduced
O(N8/3) for an image withN gray levels. Recently, Gong
Li, and Chen16 designed a recursive algorithm for 2-D e
tropic thresholding to further reduce the computation co
plexity to O(N2). However, it is still inefficient to apply
this algorithm to a 1-D multilevel thresholding selectio
owing to their computation of threshold without taking a
vantage of the recursive structure of entropy measures

Sahooet al. concluded in their study6 on global thresh-
olding that Otsu’s method was one of the best thresh
selection methods for general real-world images with
gard to uniformity and shape measures. However, Ots
method uses anO(NM21) time exhaustive search to solv
the thresholds that maximize the between-class varia
whereM is the number of classes. As the number of thre
olds increases, Otsu’s method takes too much time to
practical for multilevel thresholding. Recently, Liao, Che
and Chung10 proposed a recursive form of the modifie
between-class variance and achieved a significant spee
of Otsu’s method. However, the faster implementation
Otsu’s method still has the same time complexity.
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Fast pairwise nearest neighbor . . .
The optimal multilevel thresholding can still be a bottl
neck in real-time machine vision applications. For examp
in medical imaging the images can have more than 8
per pixel, and if we have ten distinct threshold values,
number of operations in optimal thresholding can
;6553610. There are also faster suboptimal methods
calculating the threshold values. The Lloyd-Max quantiz
~LMQ!17 takes onlyO(N) operations per iteration, but i
does not necessarily provide optimal thresholding. Meth
from vector quantizer can also be applied for calculat
the threshold values, as the thresholding can be consid
as a special case of vector quantization.

We propose a new multilevel thresholding algorithm d
rived from the well-known pairwise nearest neighb
~PNN! method previously used in vector quantization18

The PNN has been considered a slow algorithm, as the
complexity of the original method was shown to b
O(N3).19 Faster approaches have been proposed
Kurita20 using a heap structure, and by Fra¨nti et al.21 using
nearest neighbor pointers. Nevertheless, the time comp
ity of the PNN is still lower limited byV(N2) in vector
quantization. It is therefore not self-evident that the PN
could be useful in real-time applications.

Our contribution is to show that PNN thresholding c
be implemented efficiently. Unlike vector quantization, t
one-dimensionality of the histogram can be utilized so t
the neighbor classes can be determined by using a sim
linked list structure. This allows constant time update of
data structures. At the same time, we use a heap struc
for the search of the minimum cost class pair. The ti
complexity of a single step of the algorithm takesO(logN)
time, and the overall algorithm takesO(N logN) time.
Thus, the proposed method is significantly faster than
optimal multilevel thresholding. By experiments, we al
show that the quality of PNN thresholding is closer to t
optimal solution than the quality of the Lloyd-Max qua
tizer.

The rest of the work is organized as follows. In Sec.
we first define the thresholding problem, and then recall
relevant thresholding methods. These include the opti
thresholding and the Lloyd-Max quantizer, which we u
for comparison. The PNN-based thresholding method
then proposed in Sec. 3. Experimental results are repo
in Sec. 4, and conclusions are drawn in Sec. 5.

2 Multilevel Thresholding

Suppose that the image consists of one or more objects
background, each having distinct gray-level values. T
purpose of thresholding is to separate these areas from
other by using the information given by the histogram
the image. If the object and the background have clear
form gray-level values, the object can be detected by sp
ting the histogram using a suitable threshold value. Th
any point (x,y) for which f (x,y).t is called an object
point; otherwise, the point is called a background po
The thresholding can be performed by:

g~x,y!5H 1 if f ~x,y!.t

0 if f ~x,y!<t
, ~1!

wherex andy are the coordinates of the pixel andf (x,y) is
,
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the intensity value of the pixel. The time complexity o
optimal thresholding with one threshold value isO(N).

If the image histogram is characterized by three or m
dominant modes, we need multilevel thresholding to extr
the objects from the background. Here with three mod
the same basic approach classifies a point (x,y) as belong-
ing to one object class ift1, f (x,y)<t2 , to the other object
class if f (x,y).t2 , and to the background iff (x,y)<t1 .
The optimal thresholding withM21 threshold values can
be achieved by an exhaustive search with a time comp
ity of O(NM21).

2.1 Otsu’s Method

An image is a 2-D grayscale intensity function, and co
tainsNpixels pixels with gray levels from 1 toL. The number
of pixels with gray leveli is denotedxi , giving a probabil-
ity of gray level i in an image of

pi5xi /Npixels. ~2!

In the case of bilevel thresholding of an image, the pix
are divided into two classes,s1 with gray levels@1,...,t#,
ands2 with gray levels@ t11,...,L#. Let mk andmT be the
mean intensities for the classsk and whole image, respec
tively. Using discriminant analysis, Otsu2 defined the
between-class variance of the thresholded image as:

sB
25v1~m12mT!21v2~m22mT!2, ~3!

wherev1(t) and v2(t) are cumulative sums of the prob
abilities in each class. For bilevel thresholding, Otsu ve
fied that the optimal thresholdt* is chosen so that the
between-class variancesB

2 is maximized.
The previous formula, Eq.~3! can be easily extended t

multilevel thresholding of an image. Assuming that the
are M21 thresholds,$t1 ,t2 ,...,tM21%, which divide the
original image intoM classes:s1 for @1,...,t1#, s2 for @ t1

11,...,t2#,...,si for @ t i 2111,...,t i #,..., andsM for @ tM21

11,...,L#, the optimal thresholds$t1* ,t2* ,...,tM21* % are cho-
sen by maximizing:

sB
2~ t1 ,t2 ,...,tM21!5 (

k51

M

vk~mk2mT!2. ~4!

Regardless of the number of classes being conside
during the thresholding process, the sum of the cumula
probability functions ofM classes equals one, and the me
of the image is equal to the sum of the means ofM classes
weighted by their cumulative probabilities. The betwee
class variance in Eq.~4! of the thresholded image can thu
be rewritten as:

sB
2~ t1 ,t2 ,...,tM21!5 (

k51

M

vkmk
22mT

2. ~5!

Because the second term in Eq.~5! is independent of the
choice of the thresholds$t1 ,t2 ,...,tM21%, the optimal
thresholds$t1* ,t2* ,...,tM21* % can be chosen by maximizin
Journal of Electronic Imaging / October 2003 / Vol. 12(4) / 649
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a modified between-class variance (sB8 )2, defined as the
summation term on the right-hand side of Eq.~5!:10

~sB8 !2~ t1 ,t2 ,...,tM21!5 (
k51

M

vkmk
2. ~6!

To reduce the computations of Eq.~6!, we make a small
modification to it by using absolute frequenciesxi instead
of the relative frequenciespi :

~sB8 !2~ t1 ,t2 ,...,tM21!5 (
k51

M S (
i Psk

ixi D 2Y (
i Psk

xi . ~7!

In this way, we can save at leastNpixels divisions in com-
parison to the original implementation. In the rest of th
work, we call this Otsu’s method. Still a faster algorith
can be achieved by recursive calculation of Eq.~7!. Let us
define the look-up tables for theu2v interval:

P~u,v !5(
i 5u

v

xi and S~u,v !5(
i 5u

v

ix i . ~8!

For indexu51, Eq. ~8! can be rewritten as:

P~1,v11!5P~1,v !1xv11 and P~1,0!50,
~9!

S~1,v11!5S~1,v !1~v11!xv11 and S~1,0!50,

wherexv11 is the number of pixels of the gray level bein
v11. From Eqs.~8! and ~9!, it follows that:

P~u,v !5P~1,v !2P~1,u21!

and

S~u,v !5S~1,v !2S~1,u21!. ~10!

Now we can write:

P~ tk2111,tk!5P~1,tk!2P~1,tk21!

and

S~ tk2111,tk!5S~1,tk!2S~1,tk21!. ~11!

In Eq. ~11!, note thatt0 and tM are defined ast050 and
tM5L, respectively. Now the modified between-class va
ance (sB8 )2 can be rewritten as:

~sB8 !2~ t1 ,t2 ,...,t i ,...,tM21!5H~1,t1!1H~ t111,t2!1...

1H~ tM2111,L !, ~12!

where the modified between-class variance of classsi is
defined as:

H~ t i 2111,t i !5S~ t i 2111,t i !
2/P~ t i 2111,t i !. ~13!

In the rest of this work, we call this fast Otsu’s method. T
algorithm for the fast Otsu’s method is shown in Fig. 1.
650 / Journal of Electronic Imaging / October 2003 / Vol. 12(4)
2.2 Lloyd-Max Quantizer

Lloyd17 has proposed an algorithm known as the Lloy
Max quantizer~LMQ! for solving M-level scalar quantiza-
tion problems. The algorithm aims at minimizing the me
square error~MSE!, which is equivalent to the multileve
thresholding problem maximizing intercluster varianc
The LMQ algorithm starts with a set of initial threshol
values, which are modified through a sequence of ite
tions. The LMQ applies the necessary conditions for
optimal quantizer, which appears to have been first disc
ered by the Polish mathematicians Lukaszewicz a
Steinhaus.22

• Nearest neighbor condition: For a given set of cla
representatives, each pixel value is mapped to its ne
est class centroid.

• Centroid condition: For a given mapping, the optim
class representatives are the average values of
classes.

Fig. 2 Structure of the Lloyd-Max quantizer.

Fig. 1 The algorithm for the fast Otsu’s method for thresholding.
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Fast pairwise nearest neighbor . . .
The LMQ for thresholding is presented in Fig. 2. Th
method starts by generating initial thresholding valuest i ;
i 51,2,...,M21, in which the gray-level values are divide
to M partitions, which are the intervals of equal size. W
call this initial thresholding the uniform quantizer. On th
basis of the two optimality conditions, the Lloyd-Max a
gorithm for thresholding is formulated as a two-phase ite
tive process: 1. divide the data vectorsxi to the segments
according to the current threshold values, and 2. calcu
the segment averages of each thresholded region. The
threshold values are now calculated as an average of
neighbor segment averages.

Both stages of the algorithm satisfy the optimality co
ditions, thus the resulting thresholding after one iterat
can never be worse than the original one. The iterations
continued until no change is achieved. However, the fi
result is not necessarily global optima, because the itera
can be stopped in a local optima.

The calculation of the new threshold values takesO(M )
time because we computeM21 new threshold values a
the average values of the neighboring segments. The ca
lation of the segment averages takesO(N) time, because
we computeM new segment averages each havingN/M
elements on average. The calculation of the segment a
ages dominates the time complexity of the LMQ, which
thusO(N).

3 PNN-Based Thresholding

Thresholding can be considered as a special case of ve
quantization~VQ!, where the vectors are 1-D only. It i

Fig. 3 Structure of the PNN method.
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therefore expected that algorithms developed for VQ c
also be applied to the multilevel thresholding problem.

3.1 Vector Quantization

The goal of vector quantization is to map a set
K-dimensional input vectors to a reduced set of represe
tive vectors, so that the quantization error is minimized23

The set of representative vectors are called code vec
and set of code vectors is called codebook. The quant
tion error is usually measured by the MSE between the d
vectors and the code vectors. Given a set ofN input vectors
X5$x1 ,x2 ,...,xN%, and the codebookC5$c1 ,c2 ,...,cM%,
the error is calculated as:

MSE~C,P!5
1

N
•(

i 51

N

ixi2cpi
i2, ~14!

whereP5$p1 ,p2 ,...,pN% defines the mapping from the in
put vectorxi to its nearest code vector in the codebook.

There is a clear relationship between the MSE and
criterion used in Otsu’s method in Sec. 2.1. Otsu’s meth
maximizes the between-class variance of Eq.~4!. It is
known that the total variance of the vectors is a sum
between-class and within-class variances:24

s25sB
21sW

2 5 (
k51

M

vk~mk2mT!21 (
k51

M

vksk
2. ~15!

Fig. 4 Removal of the threshold t3 corresponds to the merge of
clusters s3 and s4 .
Fig. 5 Changes in the data structures due to the threshold removal.
Journal of Electronic Imaging / October 2003 / Vol. 12(4) / 651
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Fig. 6 The data structure of the linked list.
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Thus, maximizing between-class variance is equivalen
minimizing within-class variance. As the MSE is equivale
to the within-class variance, we can conclude that Ots
method also minimizes the MSE.

The problem of finding the codebook for vector quan
zation can be considered as a clustering problem.25 In gen-
eral, clustering aims at partitioning the dataset intoM clus-
ters, such that similar vectors are grouped together
dissimilar vectors are sent to different groups. A clustersa
is defined as the set of data vectors that belong to the s
partition a:

sa5$xi upi5a%. ~16!

The clustering is then represented as the setS
5$s1 ,s2 ,...,sM%. In vector quantization, the codebook
taken as the average vectors~centroids! of the clusters.

The problem in finding the optimal codebook is know
to be NP complete.26 In other words, there is no know
polynomial time algorithm for finding the optimal solution
In principle, the optimal codebook can be solved by usin
branch-and-bound technique, as proposed in Ref. 27.
method, however, has exponential time complexity and
applicable for small clustering problems only. Therefo
faster but suboptimal methods, such as the general
l of Electronic Imaging / October 2003 / Vol. 12(4)
d

e

e

d

Lloyd algorithm~GLA!28 and the PNN,18 are used for gen-
erating the codebook in vector quantization.

3.2 PNN Method

The pairwise nearest neighbor~PNN! method generates th
clustering hierarchically using a sequence of merge op
tions as described in Fig. 3.18,29 In each step of the algo
rithm, the number of clusters is reduced by merging t
nearby clusters.

The cost of merging two clusterssa and sb is the in-
crease in the MSE value caused by the merge. It can
calculated using the following formula:18,29

da,b5
nanb

na1nb
•ica2cbi2, ~17!

wherena and nb are the corresponding cluster sizes. T
PNN applies a local optimization strategy: all possible clu
ter pairs are considered and the one increasing the M
least is chosen. There exist many variants of the P
method. Straightforward implementation recalculates
distances at each step of the algorithm. This takesO(N3)
time, because there areO(N) steps in total, andO(N2)
cluster pairs to be checked at each step.
Fig. 7 The proposed fast PNN-based algorithm for thresholding.
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Fast pairwise nearest neighbor . . .
A fast implementation with linear memory consumptio
of the PNN is obtained by maintaining a pointer from ea
cluster to its nearest neighbor, and the corresponding m
cost value.21 The cluster pair to be merged can be found
O(N) time, and only a small number~denoted byt! of the
nearest neighbors need to be updated after each merge
implementation takesO(tN2) time in total. Further
speed-up can be achieved by using a lazy update of
merge cost values,30 and by reducing the amount of wor
caused by the distance calculations.31 Kurita’s method20

stores all pairwise distances into the heap structure an
requiresO(N2 logN) time originating from the update o
the heap structure.

3.3 Adapting PNN to Thresholding

The PNN can be adapted to multilevel thresholding
implementing the following three steps: 1. find the thres
old to be removed, 2. remove the threshold, and 3. upd
the class parameters. The first step is similar to that of
vector quantization as it considers all possible threshold
be removed, and then selects the one that increases

Fig. 8 Histograms of the test images.

Table 1 Time complexities of the different PNN variants.

Vector quantization
Thresholding:

PNN:Heap-PNN: Fast PNN:

Initialization: O(N2) O(N2) O(N log N)

Single step:

d Cluster selection O(1) O(N) O(1)

d Merge/removal O(1) O(1) O(1)

d Update O(N log N) O(tN) O(log N)

Algorithm in total: O(N2 log N) O(tN2) O(N log N)
e

he

e

it

e
e
o
he

MSE least. The difference is that we find a threshold to
removed instead of a cluster pair to be merged. This s
plifies the process remarkably, as there are onlyO(N)
thresholds to be considered, whereas in vector quantiza
there areO(N2) cluster pairs in total.

The second step corresponds to the merge of the
clusters. In thresholding, the merge is performed by rem
ing the selected threshold~see Fig. 4!. This step is simple
both in vector quantization and in thresholding. In vec
quantization, the new cluster centroid can be calculated
the basis of the centroids of the merged clusters. In thre
olding, the step consists merely of the removal of the cl
and the corresponding threshold from a list structure.

The third step consists of the update of the respec
data structures. In vector quantization, this correspond
the recalculation of the merge cost values for certain cl
ters. The variants in Refs. 19 and 20 store all pairw
merge cost values in a 2-D table of sizeO(N2), which
requiresO(N) amount of updates. The variant in Ref. 2
stores only the nearest neighbor pointers and the co
sponding cost values for every cluster. The memory
quirement of this variant is more realistic for practic
implementation, but the amount of necessary update
somewhat higher. In thresholding, on the other ha
memory consumption is not a problem, as we have o
1-D data space. We can therefore apply any of the ea
variants without problems.

3.4 Data Structures

In thresholding, the situation is significantly different fro
vector quantization in a sense that every cluster has o
one neighbor. This will effect the choice of the data stru
tures for two reasons: 1. the amount of memory is ne
more thanO(N) even if we store all cost values, and 2. th
number of necessary updates is always a constant.

We maintain a linked list for the class parameters,
shown in Fig. 5. Each class in the list consists of six valu
(previ ,nexti ,ci ,t i ,di ,ni) as shown in Fig. 6. The first two

Table 2 Time complexities of the Lloyd-Max quantizer17 and the
GLA.28

Lloyd-Max quantizer GLA

Partition step O(M) O(NM)

Codebook step O(N) O(N)

Whole iteration step O(N) O(NM)

Table 3 Test images.

Image Min: Max: Difference: Resolution: Bpp:

F16 Jet 16 231 216 5123512 8

Lena 3 248 236 5123512 8

Medical 1 0 999 633 2563256 12

Medical 2 200 2998 2068 239231792 12

Medical 3 0 940 314 64364 16

Medical 4 0 179 152 64364 16
Journal of Electronic Imaging / October 2003 / Vol. 12(4) / 653
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Virmajoki and Fränti
are pointers to the neighbor classes to the left and to
right, andci is the mean gray-level value of the class.t i is
the maximal gray level, and it also serves as the thresh
value between the class and its neighbor class to the r
The pointer to the right is augmented also by the me
cost value (di), indicating the increase in the MSE if th
two classes are merged. The last value (ni) is the number of
pixels in the class.

The cost values (di) are stored also in a heap structu
~see Fig. 5!. The heap is used only as a search structu
Thus, it includes merely pointers to the linked list. From t
linked list, we also have pointers to the heap structure
locate the elements in the heap when the correspon
cost values are updated.

The pseudocode of the proposed PNN-based thresh
ing algorithm is outlined in Fig. 7. In the beginning of th
algorithm, every histogram valuei is assigned to its own
class. The corresponding mean (ci) and maximal (t i) gray
levels are set toi for every classi. We thus haveN classes
to start with. The following steps of the algorithm are th
repeated until we reachM classes (M21 thresholds!. We
first pop the smallest element from the heap and get
corresponding class element from the list. For exam
class 4 has the cost value of 12 in Fig. 5. It is then mer
with the following class element by removing the latter o
from the linked list. New cost values are then calculated
the class~class 4 in the example!, and for its preceding
class~class 2 in the example!. Their locations in the heap
are also updated.

3.5 Complexity Analysis

The initialization requiresO(N logN) time, as there areN
elements for which we must calculate the cost value
insert into the heap.

Table 4 Thresholds for the test image F16 Jet.

Method:

Number of thresholds (M21):

1 2 3 4

Otsu 152 112, 172 91, 143, 189 83, 128, 171, 202

PNN1LMQ 152 120, 178 90, 141, 188 86, 133, 176, 204

LMQ 152 111, 172 90, 141, 188 80, 122, 167, 201
654 / Journal of Electronic Imaging / October 2003 / Vol. 12(4)
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In the first step of the iteration, we find the remove
threshold. This is equal to the minimum-finding problem
the heap, and it can be implemented inO(1) time using the
heap structure.

In the second step, we merge the two classes. We ca
late a new mean pixel value of the merged class and p
into the place of the first of the two classes in the link
list. Then we remove the second class. These calculat
can be performed inO(1) time.

In the third step, we update the data structures. T
merge cost value must be recalculated only for the mer
class and its preceding class. Their new location in the h
is found by sinking them down in the heap, as the valu
can only increase. This requiresO(logN) time in total. The
removal of the obsolete cluster from the heap requires a
O(logN) time. The update of the list structure is straigh
forward and it takes onlyO(1) time.

In total, there are (N2M ) iterations to be performed
For each iteration, the three steps together takeO(111
1 logN)5O(logN) time. Thus, the proposed algorithm
takesO@(N2M )logN#5O(N logN2M logN)5O(N logN)
time in total, assuming thatM!N. The time complexities
of the PNN method both in vector quantization and
thresholding are summarized in Table 1. The time co
plexities of the LMQ~for thresholding! and the GLA~for
vector quantization! are shown in Table 2 for comparison

4 Experiments

For evaluating the proposed method, we use six test
ages: F16 Jet, Lena, Medical 1, Medical 2, Medical 3, a
Medical 4. The first two are well known photographic im
ages, and the other four are medical images of vari
sources ~magnetic resonance, computer radiology, a

Table 5 Thresholds for the test image Lena.

Method:

Number of thresholds (M21):

1 2 3 4

Otsu 101 77, 145 56, 106, 159 46, 83, 119, 164

PNN1LMQ 103 78, 145 57, 108, 161 47, 84, 120, 164

LMQ 103 80, 148 58, 108, 161 50, 89, 124, 167
Table 6 MSE values and run times for the test image F16 Jet.

M

MSE Run time (seconds)

UQ PNN
PNN1
LMQ LMQ Otsu PNN

PNN1
LMQ LMQ Otsu

Fast
Otsu

2 501 378 362 362 362 0.00 0.00 0.00 0.00 0.01

3 227 248 208 206 206 0.00 0.00 0.00 0.22 0.01

4 144 150 130 130 129 0.00 0.00 0.00 17 0.12

5 98.4 94.4 85.2 85.5 84.1 0.00 0.00 0.00 966 10

10 29.4 23.6 21.1 25.4 ¯ 0.00 0.00 0.00 ¯ ¯

15 14.3 10.5 10.1 10.2 ¯ 0.00 0.00 0.00 ¯ ¯

20 9.5 6.3 5.9 7.2 ¯ 0.00 0.00 0.00 ¯ ¯
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Table 7 MSE values and run times for the test image Lena.

M

MSE Run time (seconds)

UQ PNN
PNN1
LMQ LMQ Otsu PNN

PNN1
LMQ LMQ Otsu

Fast
Otsu

2 1021 891 877 877 876 0.00 0.00 0.00 0.00 0.01

3 442 502 403 404 402 0.00 0.00 0.00 0.27 0.01

4 275 214 199 199 198 0.00 0.00 0.00 22 0.23

5 174 151 121 124 120 0.00 0.00 0.00 1378 15

10 45.2 38.3 33.8 39.5 ¯ 0.00 0.00 0.00 ¯ ¯

15 21.0 18.9 16.4 19.7 ¯ 0.00 0.00 0.00 ¯ ¯

20 12.2 10.8 9.5 12.1 ¯ 0.00 0.00 0.00 ¯ ¯

Table 8 MSE values and run times for the test image Medical 1.

M

MSE Run time (seconds)

UQ PNN
PNN1
LMQ LMQ Otsu PNN

PNN1
LMQ LMQ Otsu

Fast
Otsu

2 11256 2679 2518 2518 2518 0.01 0.01 0.00 0.03 0.11

3 8934 1040 1013 1013 1012 0.01 0.01 0.00 16 0.17

4 5950 648 627 716 627 0.01 0.01 0.01 5514 22

5 3872 421 380 380 380 0.01 0.01 0.01 ¯ 5788

10 454 137 112 141 ¯ 0.01 0.01 0.02 ¯ ¯

15 185 62.1 57.1 82.5 ¯ 0.01 0.01 0.03 ¯ ¯

20 108 35.4 32.3 73.1 ¯ 0.01 0.01 0.01 ¯ ¯

Table 9 MSE values and run times for the test image Medical 2.

M

MSE Run time (seconds)

UQ PNN
PNN1
LMQ LMQ Otsu PNN

PNN1
LMQ LMQ Otsu

Fast
Otsu

2 97360 32713 32110 32109 32109 0.02 0.03 0.01 0.30 0.98

3 60520 16725 15985 31411 15983 0.02 0.02 0.01 445 1.43

4 33332 10487 8675 15397 8674 0.02 0.03 0.01 ¯ 491

5 19590 6480 5368 8233 ¯ 0.02 0.04 0.02 ¯ ¯

10 5116 1785 1614 1982 ¯ 0.02 0.03 0.06 ¯ ¯

15 2467 797 644 1164 ¯ 0.02 0.03 0.05 ¯ ¯

20 1564 434 376 493 ¯ 0.02 0.03 0.11 ¯ ¯

Table 10 MSE values and run times for the test image Medical 3.

M

MSE Run time (seconds)

UQ PNN
PNN1
LMQ LMQ Otsu PNN

PNN1
LMQ LMQ Otsu

Fast
Otsu

2 3830 3272 3163 3163 3163 0.00 0.01 0.00 0.03 0.10

3 2921 1482 1424 1425 1424 0.00 0.01 0.01 14 0.16

4 2642 782 754 1063 753 0.00 0.01 0.00 4368 20

5 2147 569 500 500 499 0.00 0.01 0.01 ¯ 5061

10 993 140 124 220 ¯ 0.00 0.01 0.01 ¯ ¯

15 352 61.9 59.8 130 ¯ 0.00 0.01 0.01 ¯ ¯

20 182 34.2 32.4 94.1 ¯ 0.00 0.01 0.01 ¯ ¯
Journal of Electronic Imaging / October 2003 / Vol. 12(4) / 655
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Table 11 MSE values and run times for the test image Medical 4.

M

MSE Run time (seconds)

UQ PNN
PNN1
LMQ LMQ Otsu PNN

PNN1
LMQ LMQ Otsu

Fast
Otsu

2 352 237 237 237 237 0.00 0.00 0.00 0.00 0.00

3 198 130 127 127 124 0.00 0.00 0.00 0.10 0.00

4 134 69.8 64.4 66.8 63.8 0.00 0.00 0.00 6 0.07

5 103 46.5 42.9 45.3 42.1 0.00 0.00 0.00 275 3

10 29.0 12.3 11.3 22.0 ¯ 0.00 0.00 0.00 ¯ ¯

15 12.9 5.5 5.4 12.9 ¯ 0.00 0.00 0.00 ¯ ¯

20 6.8 2.9 3.0 6.8 ¯ 0.00 0.00 0.00 ¯ ¯
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nuclear medicine!.32 The characteristics of the test imag
are summarized in Table 3, and their histograms are sh
in Fig. 8. All tests are made on a 450-MHz Pentium
computer.

4.1 Methods in Comparison

We apply the algorithms for all test images by varying t
number of thresholds~from M52 to 20!. We use the fol-
lowing methods:

Fig. 9 Illustration of the thresholding of Medical 2 for M53 seg-
ments.
ctronic Imaging / October 2003 / Vol. 12(4)
n
• uniform quantizer~UQ!

• LMQ

• PNN

• PNN1LMQ

• Otsu’s method~optimal!.

A uniform quantizer distributes the thresholds equally, a
it serves as a point of comparison. It is expected that
studied algorithms perform better than the uniform qua
tizer. The LMQ is the iterative algorithm from Sec. 2.2. W
use the output of the uniform quantizer as the input for
LMQ. The PNN is the algorithm proposed in this work, an
the PNN1LMQ is the result of the PNN after it is iterate
by the LMQ. Otsu’s method serves as another point
comparison, since it provides the optimal result in the se
of minimizing MSE.

The threshold values for the F16 Jet and Lena are s
marized in Tables 4 and 5. The MSE values and the
times for the test images are reported in Tables 6 thro
11. The number of iterations required by the LMQ and t
PNN1LMQ are shown in Table 12.

4.2 Quality Comparison

From the results, we make the following observations.
methods provide significantly lower MSE values than t
uniform quantizer. In the case of a small number of thre

Table 12 The number of iterations.

M

F 16 Jet Medical 1 Medical 3

PNN1LMQ LMQ PNN1LMQ LMQ PNN1LMQ LMQ

2 4 5 4 11 7 8

3 11 11 4 13 4 27

4 7 11 9 28 10 19

5 5 16 9 31 12 25

10 6 5 16 91 14 31

15 4 16 20 112 4 32

20 4 5 7 54 4 30
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Fig. 10 Sample thresholded images from top down: F16 Jet (M510), Lena (M510), Medical 1 (M
520), Medical 2 (M53), and Medical 3 (M54).
to
re-
er-

d.
,

,

olds (M52 and 3!, the results are optimal or very close
optimal. For a large number of thresholds, the optimal
sult is not always found, and there are significant diff
ences in the performance between the methods.
The comparison between LMQ and PNN is two-fol
For small values ofM, the LMQ gives lower MSE values
whereas the PNN is better with large values ofM. For
example, for Lena withM53, the MSE is 502 by the PNN
Journal of Electronic Imaging / October 2003 / Vol. 12(4) / 657
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and 404 by the LMQ~Table 7!. On the other hand, fo
Medical 1 withM520, the MSE is 35.4 by the PNN, an
73.1 by the LMQ~Table 8!. We therefore recommend com
bining the PNN and the LMQ methods and use PN
1LMQ instead of applying the methods as themselves.

The PNN1LMQ combination gives near-optimal resul
in all cases reported here. Even in the worst case, it rea
the MSE value only 2% away from the optimum; 42.9
the PNN1LMQ, and 42.1 by the optimal method for Med
cal 4 ~Table 11!. The reduction in the MSE, on the othe
hand, can be as much as 66% from that of the LMQ: M
values 32.4 versus 94.1 for Medical 3~Table 10!. This cor-
responds to 4.63-dB improvement in the peak signal
noise ratio~PSNR!.

Sometimes the deficiency of using LMQ alone appe
also with a small value ofM, as demonstrated in Fig. 9
There is a very low, almost invisible peak, around the v
ues 200 to 220 in the histogram. The LMQ starts with t
output of the uniform quantizer and manages to relocate
second threshold (T252421), but fails to optimize the firs
threshold (T151317). The PNN1LMQ, on the other hand
finds significantly better solution (T152121 and T2

52551).
Visual comparisons of the LMQ and PNN1LMQ are

shown in Fig. 10. The differences in quality in F16 Jet a
Lena are not so clearly visible, but there are few: the clo
in the F16 Jet are somewhat more natural, and the chee
Lena is slightly smoother in the image thresholded by
PNN1LMQ. With the medical images the differences a
more clearly visible, as can be seen in Medical 2 and Me
cal 3 even for values as low asM53 and M54. With
larger values ofM, the results favor PNN1LMQ. The ex-
ample with Medical 1 shows that sometimes worse opti
zation of the LMQ can have surprising side effects in t
form of removal of background noise. Nevertheless,
PNN1LMQ still provides better approximation of th
original image, despite the preservation of noise.

The significance of the improvement in quality can a
be estimated by calculating the amount of additive no
that would have provided the same MSE value as the
provement from LMQ to PNN1LMQ. The examples of
Fig. 10 ~F16 Jet, Lena, Medical 1, Medical 2, and Medic
3! correspond to the noise level of~1, 1, 0.5, 4, and 2%! on
average. The corresponding PSNR values are~0.81, 0.68,
1.60, 2.93, and 1.49 dB!, and the maximum obtained im
provement was measured as 4.63 dB for Medical 3 w
M520.

4.3 Run Time Comparison

Otsu’s method is applicable only for small values ofM
because it is too slow in the case ofM.5. The fast variant
of Otsu’s method is remarkably faster; 15 s versus 1378
Lena withM55 ~Table 7!. The speed-up, however, is no
asymptotic and does not help for larger values ofM. For
example, the run times of Otsu’s method and its fast v
ants are 5514 and 22 s for Medical 1 withM54 ~Table 10!.
Despite the remarkable difference, the run time of the f
variant is already 5788 s whenM55.

All suboptimal methods are fast in all cases. The high
measured run time is only about 0.11 s by the LMQ
Medical 2~Table 9!. The time complexity of a single itera
658 / Journal of Electronic Imaging / October 2003 / Vol. 12(4)
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tion of the LMQ is faster than that of the PNN. The LMQ
however, is iterated several times, and the overall run tim
are similar. With higher values ofM, the PNN has a mod-
erate time advantage, although both methods are s
ciently fast for real-time applications.

It is also noted that the combination of PNN1LMQ
could be even faster than the LMQ alone. This is beca
the PNN can provide better initial thresholding, and th
the LMQ uses less iterations~Table 12!. We would also like
to note that the run times are so small that the implem
tation details and system level details, such as mem
caching, can affect the time measurement. We there
cannot make any other conclusions between PNN, LM
and PNN1LMQ other than that they are all suitable fo
real-time image processing.

5 Conclusions

A fast PNN-based multilevel thresholding algorithm is pr
posed. The time complexity of the method isO(N logN),
which is significantly better than that of optimal threshol
ing. In practice, the proposed method works in real time
any number of thresholds. Experiments also show that
proposed method, when combined with the LMQ, provid
MSE values that are much closer to that of optimal thre
olding than using LMQ alone. The difference is small wh
a low number of thresholds are needed (M52 or 3!, but
the difference is significant when the number of thresho
is higher~from M510 to M520).
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