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_ Abstract—Text-independent speaker verification under addi- Windowed | spectrum o 12 MEce
tive noise corruption is considered. In the popular mel-frejuency frames "1 estimation v e
cepstral coefficient (MFCC) front-end, the conventional Farier- )
based spectrum estimation is substituted with weighted liear RASTA
predictive methods, which have earlier shown success in res- Frame dropping [« Aand A* [ e

- . . filtering
robust speech recognition. Two temporally weighted variats of
linear predictive modeling are introduced to speaker veriftation v
and they are compared to FFT, which is normally used in CMVN 36-dimensional
computing MFCCs, and to conventional linear prediction. The feature vectors

effect of speech enhancement (spectral subtraction) on tteystem

performance with each of the four feature representations S fig 1. Front-end of the speaker recognition system. Whiiedard mel-
also investigated. Experiments by the authors on the NIST Z2  frequency cepstral features derived through a mel-frequepaced filterbank
SRE corpus indicate that the accuracy of the conventional ah placed on the magnitude spectrum are used in this work, the haav

proposed features are close to each other on clean data. Forthe magnitude spectrum is computed varies (FFT = Fast Fougasform,

factory noise at 0 dB SNR level, baseline FFT and the better baseline method; LP = Linear prediction; WLP = Weighted dinprediction;

of the proposed features give EERs of 17.4 % and 15.6 %, SWLP = Stabilized weighted linear prediction).

respectively. These accuracies improve to 11.6 % and 11.2 %,

respectively, when spectral subtraction is included as a pr . . .
processing method. The new features hold a promise for noise  Neither FET nor LP can robustly handle conditions of addi-

robust speaker verification. tive noise. Therefore, this topic has been studied extehsiv
Index Terms—Speaker verification, additive noise, stabilized the past few decades and many speech enhancement me_thods
weighted linear prediction (SWLP) have been proposed to tackle problems caused by additive

noise [6], [7]. These methods include, for example, spéctra
subtraction, Wiener filtering and Kalman filtering. They are
. INTRODUCTION all based on forming a statistical estimate for noise and
Speaker verification is the task of verifying one’s identityemoving it from the corrupted speech. Speech enhancement
based on the speech signal [1]. A typical speaker verifinatimmethods can be used in speaker recognition as a pre-pnogessi
system consists of a short-term spectral feature extracgddge to remove additive noise. However, they have two
(front-end) and a pattern matching module (back-end). Fpetential drawbacks. First, noise estimates are neveegerf
pattern matching, Gaussian mixture models [2] and supp@rhich may result in removing not only the noise but also
vector machines [3] are commonly used. The standard spepeaker-dependent components of the original speechn&eco
trum analysis method for speaker verification is the digcreadditional pre-processing increases processing timehwtao
Fourier transform, implemented as the fast Fourier transfo become a problem in real-time authentication.
(FFT). Linear prediction (LP) is another approach to estama Another approach to increase robustness is to carry out fea-
the short-time spectrum [4]. ture normalization such as cepstral mean and variance orma
Research in speaker recognition over the past two decaiegion (CMVN), RASTA filtering [8] or feature warping [9].
has largely concentrated on tackling the channel vartgbiliThese methods are often stacked with each other and combined
problem, that is, how to normalize the adverse effects duéth score normalization such as T-norm [10]. Finally, exam
to differing training and test handsets or channels (e.gGSples of model-domain methods, specifically designed toléack
versus landline speech) [5]. Another challenging problem additive noise, include model-domain spectral subtradtld],
speaker recognition, and speech technology in generdiats tmissing feature theory [12] and parallel model combination
of additive noise, that is, degradation that originatesfither [13], to mention a few. Model-domain methods are always
sound sources and adds to the speech signal. limited to a certain model family, such as Gaussian mixtures

. . o ) This paper focuses on short-term spectral feature extracti
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p
FFT Zbk Z Wnsnfksnfi = Z Wnsnsnfia 1 < 1 < b, (1)
‘== LP (p=20) P, —
= = =WLP (p=20) . - :
—— SWLP (p=20) which can be solved for the coefficiertig to obtain the WLP
ol all-pole modelH(z) = 1/(1 — >7_, bxz~"). It is easy to
SN ] show that conventional LP can be obtained as a special case
L T T Tt e of WLP: by settingWW,, = ¢ for all n, wherec is a finite
g S ae e nonzero constant, becomes a multiplier of both sides of (1)
= and cancels out, leaving the LP normal equations [4].
The conventional autocorrelation LP method is guaranteed
T to produce always a stable all-pole model, that is, a filter
10 dB o o
‘ ‘ ‘ where all poles are within the unit circle [4]. However, such
0 1000 2000 3000 4000 a guarantee does not exist for autocorrelation WLP when
Frequency (Hz) the weighting functionl¥,, is arbitrary [17], [18]. Because

Fig. 2. Examples of FET, LP, WLP and SWLP spectra for a voiquebsh of thle n_nportance of model stability in coding and synthesis
sound taken from the NIST 2002 speaker recognition corpdcanupted by applications, SWLP was developed [18]. The WLP normal

factory noise (SNR -10 dB). The spectra have been shiftecopyoaimately ~ equations (1) can be alternatively written in terms of @érti
10 dB with respect to each other. weightsZn_,j as

utilizes them in a more modern speaker verification system »

based on adapted Gaussian mixtures [2] and MFCC featurg kaZn,ksn_kstn_i = ZZn,oanmsn_i, 2
extraction. The robust linear predictive methods used for,—1 = n

spectrum estimation (Fig. 1) are weighted linear predictio 1<e<p,

(WI.‘P)t [%a/La;(tjh sttab|I|zedt WL; (St\/vgf:?,[) [15[1] wh|cr|1m||s awhereZn,j = /W, for 0 < j < p. As shown in [18] (using
variant o atguarantees the stabllity orthe resglaf ., v hased formulation), model stability is guaradtée

pole filter. Rather than removing noise as speech gnhan(te partial weightsZ,, ; are, instead, defined recursively as
methods do, the weighted LP methods aim to increase the = v N

contribution of such samples in the filter optimization thaf™° ~— VWi and Z,,; = max(1, Zpe=)Zn-1,j-1, 1 <
have been less corrupted by noise. As illustrated in Fig. 2,< p. Substitution of these values in (2) gives the SWLP
the corresponding all-pole spectra may preserve the farma@rmal equations.

structure of noise-corrupted voiced speech better than thelhe motivation for temporal weighting is to emphasize the
conventional methods. The WLP and SWLP features weg@ntribution of the less noisy signal regions in solving the
recently applied to automatic speech recognition in [1Ghwi LP filter coefficients. Typically, the weighting functidi’, in
promising results; the authors were curious to see wheth¥tP and SWLP is chosen as the short-time energy (STE)
these improvements would translate to speaker verificaionof the immediate signal history [17]-[19], computed using a

well. sliding window of M samples asV,, = Zi]\il s2 .. STE
Il. SPECTRUMESTIMATION METHODS weighting emphasizes those sections of the speech waveform

which consist of samples having a large amplitude. It can be
In linear predictive modeling, with prediction ordgr it is argued that these segments of speech are likely to be less
assumed that each speech sample can be predicted as a ligg@{ipted by stationary additive noise than the low-ensggy
combination ofp previous sampless, = >_h—1@kSn—k:  ments. Indeed, when compared to traditional spectral nroglel
where s, is the digital speech signal anfa;} are the methods such as FFT and LP, WLP and SWLP using STE-
prediction coefficients. The difference between the actugbighting have been shown to improve noise robustness in

samples,, and its predicted valué,, is the residuale, = sutomatic speech recognition [18], [19].
Sp— Y p_q kSn—k. WLP is a generalization of LP. In contrast
to conventional LP, WLP introduces a temporal weighting Ill. SPEAKER VERIFICATION SETUP

of the squared residual in model coefficient optimization, The effectiveness of the features is evaluated on the NIST
allowing emphasis of the temporal regions assumed to lie litP002 speaker recognition evaluation (SRE) corpus, which
affected by the noise, and de-emphasis of the noisy regionsnsists of realistic speech samples transmitted ovegrdiif

The coefficients{b;} are solved by minimizing the energycellular networks with varying types of handsets.

of the weighted squared residual [1F] = Y e2W, = The experiments are conducted using a standard Gaussian
>on(sn — Zizl besn_k)?W,, where W,, is the weighting mixture model classifier with a universal background model
function. The range of summation af(not explicitly written) (GMM-UBM) [2]. The GMM-UBM system was chosen since

is chosen in this work to correspond to the autocorrelatidins simple and may outperform support vector machines unde
method, in which the energy is minimized over a theoretycaladditive noise conditions [13]. Test normalization (T-mdr
infinite interval, buts,, is considered to be zero outside th§l10] is applied on the logarithmic likelihood ratio scor&bere
actual analysis window [4]. By setting the partial derivati of are 2982 genuine and 36,277 impostor test trials in the NIST
E with respect to eachy to zero, the WLP normal equations2002 corpus. For each of the 330 target speakers, two minutes
arrived at are of untranscribed, conversational speech is available & tr



TABLE |
SYSTEM PERFORMANCE UNDER WHITE NOISE

Signal- Equal error rate (EER %) MIinDCF
to-noise Without spectral subtraction With spectral subtraction Without spectral subtraction With spectral subtraction
ratio (dB) | FFT LP WLP  SWLP| FFT LP WLP  SWLP| FFT LP WLP SWLP| FFT LP  WLP SWLP
clean 9.22 8.89 9.15 9.15| 9.29 8.92 9.26 9.19| 3.56 3.47 3.50 354 359 351 353 3.60
20 9.76 9.43 9.46 9.39| 9.52 9.35 9.39 9.19| 3.83 3.77 3.69 3.82| 3.77 360 3.69 3.69
10 12.37 12.04 12,01 12.11 10.73 10.19 10.32 10.09 5.12 5.10 5.09 520 417 410 4.18 4.14
0 26.27 26.19 25.15 25.39 13.22 12.71 1291 12.7)] 9.34 9.51 9.50 9.44| 528 514 515 5.10
-10 37.66 37.73 37.06 37.14 23.51 22.77 23.44 2250 10.00 10.00 10.00 10.00 857 8.29 8.56 8.27
TABLE I

SYSTEM PERFORMANCE UNDER FACTORY NOISE
Signal- Equal error rate (EER %) MinDCF
to-noise Without spectral subtraction With spectral subtraction Without spectral subtraction With spectral subtraction
ratio (dB) | FFT LP WLP  SWLP| FFT LP WLP SWLP| FFT LP WLP SWLP| FFT LP WLP SWLP
clean 9.22 8.89 9.15 9.15| 9.29 8.92 9.26 9.19| 356 347 350 354 359 351 353 3.60
20 9.57 9.22 9.22 9.29| 9.69 9.26 9.46 9.35( 3.71 370 3.70 3.71| 3.72 365 364 3.68
10 10.13 10.26 10.13 10.03 10.47 10.20 10.26 10.03 4.05 4.20 4.16 4.16| 4.09 4.00 4.15 4.09
0 17.40 17.04 16.03 15,59 11.64 1157 1157 1117 7.62 7.82 7.24 7.04| 454 464 476 4.60
-10 26.19 25.63 2441 23.68 16.84 16.60 16.87 1555 9.80 9.84 9.75 9.69| 6.99 6.70 6.72 6.34

the target speaker model. The duration of the test uttesanese trained with clean data, but the noise is added to the test
varies between 15 and 45 seconds. The (gender-dependlie with a given average segmental (frame-average) signal
background models and cohort models for Tnorm, having-noise ratio (SNR). Five values are consider8tR €
1024 Gaussians, are trained using the NIST 2001 corpus. Thitean, 20, 10,0, —10} dB, where “clean” refers to the orig-
baseline system [20] has comparable or better accuracy thaal, uncontaminated NIST samples. In summary, the eval-
other systems evaluated on this corpus (e.g. [21]). uation data used in the present study contains linear and
Features are extracted every 15ms from 30ms frammasnlinear distortion present in the sounds of the NIST 2002
multiplied by a Hamming window. Depending on the featurdatabase as well as additive noise taken from the NOISEX-92
extraction method, the magnitude spectrum is computed difatabase.
ferently. For the baseline method, the FFT of the windowed Also included in the experiments is the well-known and
frame is directly computed. For LP, WLP and SWLP, theimple speech enhancement method, spectral subtracson (a
model coefficients and the corresponding all-pole speata aescribed in [6]). The effect of speech enhancement is estudi
first derived as explained in Section II. All the three partiine alone as well as in combination with the new features. The
methods use a predictor orderot= 20. For WLP and SWLP, noise model is initialized from the first five frames and updat
the short-term energy window duration is setMb= 20 sam- during the non-speech periods with VAD labels given by the
ples. A 27-channel mel-frequency filterbank is used to ekxtraenergy method.
12 MFCCs. After RASTA filtering,A and A2 coefficients, IV. SPEAKER VERIFICATION RESULTS

a standard component in modern speaker verification [1], 2" he results for white and factory noise are shown in Tables

gppendeq. V0|c.eq frames are then §elected using an eneﬁgalﬁd I, respectively. In addition, Fig. 3 shows a DET plath
ased voice activity detector (VAD). Finally, cepstral mead . :
compares the four feature sets under factory noise degoadat

vanance normall_zatlon (CMVN) is performed. The proceduraet SNR of 0 dB without any speech enhancement. Examining
is illustrated in Fig. 1.

. . the EER and MIinDCF scores without speech enhancement,
Two standard metrics are used to assess recognition accu- . . )
: - -the following observations are made:
racy: the equal error rate (EER) and the minimum detection N
cost function value (MinDCF). EER corresponds to the thresh ® 1n€ accuracy of all four feature sets degrades signifi-
old at which the miss rateR,;ss) and false alarm ratef,) pantly _under add|.t|ve noISe, p-erformance in white noise
are equal; MinDCF is the minimum value of a weighted cost is inferior to that in factory noisé. .
function given by0.1 x Pyiss + 0.99 x Pr,. In addition, a ¢ W_LP and S_WLP outperform FFT and LP in most cases,
few selected detection error tradeoff (DET) curves aretgibt with large d|fferer_1ces at low SNRs a_nd for_ factory noise;
showing the full trade-off curve between false alarms and € best performing methods for white noise and factory
misses on a normal deviate scale. All the reported minDCF N0!S€ arg WLP anﬁ SWLP, respectively. |
values are multiplied by 10, for ease of comparison. ¢ WLP and SWLP show minor !mprovement over FFT also
To study robustness against additive noise, some noise in the clean condition, showing consistency of the new
is digitally added from the NOISEX-92 databast the features.

speech samples. This study usehite and factory2 noises « Itis interesting to note that, although SWLP is stabilized
(the latter is referred to as “factory noise” throughout the ~Mainly for synthesis purposes and WLP has performed

paper). The background models and target speaker modekgactory noise has an overall “lowpass’ spectral slope closéhat of
speech, whereas the spectrum of white noise is flat. Whitgerisithus likely

1Samples available at http:/spib.rice.edu/spib/sglemise. html to corrupt the higher formants of speech more severely.



better in speech recognition [19], SWLP seems to slightonditions. The effectiveness of spectral subtractioniglly

outperform WLP in speaker recognition.
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Fig. 3. Comparing the features without any speech enharmteme
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Fig. 4. Comparing FFT and SWLP with and without speech endraeat
(SS = Spectral Subtraction).

noisy environments was also demonstrated. However, in the
enhanced case, both proposed methods still improved upon th
FFT baseline, and SWLP remained the most robust method.
In summary, the weighted linear predictive features are a
promising approach for speaker recognition in the presence
of additive noise.
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