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Temporally Weighted Linear Prediction Features for
Tackling Additive Noise in Speaker Verification
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Abstract—Text-independent speaker verification under addi-
tive noise corruption is considered. In the popular mel-frequency
cepstral coefficient (MFCC) front-end, the conventional Fourier-
based spectrum estimation is substituted with weighted linear
predictive methods, which have earlier shown success in noise-
robust speech recognition. Two temporally weighted variants of
linear predictive modeling are introduced to speaker verification
and they are compared to FFT, which is normally used in
computing MFCCs, and to conventional linear prediction. The
effect of speech enhancement (spectral subtraction) on thesystem
performance with each of the four feature representations is
also investigated. Experiments by the authors on the NIST 2002
SRE corpus indicate that the accuracy of the conventional and
proposed features are close to each other on clean data. For
factory noise at 0 dB SNR level, baseline FFT and the better
of the proposed features give EERs of 17.4 % and 15.6 %,
respectively. These accuracies improve to 11.6 % and 11.2 %,
respectively, when spectral subtraction is included as a pre-
processing method. The new features hold a promise for noise-
robust speaker verification.

Index Terms—Speaker verification, additive noise, stabilized
weighted linear prediction (SWLP)

I. I NTRODUCTION

Speaker verification is the task of verifying one’s identity
based on the speech signal [1]. A typical speaker verification
system consists of a short-term spectral feature extractor
(front-end) and a pattern matching module (back-end). For
pattern matching, Gaussian mixture models [2] and support
vector machines [3] are commonly used. The standard spec-
trum analysis method for speaker verification is the discrete
Fourier transform, implemented as the fast Fourier transform
(FFT). Linear prediction (LP) is another approach to estimate
the short-time spectrum [4].

Research in speaker recognition over the past two decades
has largely concentrated on tackling the channel variability
problem, that is, how to normalize the adverse effects due
to differing training and test handsets or channels (e.g. GSM
versus landline speech) [5]. Another challenging problem in
speaker recognition, and speech technology in general, is that
of additive noise, that is, degradation that originates from other
sound sources and adds to the speech signal.
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Fig. 1. Front-end of the speaker recognition system. While standard mel-
frequency cepstral features derived through a mel-frequency spaced filterbank
placed on the magnitude spectrum are used in this work, the way how
the magnitude spectrum is computed varies (FFT = Fast Fourier transform,
baseline method; LP = Linear prediction; WLP = Weighted linear prediction;
SWLP = Stabilized weighted linear prediction).

Neither FFT nor LP can robustly handle conditions of addi-
tive noise. Therefore, this topic has been studied extensively in
the past few decades and many speech enhancement methods
have been proposed to tackle problems caused by additive
noise [6], [7]. These methods include, for example, spectral
subtraction, Wiener filtering and Kalman filtering. They are
all based on forming a statistical estimate for noise and
removing it from the corrupted speech. Speech enhancement
methods can be used in speaker recognition as a pre-processing
stage to remove additive noise. However, they have two
potential drawbacks. First, noise estimates are never perfect,
which may result in removing not only the noise but also
speaker-dependent components of the original speech. Second,
additional pre-processing increases processing time which can
become a problem in real-time authentication.

Another approach to increase robustness is to carry out fea-
ture normalization such as cepstral mean and variance normal-
ization (CMVN), RASTA filtering [8] or feature warping [9].
These methods are often stacked with each other and combined
with score normalization such as T-norm [10]. Finally, exam-
ples of model-domain methods, specifically designed to tackle
additive noise, include model-domain spectral subtraction [11],
missing feature theory [12] and parallel model combination
[13], to mention a few. Model-domain methods are always
limited to a certain model family, such as Gaussian mixtures.

This paper focuses on short-term spectral feature extraction
(Fig. 1). Several previous studies have addressed robust fea-
ture extraction in speaker identification based on LP-derived
methods, e.g. [14]–[16]. All these investigations, however, use
vector quantization (VQ) classifiers and some of the feature
extraction methods utilized are computationally intensive, be-
cause they involve solving for the roots of LP polynomials.
Differently from these previous studies, this work (a) compares
two straightforward noise-robust modifications of LP and (b)



2

0 1000 2000 3000 4000
Frequency (Hz)

M
ag

ni
tu

de

 

 

10 dB

FFT
LP (p=20)
WLP (p=20)
SWLP (p=20)

Fig. 2. Examples of FFT, LP, WLP and SWLP spectra for a voiced speech
sound taken from the NIST 2002 speaker recognition corpus and corrupted by
factory noise (SNR -10 dB). The spectra have been shifted by approximately
10 dB with respect to each other.

utilizes them in a more modern speaker verification system
based on adapted Gaussian mixtures [2] and MFCC feature
extraction. The robust linear predictive methods used for
spectrum estimation (Fig. 1) are weighted linear prediction
(WLP) [17] and stabilized WLP (SWLP) [18], which is a
variant of WLP that guarantees the stability of the resulting all-
pole filter. Rather than removing noise as speech enhancement
methods do, the weighted LP methods aim to increase the
contribution of such samples in the filter optimization that
have been less corrupted by noise. As illustrated in Fig. 2,
the corresponding all-pole spectra may preserve the formant
structure of noise-corrupted voiced speech better than the
conventional methods. The WLP and SWLP features were
recently applied to automatic speech recognition in [19] with
promising results; the authors were curious to see whether
these improvements would translate to speaker verificationas
well.

II. SPECTRUM ESTIMATION METHODS

In linear predictive modeling, with prediction orderp, it is
assumed that each speech sample can be predicted as a linear
combination of p previous samples,̂sn =

∑p

k=1
aksn−k,

where sn is the digital speech signal and{ak} are the
prediction coefficients. The difference between the actual
samplesn and its predicted valuêsn is the residualen =
sn−

∑p

k=1
aksn−k. WLP is a generalization of LP. In contrast

to conventional LP, WLP introduces a temporal weighting
of the squared residual in model coefficient optimization,
allowing emphasis of the temporal regions assumed to be little
affected by the noise, and de-emphasis of the noisy regions.
The coefficients{bk} are solved by minimizing the energy
of the weighted squared residual [17]E =

∑
n e

2
nWn =∑

n(sn −
∑p

k=1
bksn−k)

2Wn, where Wn is the weighting
function. The range of summation ofn (not explicitly written)
is chosen in this work to correspond to the autocorrelation
method, in which the energy is minimized over a theoretically
infinite interval, butsn is considered to be zero outside the
actual analysis window [4]. By setting the partial derivatives of
E with respect to eachbk to zero, the WLP normal equations
arrived at are

p∑

k=1

bk
∑

n

Wnsn−ksn−i =
∑

n

Wnsnsn−i, 1 ≤ i ≤ p, (1)

which can be solved for the coefficientsbk to obtain the WLP
all-pole modelH(z) = 1/(1 − ∑p

k=1
bkz

−k). It is easy to
show that conventional LP can be obtained as a special case
of WLP: by settingWn = c for all n, where c is a finite
nonzero constant,c becomes a multiplier of both sides of (1)
and cancels out, leaving the LP normal equations [4].

The conventional autocorrelation LP method is guaranteed
to produce always a stable all-pole model, that is, a filter
where all poles are within the unit circle [4]. However, such
a guarantee does not exist for autocorrelation WLP when
the weighting functionWn is arbitrary [17], [18]. Because
of the importance of model stability in coding and synthesis
applications, SWLP was developed [18]. The WLP normal
equations (1) can be alternatively written in terms of partial
weightsZn,j as

p∑

k=1

bk
∑

n

Zn,ksn−kZn,isn−i =
∑

n

Zn,0snZn,isn−i, (2)

1 ≤ i ≤ p,

whereZn,j =
√
Wn for 0 ≤ j ≤ p. As shown in [18] (using

a matrix-based formulation), model stability is guaranteed if
the partial weightsZn,j are, instead, defined recursively as
Zn,0 =

√
Wn and Zn,j = max(1,

√
Wn√
Wn−1

)Zn−1,j−1, 1 ≤
j ≤ p. Substitution of these values in (2) gives the SWLP
normal equations.

The motivation for temporal weighting is to emphasize the
contribution of the less noisy signal regions in solving the
LP filter coefficients. Typically, the weighting functionWn in
WLP and SWLP is chosen as the short-time energy (STE)
of the immediate signal history [17]–[19], computed using a
sliding window of M samples asWn =

∑M

i=1
s2n−i. STE

weighting emphasizes those sections of the speech waveform
which consist of samples having a large amplitude. It can be
argued that these segments of speech are likely to be less
corrupted by stationary additive noise than the low-energyseg-
ments. Indeed, when compared to traditional spectral modeling
methods such as FFT and LP, WLP and SWLP using STE-
weighting have been shown to improve noise robustness in
automatic speech recognition [18], [19].

III. SPEAKER VERIFICATION SETUP

The effectiveness of the features is evaluated on the NIST
2002 speaker recognition evaluation (SRE) corpus, which
consists of realistic speech samples transmitted over different
cellular networks with varying types of handsets.

The experiments are conducted using a standard Gaussian
mixture model classifier with a universal background model
(GMM-UBM) [2]. The GMM-UBM system was chosen since
it is simple and may outperform support vector machines under
additive noise conditions [13]. Test normalization (T-norm)
[10] is applied on the logarithmic likelihood ratio scores.There
are 2982 genuine and 36,277 impostor test trials in the NIST
2002 corpus. For each of the 330 target speakers, two minutes
of untranscribed, conversational speech is available to train
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TABLE I
SYSTEM PERFORMANCE UNDER WHITE NOISE.

Signal- Equal error rate (EER %) MinDCF
to-noise Without spectral subtraction With spectral subtraction Without spectral subtraction With spectral subtraction
ratio (dB) FFT LP WLP SWLP FFT LP WLP SWLP FFT LP WLP SWLP FFT LP WLP SWLP
clean 9.22 8.89 9.15 9.15 9.29 8.92 9.26 9.19 3.56 3.47 3.50 3.54 3.59 3.51 3.53 3.60
20 9.76 9.43 9.46 9.39 9.52 9.35 9.39 9.19 3.83 3.77 3.69 3.82 3.77 3.60 3.69 3.69
10 12.37 12.04 12.01 12.11 10.73 10.19 10.32 10.09 5.12 5.10 5.09 5.20 4.17 4.10 4.18 4.14
0 26.27 26.19 25.15 25.39 13.22 12.71 12.91 12.71 9.34 9.51 9.50 9.44 5.28 5.14 5.15 5.10
-10 37.66 37.73 37.06 37.16 23.51 22.77 23.44 22.50 10.00 10.00 10.00 10.00 8.57 8.29 8.56 8.27

TABLE II
SYSTEM PERFORMANCE UNDER FACTORY NOISE.

Signal- Equal error rate (EER %) MinDCF
to-noise Without spectral subtraction With spectral subtraction Without spectral subtraction With spectral subtraction
ratio (dB) FFT LP WLP SWLP FFT LP WLP SWLP FFT LP WLP SWLP FFT LP WLP SWLP
clean 9.22 8.89 9.15 9.15 9.29 8.92 9.26 9.19 3.56 3.47 3.50 3.54 3.59 3.51 3.53 3.60
20 9.57 9.22 9.22 9.29 9.69 9.26 9.46 9.35 3.71 3.70 3.70 3.71 3.72 3.65 3.64 3.68
10 10.13 10.26 10.13 10.03 10.47 10.20 10.26 10.03 4.05 4.20 4.16 4.16 4.09 4.00 4.15 4.09
0 17.40 17.04 16.03 15.59 11.64 11.57 11.57 11.17 7.62 7.82 7.24 7.04 4.54 4.64 4.76 4.60
-10 26.19 25.63 24.41 23.68 16.84 16.60 16.87 15.55 9.80 9.84 9.75 9.69 6.99 6.70 6.72 6.34

the target speaker model. The duration of the test utterances
varies between 15 and 45 seconds. The (gender-dependent)
background models and cohort models for Tnorm, having
1024 Gaussians, are trained using the NIST 2001 corpus. This
baseline system [20] has comparable or better accuracy than
other systems evaluated on this corpus (e.g. [21]).

Features are extracted every 15 ms from 30 ms frames
multiplied by a Hamming window. Depending on the feature
extraction method, the magnitude spectrum is computed dif-
ferently. For the baseline method, the FFT of the windowed
frame is directly computed. For LP, WLP and SWLP, the
model coefficients and the corresponding all-pole spectra are
first derived as explained in Section II. All the three parametric
methods use a predictor order ofp = 20. For WLP and SWLP,
the short-term energy window duration is set toM = 20 sam-
ples. A 27-channel mel-frequency filterbank is used to extract
12 MFCCs. After RASTA filtering,∆ and ∆2 coefficients,
a standard component in modern speaker verification [1], are
appended. Voiced frames are then selected using an energy-
based voice activity detector (VAD). Finally, cepstral mean and
variance normalization (CMVN) is performed. The procedure
is illustrated in Fig. 1.

Two standard metrics are used to assess recognition accu-
racy: the equal error rate (EER) and the minimum detection
cost function value (MinDCF). EER corresponds to the thresh-
old at which the miss rate (Pmiss) and false alarm rate (Pfa)
are equal; MinDCF is the minimum value of a weighted cost
function given by0.1 × Pmiss + 0.99 × Pfa. In addition, a
few selected detection error tradeoff (DET) curves are plotted
showing the full trade-off curve between false alarms and
misses on a normal deviate scale. All the reported minDCF
values are multiplied by 10, for ease of comparison.

To study robustness against additive noise, some noise
is digitally added from the NOISEX-92 database1 to the
speech samples. This study useswhite and factory2 noises
(the latter is referred to as “factory noise” throughout the
paper). The background models and target speaker models

1Samples available at http://spib.rice.edu/spib/selectnoise.html

are trained with clean data, but the noise is added to the test
files with a given average segmental (frame-average) signal-
to-noise ratio (SNR). Five values are considered:SNR ∈
{clean, 20, 10, 0,−10} dB, where “clean” refers to the orig-
inal, uncontaminated NIST samples. In summary, the eval-
uation data used in the present study contains linear and
nonlinear distortion present in the sounds of the NIST 2002
database as well as additive noise taken from the NOISEX-92
database.

Also included in the experiments is the well-known and
simple speech enhancement method, spectral subtraction (as
described in [6]). The effect of speech enhancement is studied
alone as well as in combination with the new features. The
noise model is initialized from the first five frames and updated
during the non-speech periods with VAD labels given by the
energy method.

IV. SPEAKER VERIFICATION RESULTS

The results for white and factory noise are shown in Tables
I and II, respectively. In addition, Fig. 3 shows a DET plot that
compares the four feature sets under factory noise degradation
at SNR of 0 dB without any speech enhancement. Examining
the EER and MinDCF scores without speech enhancement,
the following observations are made:

• The accuracy of all four feature sets degrades signifi-
cantly under additive noise; performance in white noise
is inferior to that in factory noise2.

• WLP and SWLP outperform FFT and LP in most cases,
with large differences at low SNRs and for factory noise;
the best performing methods for white noise and factory
noise are WLP and SWLP, respectively.

• WLP and SWLP show minor improvement over FFT also
in the clean condition, showing consistency of the new
features.

• It is interesting to note that, although SWLP is stabilized
mainly for synthesis purposes and WLP has performed

2Factory noise has an overall “lowpass” spectral slope closeto that of
speech, whereas the spectrum of white noise is flat. White noise is thus likely
to corrupt the higher formants of speech more severely.
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better in speech recognition [19], SWLP seems to slightly
outperform WLP in speaker recognition.
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Fig. 3. Comparing the features without any speech enhancement.
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(a) FFT (EER = 17.40 %, MinDCF= 7.62)
(b) SWLP (EER = 15.59 %, MinDCF= 7.04)
(c) SS + FFT (EER = 11.64 %, MinDCF= 4.54)
(d) SS + SWLP (EER = 11.17 %, MinDCF = 4.60)
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Fig. 4. Comparing FFT and SWLP with and without speech enhancement
(SS = Spectral Subtraction).

Considering the effect of speech enhancement, as sum-
marized by the representative DET plot in Fig. 4, speech
enhancement as a pre-processing step is seen to significantly
improve all the four methods. In addition, according to Tables
I and II, the difference becomes progressively larger with
decreasing SNR. This is expected since for a less noisy signal,
spectral subtraction is also likely to remove other information
in addition to noise. After including speech enhancement, even
though the enhancement has a larger effect than the choice of
the feature set, SWLP remains the most robust method and
together with WLP outperforms baseline FFT. Note that here
the benefit from spectral subtraction may be quite pronounced
due to almost stationary noise types.

V. CONCLUSIONS

Temporally weighted linear predictive features in speaker
verification were studied. Without speech enhancement, the
new WLP and SWLP features outperformed standard FFT and
LP features in recognition experiments under additive-noise

conditions. The effectiveness of spectral subtraction in highly
noisy environments was also demonstrated. However, in the
enhanced case, both proposed methods still improved upon the
FFT baseline, and SWLP remained the most robust method.
In summary, the weighted linear predictive features are a
promising approach for speaker recognition in the presence
of additive noise.
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